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Abstract—We present a formal technique for verifying the
stability of transient responses of power systems. The preclure
uses reachability analysis to compute the complete set of gsible
transient responses starting from a set of initial states, ubject
to a dynamics specified by differential-algebraic equatios. The
method is constructive and fully automatic, two propertiesthat
are often hard to achieve with direct Lyapunov methods whente
differential-algebraic equations are not simplified. Reabability
analysis is computationally expensive, but this work presgs
new techniques that make it possible to verify the stabilityof a
transient response of the IEEE 14-bus benchmark power syste
network.

Index Terms—Transient Stability, Reachability Analysis, Non-
linear Differential-Algebraic Equations, Power Systems

I. INTRODUCTION

Transient stability analysis of power systems goes bafk

conservative, i.e. largely underapproximated when th&esys
is relatively large. For practical applications, Lyapurtmased
models are computationally infeasible, or one has to dralbi

simplify the system dynamics, resulting in possibly inectr
results [21].

Recently, reachability analysis as a new kind of analysis
technique has emerged. Reachability analysis combines ad-
vantages of numerical integration and Lyapunov-based-tech
nigues. Reachability analysis computes the set of all plessi
trajectories of a system, given a set of initial states, a set
of disturbances, and a set of uncertain parameters. Thus,
one obtains a set-based evolution of the system dynamics,
similar to a numerical integration, except that all possibl
solutions are computed for each time interval at once. Due
the set-based computation, the result is rigorous as for

to the 1920s [10]. Since then, many approaches for traWapunov-based analysis. One can prove transient stabilit

sient stability analysis have been developed [21]. We grou
the techniques into model-based and model-free approac
Model-free approaches predict the transient stabilityebas
on machine learning techniques, where Neural Nets [9] a q

pattern recognition [22] are most popular.

thout constructing a Lyapunov function by showing that th
Vé tem returns to the set of initial states after a fault oecl
The main disadvantage of reachability analysis so far was th
mputational complexity for power system applicatiors, s
that only small systems have been verified [13], [19], [26]. |

Since we propose a model-based technique, we focus [918] tra_\nsient Sta*?i”w_ apa_llysis is performed using lesets
literature review on this category. The most common moddf’ @ single-machine-infinite-bus system modeled by ODEs
based technique is to simulate power system equations ! Only 2 state variables. A slightly larger double-machine-
numerical integration. The main advantage of numerical iffAlinite-bus system witte buses described by ODEs with
tegration is its versatility, meaning that all kinds of mide Staté variables is considered in [26]. In [13], an initial BA
can be analyzed, while the main disadvantage is the Iimitg&)deI 1S sm_1pl|f|_ed to ODEs and fu_rther to linear O_DES’
applicability in emergency situations, when the conseqegn without con3|dgr|ng errors magle during each conversion. A
of a fault have to be known immediately. For this reasor;PUS System is considered in [13], and effects on wind
approaches for the parallelization of numerical integratire Varapility rather than transient stability are investiga
researched [2], [25]. Alternatively, Monte-Carlo simidat In this work, we present a new approach for reachable
provides a probabilistic evaluation, where many scenariest computation, which is much more scalable than previ-
are deterministically computed and later evaluated byrtheius approaches and additionally guarantees that the result
probability of occurrence. Aggregation of all results giela is overapproximative. This property is important for prov-
probability that the transient response is unstable [8]. ing transient stability. The approach works for any kind of

In order to improve the online analysis during a faultsystem with time-invariant, semi-explicit, index-1 diféatial-
on situation, direct methods based on the Lyapunov stabilalgebraic equations (DAEs). We show the scalability by com-
theory have been developed [1], [12], [23]. The main agbuting the reachable set for the IEEE 14-bus benchmark power
vantage of Lyapunov techniques is that one can guaransystem network to which we adggenerators, resulting it¥
that the transient response is stable when the post-fai# siifferential and28 algebraic variables, giving a total af2
is within a previously computed domain of attraction. Theontinuous state variables.

main disadvantage is that the region of attraction is uguall The main reasons for the improved scalability is because we
(i) invented a new and efficient approach to tightly overappr
imate the complicated nonlinear DAEs by linear differeintia
inclusions, and (ii) apply zonotopes for the reachabilibyne
putation of the linear differential inclusions, which oatform

all previous approaches for this system class [15].
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[I. PROBLEM STATEMENT where the derivative is not exactly known, but bounded by a
sﬁc. In (2), we use a set-based addition (Minkowski addjtion

Power systems can be formalized as a set of semi-explici, . . . ) s
nonlinear index-1 DAES (see e.g. [24]). We assume that tWe ich we introduce together with the set-based multipiacat

parameters of the power system are known and constant A® B :={a+bla € A be B},
over time, resulting in a set of time-invariant DAEs. We A® B :={ablac Abe B}
introduce the vectors of differential variables ase R"<,
algebraic variables ag € R"s, and inputs asu € R™, The set of added inputs/ in (2) is chosen such that it
whereng, n,, andm are the number of differential, algebraicjncludes all behaviors of the differential variables of the
and input variables, respectively. Further, we introduoe toriginal nonlinear DAE-system. The solution of the algébra
set of consistent initial stateR(0) and the set of possible variables will be obtained in a subsequent computation. We
inputs/disturbance&/. The set of DAEs can now be writtenconstruct different differential inclusions for fixed tinieter-
as valst € 1, := [tk, tiy1], Wherety, = kr, k € N is the time
&= f(x(t),y(t),u(t)) step andr € RT is referred to as the time increment or step
0= g(x(t),y(t), u(t)), (1) size. An extension to variable step sizes is described ih [14
T T /1T The reachable set computation itself is performed on the dif
(27 (0), 7 (O € R(0), u(®) €U, ferential inclusion overapproximation in (2) for which efént

The initial state is consistent wheiz:(0), 4(0),(0)) = 0 and  algorithms exist when using zonotopes [15], [17] or support
we assume that (1) has a unique solutigh z(0), y(0), u(-)) functions [16] as representations of the reachable set. $8e u
for all consistent initial states(0), y(0) and all piecewise zonotopes since some operations required for the conversio
continuous input trajectories-), whereu(t) refers to an input to linear differential inclusions, such as quadratic mayas)
at a specific point in time. We are interested in computingbe efficiently computed with them.
the reachable set of (1) for a time intervial ¢ /], which is In the remainder of this section, we describe the main algo-
defined as rithm in Fig. 1 in words. Details of the algorithm are desedb
in the subsequent sections. We first linearize the difféaent
Re([0,t]) ={7(t, z(0),y(0), U('))‘ [z"(0),5"(0)]" € R(0), and algebraic equations of (1) using a first order Taylor expa
sion. Next, we heuristically obtain a set of linearizatioroes
ult) e t e [O’tf]}' Z" andZ* for the differential and algebraic equations, which
e believe to include the actual set of linearization errors

set, which cannot be computed for nonlinear DAE syste e combination of linearized equations to which the set of

[20]. For this reason, we aim to compute overapproximatio gear!zatlon errors 1s adde_zd, |s_referred to mser_vatlve!y
Inearized equationsAfter inserting the conservatively lin-

R([0,t7]) 2 R°([0,%s]), which are as accurate as possible, ~. : ; : . -
while at the same time ensuring that the computations are gﬁrlzed algebraic equations into the conservatively fined
ifferential equations, we obtain a differential inclusiof the

ficient and scale well with the system dimensioB-= ng+n,. ; .
For simplification we often useeachable seinstead of always form_|dn (2). The reachablei(?it computation 9f (2)_ returns the
setR (k) = Rigne (k) ® R, (r) for the k™ time interval,

emphasizing the we computeverapproximative reachable =<"/% \ a / !

sets If the overapproximation shows transient stability, wd/ich is composed of the affine solutioRy;,.(7+) (no
can conclude that the exact result is stable since all spigti Uncertain inputs) and the solution due to uncertain inplts
of the real system are included in the overapproximatiore. TH NiS reachable setis then used to overapproximately determ
projection of the reachable set onto the differential ziia "€ linearization errorsC? and £ of the differential and
is denoted byR“([0, ¢;]) and for the algebraic variables byalgebraic equations, respectivelydf ¢ L~ or £* ¢ L, one

R([0,t]). or both of the assumed sef§ andZ” have to be enlarged.

a

In this work, we continue to compute reachable sets untiMhen £¢ C £, or £* C £¢.., where£d and £,
time ¢, for which R(t;) € R(0), i.e. all solutions are within are user-defined bounds for linearization errors, the razeh
the set of initial states such that we can conclude transig&t has to be split to reduce the linearization error. As for a
stability of the system in the sense that all transient rasps subdivision methods, splitting leads to improved accurbay
return to the set of initial states. Using the same metho#icreases the computational demand. Finally, we compete th
one could also check if an arbitrarily small region arounel tifeachable set due to uncertain inp@g(r) based onZ? and
steady state can be reached. As a by-product, we obtain @il (instead ond and Z“), which tightens the reachable set
voltage and phase limits over time for further analysis.  to R(7;) = Ré,.(7x) @ R(r). The computation continues

with the next time interval.

The superscript on R°([0,¢s]) denotes the exact reachabl

IIl. M AIN ALGORITHM

L IV. CONSERVATIVE LINEARIZATION
The reachable set computation is performed by conser-

vatively simplifying the nonlinear DAEs to ordinary linear In this section we describe how we overapproximate the
differential inclusions DAEs to linear differential inclusions. Thereto, we intcme

S the vectorz = [z7,y? 7|7, the linearization point* =
reAial, @) [T,y T, )T, andR? = R(m) x U.



Initial set R(0), time stepk = 1, sets of allowed linearization errd”, 2  terms if ¢ can take any value of the linear combinationzof
andz*, i.e. £ € {az + (1 — a)z*|a € [0,1]}, which follows
4 from the mean value theorem [11, p. 87]. Sincex({)) can

( _ o —d —a take any values fronRR* in the time intervalry, (i) R* is
Obtain assumed sets of linearization err, £ e
represented by a convex zonotope, and {ifiJs chosen as an
v interior point of this set, it follows that fof € R* the set of

Lagrangian remainders is captured.

For subsequent derivations, we introduce the Jacobians of
f(=(t)) with respect tar, y, u, which areA € R"¢*"¢, B ¢
R™*™, andC' € R™*"e, where?Z)|_ . —[4 ¢ BJ.

The Jacobians fog(z(t)) are D € R"*"d E ¢ RMX™,
and I € R" " where a"g—i‘z)p:z* =[D F E|. We
further introduce the Hessiarg® () (¢) = £z and

X 022 )’zzf
H»U)(¢) = agsz(z))’Z:E, as well as the following variables
with respect to the linearization poinf\z(t) = x(t) — z*,
Au(t) = u(t) —u*, Ay(t) = y(t) —y*, v(t) = z(¢t) — z*, and
42 = R*@(—=z*). Using the previously introduced variables,
we have from (3) and (4) that

Transform (1) using€?, Z* to
differential inclusioni € A#(t) & U; see Sec. IV

Compute reachable s&° (r;,) = Régine(Ti) © ﬁﬁ(r)
of the differential inclusion; see Sec. V

v

Compute set of linearization erro?, £*
based oriR*(r;,); see Sec. VI

[ EnlargeZ’, Z°

TN N )

& €f(2*) + AAx(t) + BAu(t) + CAy(t) )
Split R(tx) 1 ,
® {50‘@ —THEO (6, £ e R, v € RZA},
0 €g(2") + DAz(t) + EAu(t) + FAy(t) (6)

Calculate reachable set of inpu&j(r) considering
linearization errorsC?, £¢

1 ,
o {50]0; =" H D), € e R*, v e RR ).
Next, we reformulate (6) to

Ay(t) € —F~ (g(z*) + DAx(t) + EAu(t)) @)

ComputeR%(7y,) = R, . (7) @ R(r)

| Next initial set:R?(tg41), 1 _
time stepk := k + 1 69{ - —F71¢‘¢j =THY (), e R, v e 'RZA}
. ) . 2

Fig. 1. Overview of reachable set computation.

Note thatF' is always invertible due to the index-1 property
of the DAEs. Inserting (7) into (5) results in a differential

Before we perform the linearization, we have to choose tfeclusion
linearization pointz* (which varies for each time interval). & ef(2") + AAx(t) + BAu(t)
In order to reduce the linearization error, we useas the _ CF—l(g(Z*) + DAx(t) + EAu(t)) oL (8
center of R*(r) of the currently computed time intervaj, _ -
see [7]. We approximate the center of the yet unknown set =(k + AAz(t) + BAu(t)) @ L,
R*(1) by z*(m) = c(tr) + 0.5f(c? c®, c*)(tkr1 — tk), Where
wherec?, ¢, ¢* are the volumetric centers of the s@&$(t;),

. . k=f(z") = CF'g(z")
R*(tr), andU. This procedure can be interpreted as a one- AeA .
step Euler integration. We further choos& ;) = ¢* and the AT CF™—D
linearization point of the algebraic part is obtained by s B=B-CF'E.
0 = g(z*,y*,u*) using a Newton-Raphson algorithm. and
Using z*, the linearization of (1) is performed by a first- 1 .
order Taylor expansion with Lagrangian remainder: L :{5(0 — CF'¢)|o; = v H* D (&),
i _ a,(j z z 9
b= 10) f)+ B e - e L o =TI OOn e et versp O
i 20,5) ., 9 crie(-CF o L)
— . cqg.:(z* + — ¥ [&5) 47 X . ) . .
9i((t)) €9,(=") 0z z:z*(Z() Z) J The set of linearization error&€ as proposed in (9) is a
where subset of£? @ (—~CF~'® £) since in the latter computation,
1 92 f.(2) the dependency of is ignored when computingz? and
L= {i(z(t)—z*)T 8;2 _E(z(t)—z*)geRz,z(t) eRz} L* separately. We can further simplify the reachable set

(4) computation of (8) by solving

andL¢ is computed analogously by replaciyigz) with g;(z). Fe Azt o, (10)
We write £¢ for the projection of£¢ onto thei™ coordinate. B N N .

The Lagrangian remaindet8?, £ enclose all higher-order B(t) = Ax(t), U:=kodBUSG (—u"))® L.



The problem of the above system is that the set of lineadmatiadvantage of the superposition principle for linear dyreami
errorsL is not known in advance, 9d is unknown, (’500. For as shown in Fig. 3:

. . -5 d .
this reason, we have to guess the overapproximations £ 1) Starting fromR" (), compute the set of all solutions
andZ 2 E_d' Using tffse_txvo enclosures, it ]_CO_HPWS thap Rﬁ(tkﬂ) for the affine dynamicg = AZ(t) + u. at
LforL=L &(-CF'®L"), see (9). As an initial guess we time ¢4,41.
enlarge the previous linearization error by user-definedasc 2) Obtain the convex hull ofl_zd(tk) and R (t41) to

d ot + , O
factorsA” € R, A" € R, so that approximate the reachable set for the time interyal

—d _Ad dpd _ad 3) Computeﬁd(m) by enlarging the convex hull to first
L£1(m) =7 @ XL Th) © (=), bound all affine solutions within, and secondly ac-
where ¢ is the volumetric center of%(r,_1), andZ" (7%) count for the set of uncertain inputéa .
is obtained analogously. If it turns out that the enclosure
assumption is not correct, the factors have to be repeasadly RYm) —>
automatically enlarged until the linearization error asption 4
holds. Further, if the se§” andZ" do not fulfill 07 Rislti
4 _ convex hull of
£'crd,  andZ' C Lo, (11) R (th),
d a _ R(;il(thrl)
where £  and £ are set by the user, the reachable segt < R (t,)
has to be split in order to reduce the linearization errofl un enlargement
(112) is fulfilled. Thus, we can guarantee that the lineaigrat . 0 0
error is bounded by? . and£? .. Techniques to decide the

dividing hyperplane for the split can be found in [7]. Fig. 3. Steps for the computation of an overapproximatiothefreachable
set for a linear differential inclusion.

V. REACHABLE SET COMPUTATION OF LINEAR SYSTEMS USINGr = f.+1 — 5, the solution ofR (tys1) is

We briefly describe how the reachable set of a linear differ-

ential inclusioni € Az (t)®U (see (10)) withi(ty,) € ﬁd(tk), R (b 1) = eATﬁd(tk) n /T A=) g,

is computed for the time interval,. We restrict the set of 0

reachable se@d(tk) and inputg/ to zonotopes: =iz, (r)

Definition 1 (Zonotope) Given a centerc € R” and so- If A s invertible,x, (r) can be computed ad™* (e”" — I,
called generatorg/¥) € R”, a zonotope is defined as wherel is the identity matrix. However, sincé is not always

invertible, we computer,(r) by integrating the Taylor series
Bi€[-1,1],ce R, g9 ¢ R"} of e = 3772 (Ar)'/(it):

p
Z= {c + Big®
i=1

-
Az,r,z+1 AZTH—I .

We write in shortZ = (¢, ¢™,...,¢»)). A zonotope can wp(r) = (Z; (i +1)! + ,_Z:l (i +1)! )uc

be interpreted as the Minkowski addition of line segments h s

1 = [~1,1]¢", which is visualized step-by-step in a two- =By (r)

dimensional vector space in Fig. 2. Zonotopes are a compact N Aipitl B

way of representing sets in high dimensions. More impolant (Z g P 5p(7°)) XUe,

‘ i+ 1)!
operations required for reachability analysis, such asalin =0 : )
mapsM ® Z (M € R?*™) and Minkowski additionZ; & 2 =T (r)
can be computed efficiently and exactly, and others such as

convex hull computation can be tightly overapproximateg] [1 | N€ remaindet, (r) can be overapproximated by an interval
matrix E,(r) € &E,(r) = [-W(r)r,W(r)r], i.e., by a

matrix with lower and upper bounds on each element. Using

2 J1e) > J1eS 1@ symmetric bounds orE,(r), these bounds can be obtained
2 from
1 1
c > Al > |A|iri+1
0 = i =
B@l=] > o< 2 G
0 -1 >—¢ i=n+1 i=n+1
0 1 2 -1 01 23 -2 0 2 4 o 0
A|’LTZ ~ |A|1TZ
@col® sl el®  (©co..al® < ( v r= (e -3 ,
-\ il _ il '
Fig. 2. Step-by-step construction of a zonotope. i=n+1 =0

=:W(r)
As a preparation for the reachable set computation, we split ;
@e effect ofi/ into its centerz. and the translated sétx = The enlargement of the convex hull denoted7y to contain
U @ (—u.). This proposed reachable set computation take#f affine solutions forr;, is performed as in [3, Chap. 3.2].



The reachable set due to the uncertain and convex idput computation ofR(7) using the addition and multiplication
is obtained as derived in [6]: rule of zonotopesZ = (¢,G): M ® Z = (Mc¢, MG), 21 @
. n A pitl _ _ Zy = (Cl + c2, [Gl . GQ] ) . - ]
R,(r) = @ (m ®Z/1A>69([—W(7’) r, W (r)rl@Ual), E(()ite that_Pgoposmon 1 is tighter than the Cartesian produc

i=0 ’ (12) R (1x) X R (1) because the latter result hés(rinore gener-

where the absolute value of a set of matricesis defined 210 where is fche nﬂmber. of generators & (Tk).' Next,
elementwise agM|;; == sup{|m;;||m € M}, which equiv- the set of aI.I va_nablesz(m) is used to overapproximate the
alently applies to the vector sata. set of linearization errors.

The reachable set for the next point in time and time interval
is obtained by combining all previous results and using the Bounding the Lagrange Remainder

operatorCH(-) for the convex hull: o
We first show the computation of the linearization erfdr

R (trs1) =R (1) © T(r), Gaﬁp(T), and then generalize t6. As described in (5),

::Rgfﬁne (tk+1)

a1 _ T yrd,(d)
R (m) = CH(R (1), "R (b) 0T (05) 0 RE OB C glolr =T Oew ce® v eRA g

where we replaced the yet unknown sﬂé and RZ by the
(13) Mmore conservative overapproximatioRs andR 4.
a N 4 o In order to compute the set of linearization errors, we
Note that it is sufficient to add,(r) for the time interval first compute the possible values of the second derivative
solution sinceﬁi(r) = ﬁi([o,r]) V\;hen U contains the Zﬁde’(:njoiﬁg’g;(zﬂf EOR(% ;—hvlihlzr??sngt?téfr:r:(tj(;c;n:r?lfilg]g
o . — X
origin, causing monotone growth @,,(r) [3]. Each element of the matricdg® () (¢) is evaluated fot € 7

. COMPUTATION OF THELINEARIZATION ERROR using interval arithmetic [18]. o
We present a new technique to compute the set of lineariza-
So far, we have computed an overapprOX|mat|0n of trh

on errors by overapproximating (14) with
reachable set of the dynamic variabl@ (1) under the
assumption that the sets used to approximate the lineiarzat

—d —
error enclose the exact one (2 £¢ andZ" D L*). In order
to overapproximate the set of linearization errors, we figste 5 introducing an overapproximation of a quadratic map:
to reconstruct the reachable set for all variati®gy,) from

the reachable set of the differential variabfe(r ). Lemma 1 (Quadratic Map) Given a zonotopez = (c,
g, ..., ¢g®) and a discrete set of matrice@?) ¢ R"*",

i=1...n, the set

- 7zaffme (Tk)

L4 C %{O’

o =T @HPD @y, ueﬁZ}, (15)

A. Reachable Set of Differential and Algebraic Variables

For a concise notation of the combined reachabléset,), Zo = {plei =27QWz, z € 2}
we introduce the matrix of generatoés = [¢(V) ... g®]
and the alternative short form of a zonotapeas Z = (¢, G), is overapproximated by a zonotope

with centerc and the matrix of generators.
quad(Q, Z) := (d, k™D, ... b))

Proposmon 1 (leferentlal Algebraic Reachable Set)

SupposeR” () = (c?,G4), U = (c*,G%), T" = (',GY). with ¢ = ("}?) — 1 generators, the centet; = 7 Q)¢ +

An overapproximation for the complete reachable set for thes P g(s)TQ(i)g(s) and the generators

differential and algebraic variables is

=\ || |-F DG —F'EG™ el i1 W) —0.540) 7 Qg
wherec® = y* — F~(g(z*) + D(c? —z*) + E(c" —u*) + '), P ‘ ‘ .
and 0 is a matrix of zeros of proper dimension. = Z Z 1: h(2p+l g(J)TQ(’)g(k) + g(k)TQ(Z)g(”
Proof: Using (7), the state of the differential-algebraic Jmtk=
system is bounded by The complexity of constructing this zonotope overappraxim
(1) 2 I tion with respect to the dimensionis O(n?).
1 + _1p| Az(t) . .
y(t) F=tg(z") —-F—'D The proof of this Lemma can be found in [4]. The above
0 Ault 0 7 Lemma is used in the proof of the following Theorem to
tl_FrE u(t) & ! overapproximate£? in (15):

Inserting Az (1) € (¢ — 2%, G?), Au(ry) € (c* —u*,G*), Theorem 1 (Linearization Error) Let each H%(®) be
Ea(rk) (¢!, G into the above equation yields the proposedounded by an interval matrix, which we separate to



H! = HI @ [-HL, H1], where H, HL € R"™ ™. The Due to space limitations we omit the proof.
linearization error according tq15) is overapproximated by  The overapproximated linearization eris used to obtain
the final result by replacing the set of uncertain ingdtaith

£dc 2{ T3yd %\z e R} U :=koBUG (—u?) ® L (see (10)), which is used to
1 . computeR¢(r) according to (12). We finally obtaiR?(7;.) =
<3 (quad(H RA) @ [~ 77777]), R o (k) @Rd( ) and analogously the overapproximations
P _ for the reachable set at points in time, whé®€g . (7x) is
n=[RAI"HLRAl, [Ral=lcal+> lgx"l. taken from (13). Based oR‘(7;), the algebraic reachable
j set R*(rx) is computed by evaluating the algebraic part of
The complexity with respect to the dimensiois O(n%). Prop. 1. The complete approach is applied to the power system

example in the next section.
Proof: Negligence of dependencies results in overapprox-

imations such that we have VIl. NUMERICAL RESULT
rd c { Tqd.(i) ‘z c RZA} The considered verification task is to show that after a power
—2 drop-out of a power plant and its subsequent reconnection
gl({ZTHgy(i)z = RZ} to the grid, the system state returns to its original opegati
2 point. We show this for a set of initial states by computing th
—quad(HZ,R3%) reachable set of the differential variables until it is eseld by
o {ZT[_Hd,(i) Hd,(i)]z‘z c R }) the initial set again. We first present the mathematical r‘mnlde__
A A A the power system and then show the results of the reaclyabilit
C(R3) TR HED HE DRy analysis.
Given N € R?™ and an interval matrixS = [-S,S5] A Mathematical Model

with symmetric boundS € R!*9, we have thatSN =

[_ S|N|,S|N|], see [3]. From this follows for a zonotope We use the IEEE 14-bus benchmark system enhanced by

B » =1 that generator dynamics, which is depicted in Fig. 4. In order to

= {c® @i [-1,1ga} tha obtain the correct equations for the relatively complex 14-

d,(i) rd.(i 2 ) : . .
[_HA( )7HA( )] ® RA bus system, we auto generete the equations using sy_mbohc

» computations in MATLAB. First, the power flow equations
d, (i d,(i 2 i i z, i ; P .
Q([—HA( )’HA( N CA) @ (@[ 40) g ()] ()) are obtained according to [24] for each bus, where variable
indices refer to the bus number.

- . P } The absolute value of the voltage is denoted|By [p.u]
:[ AR Z 1920, HED (e | + > |gz(”|)] (p.u.: per unit), the angle of the voltage by[rad], the active
i= power by P; [p.u.], and the reactive power bg); [p.u.],
where inflow of power is positive. The buses are connected via
admittances;;, whose absolute value and angle are denoted
Thus, (R3)T @ [~HE® HED] @ R4 C [—n,7], wheren is by |Y;;| andW,; = £Y;;. We denote the generator production
as specified in the Theorem. m by P, Qi the demand by ;, Qa.i, the generator voltage
Since all other operations of the reachable set computatiby E; [p.u.], the generator phase angle by[rad], and the
such as linear maps, Minkowski addition, convex hull, an@dmittance from the generator to th# generator bus by
so on are at mostO(n?®), the overall complexity of the Ygl. whereV,; = ZY,; [rad]. The generator phase angles
reachability analysis i€)(n°) due to the complexity of the 6; = 0; — 0; and the bus phase anglés = ©; — &, are
linearization error computation in Theorem 1 (when spigti relative tod; so that the generated power of the slack bus and
is not required). It remains to compute the linearizatiomer generator buses & 1...N,) are (see [24])

L in (8) using the techniques presented above.
(8) 9 q P Pyi=E;V;|Yy.ilcos(W,; +0; — ©;) — V2|V, i cos(¥, ),
Corollary 1 (Llnear|zat|on Error L) Given the zonotopes Qi = —EiVi|Yy | sin(U,; + 0 — ;) + V2 [Yy.i|sin(T, ;).

L4 = quad(HY, RL) = (d, H) and L% = quad(H*, RA) =
(e, V), the overapproximative set of linearization errors is "€ Power flow equations as in [24, p.174] of each bus are

=Ral =|RAl

computed as Ng+Ni
. » » Pi=Pyi+Poi= Y ViVj|Vy|cos(¥y;; +0; - ©,),
Ezi(d—CF e,H-CFV) j=1
Ngy+N;

1 =L, Qi=Qui+Qui=— Z ViV;lYii| sin(¥;; + ©; — ©;).

a C < H- 0,0]), J=1

®5([=¢.e (=CF)[-e.d)) (16)

=LA

T rd s T rra s The dynamic equations are described by a generator model
= [RAI"HAIRAL o= |RAI" HXIRAI. [13]. For simplicity, we use the same model for all genemsitor



and synchronous condensers. The variables offtrgenerator 0.13 [s], the power plant is reconnected, which startspbst-
are the voltage anglg [rad], the angular velocity; [rad/s], fault phase. The reachable set computation is stopped when
and the torquél},, ; [p.u.], and the commanded poweFs; the reachable set of differential variables is enclosedhay t
[p.u.]: initial set of states, proving that all differential stateriables

. return to the original operating point (steady state). Weaosie

0; = w; —wy the set of initial states for all as:&; = 6% @ 0.01 - [—1,1],

- _&(Wi —w) + LTm.i _ LPW_ w; = wd B 0.1-[=1,1], T = T ; ®0.001 - [-1,1], where
M; M; 7 M, the superscripted zero refers to the steady state solution.
Tm,i _ 1 (w; — wg) — 1 T, : + 1 P.., The reachable sets for different projections onto difféegn

" TsviRp.iws Tsyi  Tsvi = and algebraic variables is shown in Fig. 5 and Fig. 6. The

(17)  simulations of system trajectories from randomly choséiain

where M; [MJ/Hz?] is the rotational inertia,D; [s/rad] the states are indicated by black lines. Note that the algebraic

damping coefficientTsy; [s] is the time constant of the values jump when the power plant is taken off the grid and

governor, and—R; - [-] is the proportional gain of the governor.when it is reconnected to the grid. At time= 4.32 [s], the

) , o . : initial set is reached afte¥40 iterations, which took3889 [s]
Fori = 1, the dynamics is solely described &yand T, since . .
. to compute in MATLAB on an i7 Processor a@B memory.
the phase angle is always : .
th . We are not able to compare the obtained reachable sets with
The power drop-out of thé"™ power plant is modeled by . .
. . , . other methods, since none of the previous work on systems
setting the active and reactive power in (16) and (17) to zerg .
th : with DAEs would scale to the size of the problem presented
(Pyi = 0, Qgs = 0). When the:™ power plant is not on here
the grid, the variableF; is removed from (16), (17), and is '
no longer an unknown variable. The generator parameters ¢~

3775

378
listed in Tab. | and the one of the IEEE 14-bus system in [27] s o
377 s
3765 3765 <3765
A
3 a6 3 3
376
375.5 376
375 3755
S5 06 04 02 08 06 04
52 63
377 2.045
376.8 2.04
376.6 —~2.035
?3764 é
- 2.03
&~
3762 2025
376
202
375.8
374 376 378 380 375 316 377 378
w1 w2
0.04 0.04 0.4
-05
0035 20035 -
E £ S 0.6
B
003 0.03 0.7
0.8
00257425 043 0.435 0.44 003 0035 004 06 04 02
m,2 m,4 52

Fig. 4. |EEE 14-bus benchmark system.
Fig. 5. Reachable set of selected projections of diffeaénmriables. Black
lines show random simulations, the gray area shows the abbetset, and

TABLE | the white box the initial set.

PARAMETERS OF THE GENERATORS

Vii  M; Dy [Ygil Vgi Tsv; Rpi @ ws
L 0.04 5 — 1 0.05 1207 VIII. CONCLUSION
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We present an approach for computing the set of all
(infinitely many) transient responses of power systems for a
set of initial states, which makes it possible to prove that
all responses returns to the set of initial states. The pre-

We investigate the transient stability by a power drop-dut gsented approach is versatile since it can handle any namline
the largest power plant at biisThe power system is in normaldifferential-algebraic equations with index-1 propeifynot
operation for the first time interval= [0, 0.1] [s], which we all responses return to the set of initial states, one obtain
call pre-fault phase. In the time interval = [0.1,0.13] [s], feedback for system corrections by investigating how the
the power plant at bu$ producing the most power is takenreachable set evolved. When using Lyapunov methods one has
off the grid, which we refer to as thiault-on phase. Att = no such feedback since Lyapunov methods may fail because

B. Reachability Analysis



(5]

- \ o -
@05 @®-05 loR

| o1l ) (6]

1.05 11 112 114 1.16 118

1.1 1.02 104 106 1.08
Ey Eo
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07 ' -06
i [9]
1.08 1.09 11 112 1122 1124 1.015 1.02 1.025
Ey Es V7
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-0.5 -0.5
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®-0-7 ®70.7 [ ]
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Fig. 6. Reachable set of selected projections of algebraimbles. Black [13]

lines show random simulations, the dark gray area showsehaehable set
during pre-fault and post-fault operation, and the lighiygarea shows the
reachable set during fault-on operation. [

one cannot find a proper Lyapunov function, or because the
system is indeed unstable. (15]
Computing reachable sets of differential-algebraic syste

of practically relevant size was previously infeasiblet the [16]
new computational techniques provided in this work with
complexity O(n®) with respect to the system dimension [17]
(when splitting is not required), shows that reachabilitylg-

sis might become a useful tool for power system engineers.[lg]
addition to the presented transient stability problem,shee
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approach can be readily used to compute the system respdmgjeL. Jin, H. Liu, R. Kumar, J. D. McCalley, N. Elia, and V. jajapu.

to uncertainties in the power production, which is caused by
e.g. wind turbines. It is also possible to integrate parsaimet
uncertainties into the power system, which would requiraeso [20]
extensions to the current algorithm as presented in [5].
[21]
ACKNOWLEDGMENT

This research was supported in part by U.S. Nation&F!
Science Foundation grant number CCF-0926181.

[23]
REFERENCES
[24]

[1] L. F. C. Alberto, F. H. J. R. Silva, and N. G. Bretas. Dirgoethods
for transient stability analysis in power systems: Statardfand future [25]
perspectives. IfProc. of the IEEE Porto Power Tech Conferen2€01.

[2] G. Aloisio, M. A. Bochicchio, M. La Scala, and R. Sbrizzai A
distributed computing approach for real-time transieabiity analysis. [26]
IEEE Transactions on Power System®(2):981-987, 1997.

[3] M. Althoff. Reachability Analysis and its Application
to the Safety Assessment of Autonomous .Cars Disserta- [27]
tion, Technische Universitat Minchen, 2010. http:/inbn
resolving.de/urn/resolver.pl?urn:nbn:de:bvb:91-#8%00715-963752-

1-4.

[4] M. Althoff and B. H. Krogh. Avoiding geometric intersésh opera-
tions in reachability analysis of hybrid systems. Hybrid Systems:

Computation and Contrplpages 45-54, 2012.

Power system transient stability design using reachwltiliised stability-
region computation. IiProc. of the 37th Annual North American Power
Symposiumpages 338-343, 2005.

G. Lafferriere, G. J. Pappas, and S. Yovine. Symboliachability
computation for families of linear vector fieldSymbolic Computatign
32:231-253, 2001.

M. Moechtar, T. C. Cheng, and L. Hu. Transient stabildf power
system — a survey. IProc. of the WESCON conferengeages 166—
171, 1995.

D. R. Ostojic and G. T. Heydt. Transient stability assment by pattern
regognition in the frequency domainlEEE Transactions on Power
Systems6(1):231-237, 1991.

M. Ribbens-Pavella and F. J. Evans. Direct methods fadysng
dynamics of large-scale electric power systems — a sueiomatica
21(1):1-21, 1985.

P. Schavemaker and L. van der Slu$ectrical Power System Essentials
Wiley, 2008.

J. Shu, W. Xue, and W. Zheng. A parallel transient sigbdimulation
for power systemslEEE Transactions on Power Systen2§(4):1709—
1717, 2005.

Y. Susuki, T. Sakiyama, T. Ochi, T. Uemura, and T. Hik#énaVerifying
fault release control of power system via hybrid systemhahiity. In
Proc. of the 40th North American Power Symposi@®08.

University of Washington. Power systems test caseiacHnttp://www.
ee.washington.edu/research/pstca/.



