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Formal and Compositional Analysis of Power
Systems using Reachable Sets

Matthias Althoff

Abstract—Power system stability analysis becomes more im- operating conditions, the measurements at the last cygbatmi
portant in the presence of ever increasing variations in opeting  have considerably drifted. In order to rigorously consithese
conditions. Traditionally, the operation of power systemsis drifts, one has to assume a set of possible initial statesrzay

verified for specific operating conditions. In this work, the
stability analysis is performed for a set of operating condions changes between SCADA updates. However, the number of

using reachability analysis, which makes it possible to copute required simulations grows exponentially with the number
the bounds of all possible system trajectories. Thus, reaelbility — of state, input, and parametric variables due to a necessary

analysis can be used to rigorously check specifications. Comary  gridding of the multidimensional set bounding all variable
to previous work, the presented approach does not require gegiges the exponential complexity, numerical simulati®n
model simplifications when the system is described by semi- taf | techni . t ti hether th
explicit, nonlinear, index-1 differential-algebraic equations. The not a formal tec ”'q‘%e’ 1.e., orje ca_nno certify whe e_r_ €
main obstacle in reachability analysis is the scalability owards ~€ffect of a control action complies with the system specifica
larger systems, which is addressed by investigating compitisnal tion: 1) it does not show that all states (infinitely many) of
techniques. As a result, transient stability and variable eergy an initial set return to the operating point, and 2) it is eac|
production can be analyzed for the IEEE 14-bus and 30-bus ¢, oy ong a simulation has to be run until a particular

benchmark systems, for which the computation times are orde traiect b idered stable. The af fi a3
of magnitude faster than the simulation of all cases startig in rajectory can be consiaered stable. fhe alorementioseess

the corners of the set of possible initial states. are alleviated by faster simulation using parallel-inespg8]—
Index Terms—Reachability analysis, stability analysis, com- [5.] alnd. par?'lelém_tlmgdalgomhms [6.] anddpy. Monte Carlo
positional analysis, power systems, transient stability malysis, simulation [7]-[9] to address uncertain prediction.

uncertain energy production, differential-algebraic equations, Instead of explicitly simulating the behavior for stalyilit
formal verification. analysis, direct methods compute regions in the state space

from which the system state returns to the original opegatin
point [10]-[12]. Those regions are essential to quicklyathe
if control actions are capable of stabilizing the systenhwuitt
The ongoing trend towards decentralized power generatimyuiring time-consuming simulations. Direct methodsuies
with a considerable share of renewable energy sourcegsesuyapunov functions, which can only be found for simplified
in a less predictable operation of power systems. New ansgystem dynamics using network preserving and network reduc
ysis techniques are required to consider all possible éutuion methods, where the latter is the dominant technique, se
behaviors to ensure a reliable operation of power systenesg. [10]-[15]. While network preserving methods work with
In this paper, reachability analysis is proposed as a fornm@ldinary differential equations (ODESs), network presegvi
technique to verify if specifications are met under uncertamethods use more general models described by differential-
operating conditions. Reachability analysis computes¢tef algebraic equations (DAEs) [16]-[19]. A challenge for bigh
all possible (infinitely many) trajectories of a dynamic mbd to find the so-callectritical value of the Lyapunov function
when the uncertainty of initial states, time-varying irpwind to underapproximate the region of attraction. Especially f
parameters is bounded by sets. systems with several generators, the critical value iserath
This work focuses on large deviations from the initial opeconservative, resulting in an underapproximation of thggae
ating condition, such that small-signal analysis techegqecan of attraction [10], [11]. Another disadvantages of directth
no longer be applied [1, Chap. 12]. The dominant techniqueduls is that one cannot check if phase, voltage, and frequency
power systems for model-based analysis of large distudsanconstraints are met since direct methods only analyze if a
is numerical simulation, which is easy to implement, bugteady state of a disturbed system is eventually reached.
can only provide satisfying results when the actual opegati Reachability analysis is a complementary analysis teclaiq
condition is known and there are no parametric and inpbésides simulation techniques and direct methods. Differi
uncertainties. The knowledge of the actual operating ¢andi from simulation techniques, reachability analysis canvero
requires constant simulation of the system for a set of folgbawhether system specifications are fulfilled in the preserice o
contingencies when new SCADA (Supervisory Control Andncertainties, such as uncertain initial states and uzicert
Data Acquisition) measurements are available at a cycle tinmputs/disturbances. Direct methods are a formal tecleniqu
of around 10-30 minutes [2]. Due to increasingly varyingsince they can guarantee stability when the initial stadetst
in the computed region of attraction. However, other than
Matthias ~ Althoff is with the Department of Computer Scienceregchability analysis, direct methods cannot formallyifyer
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al t hof f @ um de whether constraints are met (e.g. whether frequencieselird v
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the nonlinear dynamics of power systems is undecidable [2@]c R", y € R"+, andu € R™, whereng4, n,, andm are the

one cannot compute exact reachable sets for this systes) clasrresponding numbers of variables. For a set of consistent
requiring instead the computation of an overapproximatibn initial statesR(0) and a set of possible inputs/disturbantgs

the reachable set, which includes all behaviors of the neablekthe system equations are

system. However, when the overapproximation is too large, )
one might not be able to verify the system although all

specifications are met in reality. General literature negi®n 0= g(z(t), y(t), u(t)),

)
reachability analysis of dynamic systems can be found ifH21yhere[27 (0), 47 (0)]7 € R(0), u(t) € U. The initial state is
[24]. Most previous work on reachability analysis in powegonsistent wheny(z(0), y(0),u(0)) = 0 and it is assumed
systems has been limited to small problems due to the initiglt (1) has a unique solution(t, z(0),y(0), u(-)) for all
computational costs of first attempts. In [25], [26], redtuiliy  consistent initial states(0), y(0) and all piecewise continuous
analysis is performed for a single-machine-infinite-busley iyt trajectoriesu(-), where u(t) refers to an input at a
modeled by ordinary differential equations with orlystate - gpecific point in timet. No other assumption besides unique
variables. A slightly larger double-machine-infinite-Isystem - so|utions are required. The goal of this work is to compute
with 2 buses described by ODEs resultingsiatate variables is the reachable sek ([0, t]) of (1) for a time interval0, ¢ ]
considered in [27], where simulations are performed to appr ' '
imate the reachable set resulting in a non-formal apprdaeh, R°([0,¢,]) :{v(t, z(0), y(O),u(~))‘[xT(O), y(0)]" € R(0),
one cannot prove that the controller meets the specification
under all eventualities. A 3-bus system is considered in @8 u(t) €U, t €0, tf]}-

investigate effects on wind variability. More recent woifkloe The superscript on R<([0, ¢;]) denotes the exact reachable

same authors considers the effects of wind variability Fa t : .
o .set, which cannot be computed for nonlinear DAE systems as
39-bus New England system model [29] and similar studies . ; . . . .
. ) mentioned in the introduction [20]. For this reason, altions
on the effect of uncertain energy production on frequenc e presented which compute as tight as possible overa
deviation are studied in [30] for a reduced-order model o P P 9 P P

the U.S. power system. The computations in [28]—[30] aRyoximationsR([0, ¢;]) 2 R*([0,¢/]). For simplification, the

S : L . expressionmeachable seis used even wheoverapproximative
simplified by linearizing the system dynamics so that thé - )
rce)%\chable setare computed. For later derivations, the projec-

results are not overapproximative anymore and thus do I?lon of the reachable set onto the coordinates of diffeadnti

qualify for formal analysis. . . d . .
. variables is denoted bR*([0, ¢]) and onto the algebraic vari-
To the best knowledge of the author, none of the PrevIodBles byR“([0,t/]). Since reachable sets contain the union of

=l possible simulations, the same types of analysis peédr

1)

ordinary differential equations. In the previous work okth stems [34]. In this work, the focus is on transient stabil

. . S
author [31], a new method is presented which can comp . . .
the reachable set of the original DAE systems. The approztl'lj(l:halySIS and the effects of uncertain energy production.

proposed in [31] has a complexity a(n®), wheren is
the number of state variables. Although the complexity is
polynomial, the analysis of large systems results in enasno The presented approach is based on known techniques
computational costs. In this work, the computational cases for computing reachable sets of linear differential inaus,
drastically reduced by investigating compositional téghas, Which are recapitulated in this section. Reachable set atenp
making it possible to compute reachable sets of the IEEE 3fRns are typically performed iteratively for short timeenvals

bus benchmark system in less time compared to the IEEE
14-bus version when no compositional techniques are ap-
plied. Another extension compared to [31] and other previoln this work, constant-size time intervalg := & r are used to
works is the investigation of the effect of uncertain energpcus on the main innovations, whekec N is the time step
production—not only on frequency, but also on bus voltage aandr € R* is referred to as the time increment. An extension
phase under consideration of nonlinear effects. to variable time increments is described in [35].

The iterative computation of reachable sets for linear
systems requires set-based addition Minkowski addition
(XY = {z+ylz € X,y € V}) and set-based multiplication

We consider power systems that can be modeled as a (@ €t® Y = {zylz € X,y € Y}). Note that the symbol
of semi-explicit, nonlinear, index-1 DAEs, which applies tfor set-based multiplication is often omitted for simptjcof
almost all power systems (see e.qg. [32]). For brevity of tfee p notation, and that one or both operands can be singletons. A
sentation it is assumed that the parameters of the powarsysbrief description of the main steps for obtaining reachaklks
are known and constant over time, resulting in a set of timésr a single time interval is provided below.
invariant DAEs. Extensions required for uncertain paramget In this section, the reachability analysis of linear diffetial
are presented in [33]. The vectors of differential variableinclusion z € A#(t) @ U is recapitulated, whergé € R",
algebraic variables, and inputs are respectively denoted A € R"*"¢ andl/ c R is a set of uncertain inputs. A

IIl. PRELIMINARIES

T = [t;€7 tk+1]-

Il. PROBLEM FORMULATION
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tilde is used for the variables of the linear differentiadlirsion  with
to distinguish the variables from the ones of the original ( n v .

nonlinear DAEs. For further computations, some variables a r .—
sets are introduced., is the center ofd, Un = U & (—u,)

is the deviation of/ from the centen., the reachable set of n+1 v : Ji-1 . )
the dfine dynamicsi = Az(t) + u, is R4(t), the reachable F : (@ [(z% - zi) ri,O} : ) @ [~ W (), W(r).
set of the prticular solution due to the uncertain ingux is i=2

RZ(Z]A, t), and the partial reachable set correcting the initi
assumption that trajectories are straight lines betwgeand
trr1 is RE. According to [23], the reachable set for a tim

&he absolute valudlal; := sup{|u;||u € Ua} is defined
elementwise. The reachable sets for the next point in tinge an
%ime interval are obtained by combining all previous result

interval 7, is computed as shown in Fig. 1: (see [36]):
1) Starting fromR<(t;), compute the set of all solutions .
R (t41) for the dfine dynamicsi = AZ(t) + u. at R (th1) =€ R (tr) ® T (r)u. & Ry (Ua, ),
time t441. R(7i,) :=CH(R(ty), e R4 t) ®T(r)ue)  (2)

2) Obtain the convex hull ofR%(t;) and Re(tx. 1) to d a7
approximate the reachable se(t for the timeE intezmal BRE SR, Uasr),

3) ComputeR‘f(Tk) by considering uncertain inputs bywhere CH() returns the convex hull. Throughout this work,
addingR{ (U, ) and accounting for the curvature ofzonotopes are used to represent the reachable sets. How-
trajectories by addingR?. ever, the proposed algorithms and computations apply to all

kinds of set representations. Zonotopes are used since they

can efficiently represent reachable sets in high-dimeasion
spaces while operations required for reachability anglgain
efficiently be applied to them. Details on the definition of

zonotopes and operations on them are described in Sec. VI.

R (1)) —>

Sk
convex hull of

RA(ty), R (tps1)

R (tr+1) V. REACHABILITY ANALYSIS OF NONLINEAR DAE
ment SYSTEMS
t . o Other than for linear systems, no closed-form solution
Fig. 1. Steps for computing the reachable set for a lineaesys exists for general nonlinear DAEs. In order to exploit the
efficient methods of the previous section based on the closed
Using r = t,1 — tx, the solution ofR%(t 1) is form solution of linear systems, an abstraction of the oagi
. nonlinear DAEs to linear differential inclusions is perfoed
Re(ts1) = e RA(ty) +/ A= gt for ea_ch consecutive time intervaj. The Ilnear_d|fferent|al _
0 inclusions are computed such that the resulting abstractio
=2y (r) is strictly overapproximative, i.e. it contains all behad of

ghe original dynamics. By re-computing the abstraction for
each time interval, the overapproximation remains smadl an
accurate results are obtained while traversing the naaline
state space far away from the original operating point.

wherez,,(r) is~bounded by integrating the finite Taylor serie
e =37 (Ar)?/(i!) up to order to which the remainder
Ep(r) is added:

N
AZTH—I
xp(r) € ( — P (T)) Ue.
g ; i+ 1) g A. Abstraction to Linear Differential Inclusions
=I(r) The abstraction of the nonlinear DAEs to linear differeintia

The remainder can be overapproximated by an interval matfi¢lusions is based on linearizing the system dynamics and
E,(r) = [~W(r)r,W(r)r], i.e., by a matrix with lower adding the linearization errors as uncertain input. Forrecise
P T 9 1 L]

~ H — T T 11T H H :
and upper bounds on each element, whigfé-) = olAlr _ notation, the vectorz := [z',y",u']!, the linearization

~ H * «T T | xT1T z
n A - - o . point z* := [z*" ,y*" ,u*" ]!, and R* := R(m) x U are
.Zi:o T For Iater- derivationsW (r) := W(r)r is also introduced. To efficiently obtain a suitable linearizatjpwint,
introduced. The required enlargement of the convex hué (sg . | ojumetric centers?, co, ¢t of the setsR(1.), R®(tx)
rd . . . . . d il ] ) ]
?h step Irtl Fig. fl?{ 1S af[:h|_eve?| bfYﬁj‘dd'ﬂt@e ;é)daccount for and U, are introduced. In a previous work it is shown that
22 curv;ll;re gd' raje;ﬁ ories hrobl (gtg) LE{) a(g’““)t (Stie the center of the reachable set of the current time interval
[23]) an_ y adding _e reachaple g( A_’T) ue 10 € is the best linearization point when the linearization eiiso
uncertain and convex input sty (see [36]): computed via an evaluation of the Lagrange remainder using
R ::(]_—® Rd(tk)) @ (]:—® uc) bounqls on_absolute values_[33, _Pro_p. 2]. Although a r_efin_ed
" O technique is used for the linearization error computation i
Rz(Z;{A,r) ::@ A r 'Z:lA & ([-W(r), W(r) e |Z:1A|), this_work, the center of the reachabl_e set remains the best
i=0 (i + 1)t choice for the linearization error. To circumvent the peshl
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that the reachable set is required for an optimal linearizBlote thatF' is invertible because of the index-1 property, so
tion point, which in turn is required for the computation othat one can reformulate (6) to

the reachable set, the center of the differential variaides . .

approximated by a one-step Euler integration. This yields ~ 2u(t) € —F (g(z )+DAx(t)+EAu(t)) (7)

" = ¢+ 0.5r - f(c, ¢, c*), where the step size i8.5r 1, T era(i
y €y ’ _ R a,(5) z A
because the center of the reachable®étr;) for the time @{ 5t ¢‘¢J =v H"W(§v, E€R* v e RA}'

interval 7, is expected to be reached after half the interv"ﬁl\serting (7) into (5) results in a differential inclusion
duration oft,,, — tx = r from the centerc? of R%(ty).

Besides the linearization point of the dynamic variablés, t & €f(2") + AAx(t) + BAu(t)
linearization point of the inputs is chosen a$ = ¢* and — CF ' (g(z*) + DAz(t) + EAu(t)) & L  (8)
the linearization point of the algebraic part is computechsu —(w + AAz(t) + BAu(t) & L

that it is consistent with the constraift = g(x*, y*, u*)
using the Newton-Raphson method. The linearization of théere
original.dyna.mics in (1) i§ performed using a first-order[day w = f(z*) — CF1g(2"), (9)
expansion with Lagrangian remainder: - -
A:=A—-CF'D, B:=B-CF'E,

. . fi(z " d
i = fi(2(t)) € fi(z") + % . (z(t) — 2%) an 1
| 92 fi(2) £={5(c = CF9)|oi =" HYO(&)v,
o {3t - LD G- swer, : | (10
2% la=¢ ¢; = yTHa’(J)(f)V, EeR*, ve ’RZA}
=:d
( § One can further simplify (8) by combining the singletan
0= g;(2(t) € gj(z*) + gé i (2(t) — %) and the setB(U @ (—u*)) and L to a new sel(:
z z=z*
1 2gi i e Ai(t)oU 11
o {3t - T G- e ) e R, @ Axo) o, D
2 022 = Z(t) = Az(t), U=wdBUS(—u")) L.
=£5 The obtained differential inclusion can be solved as dbedri
() in sec. 1. stil remaining is the determination of linezation
errors.

where£¢ denotes the projection @ onto thei™ coordinate.
The Lagrangian remainderg® and £* enclose all higher- B. Computation of the Linearization Error
order terms ifz*, &, z(t) € R* [37, p. 87]. For subsequent
derivations, it is required to separate the effects fronfedif
ential variables, algebraic variables, and inputs. Tloerehe
following sub-matrices of the Jacobians are introduced:

The problem with evaluating (11) is that the set of lin-
earization errorC is not known in advance, consequertly
is unknown, as well. As an initial guess the most recently
computed linearization errof is enlarged by a user-defined
9f(2) 9g(2) factor \;, € R* around the volumetric centeéy, of £:
0z lz=z~ B [A’ 07 B]’ 0z lz=z* B [D7 F’ E]7 (4) Z = éL SY) )\L(E S (_éL)) (12)

where A € R"*"a B ¢ RMXMm_ (0 ¢ RWXMa D ¢ In the event that the enclosure assumptidh® £) is not
Rrexnd | ¢ Rrexm F ¢ ReXne and nam ', are correct after computing the reachable set and the assdciate
bl bl ’ bl as

the number of differential, algebraic, and input variable§et of linearization errors./_‘,, has_ to_ be further enlarge_d. In
respectively. Inserting the abbreviation — [27, yT,u”]” order to bound the set of linearization errors, one additign

and the matricesi-F into (3), and introducingi ¢ () — checks if£ C Liax, Where L., is set by the user. If the
azfi(z))| Ha0)(€) a(2g)j(z))| z .7%;2 © ((5) “ above inclusion is not fulfilled, the reachable set has toptie s
0z la=g? T 'gld'_ 027 Jla=gr WA T ~#)'in order to reduce the linearization error or the time inczamn
v(t) = 2(t) — 2%, yields r has to be reduced.
The set of linearization error§ is computed based on the
@ ef(z) + A(z(t) — ") + B(u(t) —u*) + C(y(t) —y*)  reachable seR‘(r;) of the linear differential inclusion (11)
:;K’ m m after replacing the input sét by i = w® BU S (—u*)) & L,
which considers the linearization error assumpt®instead
1 ,
& {—a‘o—i = THYO(Ew, eR, ve RZA}, (5) of L. After applying the procedures in Sec. Ill on the linear
2 differential inclusion (11), one obtains the reachable afet
0€9(z") + D(&/—_x/) * E(&,__u/) * F(&/—_y/) the differential variablesR?(r;). For computing the set of
=:Az(t) =:Au(t) =:Ay(t) linearization errors, the reachable set of the differéraiad
1 T j algebraic variables is required, which can be solely recon-
¢l = v THW) o At 6 9 d ' . . ey
@ {2¢’¢J Y (O, LeRT, v e RA} ©) structed by the reachable set of the differential variablss
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is achieved by firstly starting with:(t) = 2* + Axz(¢t) and decomposition [38], [39] and graph-based decompositiOh [4
y(t) = y* + Ay(t), secondly replacing\y(¢) with (7), and Since this work focuses on the compositional computation

thirdly substituting specific values by sets: of reachable sets for a given partition, we assume that a
2 I reasonable partition is already provided, where transariss
R(7) = {y* _ F_lg(z*)] ® {—F—lD} (R4 (7x) — *) lines are the interfaces. Since the transmission lines fee t
subsystem interfaces, the bus phase angles and the bugevolta
o { (11 } U—-u") [ 0_1 . are internal variables when the bus is within the subsystem,
—FTE —F and a system input otherwise. The assignment of the vasiable

(13) {0 the dynamic and algebraic state vectorg as well as to

The reachable seR(7;) is used to compute the set ofthe input vector: are described in Sec. VII-A.
linearization errorsC as presented in [31]. The computa-
tion of the linearization error is the bottleneck in terms of
computational costs of the presented approach. When usﬁ‘rg
zonotopes as a set representation, all operations requiregthis subsection describes the first option investigated for
for the reachability analysis excluding the linearizatmor compositional analysis by splitting the power system into
computation have complexit§(n*), wheren is the number subsystems. The reachable set of each subsystem is computed
of dynamic and algebraic variables. The linearization rerrgs presented in Alg. 1. The input sets representing inputeeto
computation, however, has complexi§(n°). For this rea- complete system are known, however, the input sets originat
son, compositional techniques are investigated to scae {Ag from the interfaces of the subsystem are unknown. They
approach to larger power systems as presented in the ng&bend on the reachable set of neighboring subsystemsh whic
section. The overall algorithm of all previously mentione¢h turn depend on the reachable sets of other subsystems.
steps is presented in Alg. 1. The basic idea for breaking this mutual dependence apart is
_ similar to the computation of the linearization error. Eitbe
Algorithm 1 reachNext(R%(t), L,U, A, B,w,r, L™ 1) interface inputs of theé subsystems are enlarged by a factor

Require: Previous setR‘(t), previous linearization error Av (analogously to (12))
L, input setl, linearized system matrixi, linearized

Compositional Reachable Set Computation

input matrix B, constant inputv, time increment, max. U = 58) @® ((A\v — 1)/\(1) + I)(U(Z) ® (—58))% (14)
linearization errorL™?*, factor A\p, ) ) ) ) o
Ensure: R%(tyy1), R (1), split where A is a d|agpnal matr_lx that contains ones fo_r indices
1: repeat corresponding tq interface inputs and zeros otherwisee®as
2 L=é@(La(—cr) (see (12)) on the system mput.N), the reachable set of the corre-
3 U=wdBU (—u*)) e L (see (11)) spondmg_ subsystem is computed as presented in Alg. 1. For
4 computeR?(r;,) using (2) based o agg_regatlng the reachable sets of the complete sys_tem by
5 computeR(;,) using (13) partial rez_;\chable set® () (Tk) of the i subsystem, matrices
6. computel by evaluating (10) according to [31] ®( are introduced, which map the local states of e
7ountl LCLVL ¢ Lo subsystem to the states of the full system. The matrigés
8 if £ ¢ L™ then contain ones when states are correlated, and zeros oteerwis
9 split =t r ue so that the complete reachable set is obtained using the
10 else Cartesian product:

11: split =f al se

122 U=wdBUD(~u")) & L (see (11))
13: computeR<(t,+1)using (2) based oty
14: end if

R(1i) = ®VRD (7)) x @ODRP) (1) x. . . x DI RM) (1),

(15)
whereny is the number of subsystems and the computation of
linear maps and Cartesian products of zonotopes is pertbrme
as presented in Sec. VI. In order to check if the assumption on
the set of interface inputs is correct for all subsystemhér
matrices Y are introduced, which map the states of the

In order to improve the scalability of the proposed reachgomplete system to the interface inputs of iflesubsystem.
bility analysis, two compositional techniques are ingstied. Again, the matrix contains ones for corresponding states an
One of them is to split the power grid into subsystems fahterface inputs and zeros otherwise. If
which the reachable set is computed separately. The other

V. COMPOSITIONAL REACHABLE SET COMPUTATION

technique compositionally computes the set of lineamati Vi T(i)R(Tk) C AOYy®
errors, while abstracting the dynamics to linear diffei@nt
inclusions using the full model. the assumption is overapproximative and thus valid. Other-

Before applying compositional analysis techniques, ore haise, one has to re-apply the enlargement in (14) for the
to partition the power system into subsystems. Partitignirsubsystems that violate the assumption. This procedure is
of power systems is a well-known problem for differensummarized in Alg. 2 under the assumption that no split is
aspects of power systems. Examples include coherencygtbassuired.
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Algorithm 2 reachNextCompositional(R®"4(t;), Ay, Y, support functions [44], and oriented hyperrectangles.[AS]
otherInputsToReachNext) shown in Sec. Ill, the set operations required for reachgbil
Require: Previous SeR(i),d(tk) and input set/() for each analysis of linear systems are matrix and interval matrix-mu
subsystem, factoky;, otherInputsToReachNext). tiplication, Minkowski addition, absolute value compibat,
Ensure: R(i),d(thrl) R(1) and convex hull. All of these can be efficiently computed
1 Vi - inputEnclos;n‘e(i) — false using zonotopes, which makes zonotopes very attractive for
2: repeat reachability computations of linear systems [42], [46].
3 fori=1...n,do o Definition V1.1 (Zonotope) Given a centerc € R™ and so-
4 if input Enclosure’ == false then called generatorg) € R", a zonotope is defined as
5: obtainZ{(Y) based ori/(*) using (14)
6: Alg. 1 based o{() — R4 (¢, 1), RO (7, P .
8 end for =t
o R(m)= PMWRM (1) x ... x BIR(M) (73.) We write in shortZ = (¢,¢"), ..., ¢?)) and define the order
10:  for i=1...m do of a zonotope ap := £, wherep is the number of generators.
11 if Tl(l)R(Tk) C AU then A zonotope can be seen as the Minkowski addition of line
12: input Enclosure”) = true segmentg—1, 1]¢(, which provides an intuition of how a
13: else _ zonotope is constructed as presented in Fig. 2.
14: input Enclosure() = false
15: end if
i V7700 i i construction "@®" " A
16: UD =AY g (I - Al ))L{( ) direction g/(l)' 9(1) g®

17: end for

18: until Vi : input Enclosure!) == true
B. Compositional Linearization Error Computation /
In some power systems, generators might be strongly cor-

related, resulting in unsatisfactory overapproximatiofishe c®g® cdg®M dg?®  cag® @g® gyt
compositional algorithm in Alg. 2. Since most of the compuﬁ 5 Step.by-sten construction of & two-dimensionalazo
tation time is spent on evaluating the linearization ercore "% p-by-siep ne.
could only compute the linearization error compositiopall h tiolicati ith i oxn and th
while maintaining all the correlations for the reachable se '€ multiplication with a matrixM € R ‘?lr)‘ the
computation in Alg. 1. M|nkowsk| addition (og two z(on)otope§1 = (¢, gV, ...,
1

Using a decomposition of the full system into subsysten‘? h) andz; = (‘é }fl - BP2 217are a direct consequence
as in the previous subsection, the Lagrangian remainderGhthe zonotope de inition (see[ D:
(10) is evaluated compositionally. For this purpose, theofe Z1® 2y = (c+d,gV,... g% BV . p#2)
input values from subsystem interfaces has to be considered
resulting in the set of inputs for each subsystem as proposed
in (14). The pamal Lagrange remainders of tesubsystem Additionally, the convex hull o2, ande”” Z; is required (see
denoted byZ(®) are combined to the complete Lagrangf46]).
remainder as for the reachable set in (15): '

16
M®Z =(Mce,Mg®M, ... MgP) (16)

Ar C
L£(m) = VLD (1) x BOLO () x ... x ) L) (), CHELETZ) C

Lo+ eMer, g+ Mg g et (17)
As previously mentioned, the Lagrange remainder has com- A 1 ar JAr
plexity O(n®), where n is the number of state variables, 1 —eer, g — g gP) - (pl))

whereas all other operations have complex@yn?) when After introducing the matrix of generatorsG  —
using zonotopes as the set representation. Thus, the ¢ ..., ¢®] and the alternative notation of a zonotope by

positional computation of the linearization error has &ami = (C G) the Cartesian product of two zonotopss = (c,
computational savings than the completely compositiooad-c G) and Z, = (d, H) is

putation as presented in the previous subsection.

z<z= (][5 1)
VI. SET REPRESENTATION BYZONOTOPES ! 2 d|’|0 H|)’

So far, all set-based computations have been introducgdere 0 is a matrix of zeros of proper dimension. For the
independently of the set representation so that all kinds wiultiplication of an interval matrix\M with a zonotope, the
set representations can be used in principle. Typical geefe matrix M is split into a real-valued matrix/ € R™*™ and
sentations are: polytopes [41], zonotopes [42], ellips¢4B], an interval matrix with radiusS € R"*", such thatM =
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M @ [-S, S]. After introducingS; as the;™" row of S, the of the governorTsy; [s], and the proportional gain of the
result is overapproximated as shown in [23, Theorem 3.3] lgy)vernor% [-]- For simplicity, the same model is used for

MZ, C(MZ, & [-S, S]2)) all generators and synchronous condensers, where the latte
- ’ are generators that produce no active power. The parameter
C(Mer, Mg, ..., Mg, M h™) values are chosen identical to [28] for each generator and

@) Si(lel 4+ 301 |g|™®)), fori=j synchronous condensers and are listed in Tab. I.
™ = 0, for i # j : The power flow equations are obtained using standard

methods, see e.g. [50, p.174]. The algebraic variableseof th
The overapproximative result of a quadratic ma& 2 i bus are the absolute value of the bus voltagép.u], the
{olp:; = 27QWz, x € 2} for a discrete set of matricesphase angle of the bus voltage [rad], the active power’,
QW e R™*™, i=1...n, is computed according to [48] as [p.u.], the reactive powe®); [p.u.], and the generator voltage
Zo = (d, k" B E; [p.u.] if the bus is connected to a generator. The bus
’ T phase angles with respect to the slack bus are denoted by

with o = (1”52) — 1 generators, the centef; = AQWe+ ©, = 6, — O,. The buses are connected via admittances
057, g7 Qg and the generators Yi; = Yj;, wherei and j are the indices of the connected
= _ - o buses. The admittance from the generator toithgenerator
j=1...p: W =T QW gD 4 )" Q)¢ bus isY,;, where|Y,,| [p.ul, ¥,; = £Y,; [rad] are the
i=1..p: hl(_pﬂ-) :0.59(].)TQ(1‘)9(,7') absolute values and phase angles, respectively. The &bsolu

) value and the angle of the admittances are denotefihy

pP— P . . .

B C @t ()T k) T A0 ) andWy; = LY, respectively. The active and reactive power
Z—Z Z L: b =g Q@Y™+ QMg of each bus results from the generator productign, @, ;

and a demand of that nod®; ;, Q4,;. The parameters of the
The complexity of constructing this overapproximationtwit power grid are chosen according to the corresponding IEEE

=1 k=j+1

respect to the dimensiom is O(n°). benchmark problem and can be found in [49].
The numbering of the power network buses is renumbered
VII. CASE STUDIES from the original IEEE benchmark problems, whe¥g is the

The introduced methods are applied to the transient tabilfumber of generators anl; is the number of load buses. In
analysis of power systems and to the analysis of uncertaiffys Work, the first busi(= 1) is connected to a generator and
in renewable energy production. Transient stability asigly S€rves as the slack bus. Further, the power systeniVhaso-
requires considering the nonlinearities of the dynamiosesi calledgenerator busesvhich are connected to the generators.

the operating condition is strongly perturbed. The analpéi Those buses (including the slack bus) produce active and
the effects of uncertain energy production is presente@gp{ reactive power according to the following equations (s&4)[5

[30], but without considering nonlinear effects in contras Pyi= EiVi|Yyilcos(Ug; +6; — ©;) — Vi2|Y | cos(,.),
the work presented here. ’ o 5 .

Qg,i = —EiVi|Yylsin(Wy; 4 0; — ©;) + V7Y | sin(¥g;).
A. Power System Modeling The remainingN; buses are referred to ésad buses(i =

The mathematical models used for the case studies 4 7‘;1‘f"th+le)' The power flow equations as in [50,
standard models. The generator dynamics is borrowed fr ] of each bus are
[28] and the power grid models are the IEEE 14-bus and p, = p,; +qu,i + Py

30-bus benchmark systems [49]. The dynamic variables of N, +N;

the " generator are the generator phase anglfrad], the _ Z ViV |Yij| cos(Wi; + O, — ©))

angular velocityw; [rad/s], and the torqu&’, ; [p.u.] (p.u.: = ey v

per unit). The commanded power productibn; [p.u.] is a d (19)
system input. The generator phase andles- §; — O, are Qi = Qg+ gy + Qas

chosen relative to the slack bus an@le which has a constant Not i )

angular velocityw, (in the previous work [31], the phase of the == Z ViVj[Yij| sin(Wy; + 0 — ©4),

first generator is chosen as the reference phase). The dynami =1

equations of the chosen generator model are according 1o [2BhereP, ; andQ, ; are the active and reactive power produced
by generators with the dynamics according to (18), wlfﬂyq

G = w—w W Ihe . .
LT andQ¢ ; are directly injected active and reactive powers from

w; = —%(wi —ws) + MLTm_,Z- — MLPM renewable energy sources. The power drop-out oftthgower
. i 1 i 1 i 1 plant is modeled by setting the active and reactive power in
Tmi=————(wj —ws) — =——Tmi + ——P.;. (19) and (18) to zeroK,; = 0, Q4; = 0). In order to
' TsviRp.iws Tsvi =" Tsvi ~ write the power system in the standard form of time-invatian

(18) semi-explicit, index-1 DAEs as presented in (1), the dyrcami
Parameters of each generator are the rotational indtja algebraic, and input variables are renamed. The following
[MJ/HZ2], the damping coefficienD; [s/rad], the time constant assignments are for a specific subsystem, i.e., the number of
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generators bused/;, and the number of load buse¥, are 380 0.403
specific to the considered subsystem. Additionally, the lmem

of cut transmission linesV; for the considered subsystem
is introduced. It is also required to consider variables ¢
neighboring subsystems. ThH# voltage of thek™ subsystem 3 377
is denoted by, ; and an analogous notation is used @ ;.
The function[k, j] = h(i) returns the subsystem numbenof

379

378

376

0.399 N
which the bus with numbey is connected to the considered 37° - &
H 0.398
subsys_tem anld ta‘kes integers up to the. qumber qf CUt 374 0T 05 006 “o04 ooz o
transmission linesi(= 1...N;), thus providing the first, 51 5o
second, and further input sources. The algebraic variaokes (a) Projections on differential variables of the 14-busteys
assigned as follows:
1=1...Ng: v, = B -0215 -0.255
i = 1...N;: YNg+i = VN, +is -0.22 -0.26
i=2...(Ng+Ni): yn,+N+i-1 = Oi. ,-0.225 w0265 /i
Note that©, is not considered in the above assignment sinc® _j, @ 027 f*e
it is the phase of the slack bus and thus alwayshe dynamic 0235 o M il
H ) -0.275 /
variables are 02| faulton — //H fault-on
iZl...NqZ r; = 04, | —028
=1 N o = w _0‘2451 055 106 1.065 1.07 1.052 1.054 1.056
1=1... : ;= Wi : : : : : : :
g Ng+i iy Es Eq

i=1...Ng: L2Ng+i = Tom i, (b) Projections on algebraic variables of the 14-bus system

and the inputs are assigned as follows:

1=1...Ngy: u; = P, 377.3
iZl...(Nq—l—Nl)Z uNgM:Pg“ srr.2
Zzl(Nq+Nl) : U2N,+N+i = /9,10 377.1
’LZIN“[/{,']] :h(l) : U3N9+2Nl+i:Vk,j7 §‘ 877
1=1... Ni, [k,]] = h(Z) © UBNy+2N+N;+i = ék,j- 376.9

When thei™ power plant is not on the grid, the variahig sres

is removed from (19), (18), and is no longer an unknowi 3761

variable. We replace; = E; by y; = V; during the power 00254 06 o8 -0.02 0 0.02

drop-out, since the power plant can no longer control the o1 o2

. . . c) Projections on differential variables of the 30-busts
voltage at theé™ bus. All equations are automatically generated (€) Proj e

by symbolic computations in MATLAB to exclude errors

during manual implementation. oo 0165
TABLE | -0.17
PARAMETERS OF THE GENERATORS =0.07 » !
Q N
) A ®—04175 o
Vi Mi Di Vgl ¥gi Tsve Bpi ws ~0.075 orsl LI
0. f
L o004 5 I 1 0.05 1207 oos fault-on —> i
—0 -0.185 <«— fault-on
-0.085
11 1.2 13 0.978 0.98 0.982
Es Vosg

B. Transient Stability Analysis

The transient stability analysis is performed as follows. o o )
After a pre-fault phase 06.1 5, the power plant producing 5, S¢ecied proectons of eachable sei o vensay sy,
the most power is taken off the grid (e.g. caused by a sh@ié white box the initial set. For algebraic variables, dgr&y represents pre-
circuit) for 0.03 s and afterwards reconnected. In the post-fauult and post-fault sets, light gray represents fault-ets,sand medium gray
phase, the dynamics is computed until all continuous stqﬂﬁ%ﬁfﬁ&fﬁfiﬁéﬁr all fault phases obtained by compoailiocomputing the
variables reach the set of initial states. In all case stdie '
center of the initial set is the steady state solution dehote
by a superscripted zero. For all power generators the linitia
phase isd;(0) € §? @ 0.005 - [—1,1], the initial rotational Sec. VII-A. In that case study, it is investigated whethesit
speed isw;(0) € w? ® 0.1 -[-1,1], and the initial torque is better to compute the reachable set of subsystems as d=bcrib
Tmi(0) € TP , 0.001 - [—1,1]. in Sec. V-A, or to compute the linearization error composi-

The first case study is based on the IEEE 14-bus benchmtdhally as described in Sec. V-B. For that purpose, the powe

system, enhanced by the generator dynamics as introducedyistem is split into two subsystems as shown in Fig. 5. The

(d) Projections on algebraic variables of the 30-bus system
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separate computation of the subsystems results in an éxploghe critical clearing time by simulating the system for eiént
of the reachable set aftér27 s in the considered case studyault clearing times starting from the center of initial te®a
(not illustrated due to space limitations). This is becatlge z°°. The critical clearing time forz%¢ is t.; = 0.323 s
transmission line voltages and phase angles betweenaogsf for the previously considered IEEE 14-bus scenario in Sec.
of subsystems can be chosen arbitrarily within the unaertalll-B. When computing several simulations starting frone th
setsz{(). This includes trajectories that excite oscillationsnitial set specified in Sec. VII-B using the critical clezgi
whereas all variables are correlated for the complete systdime t..;; = 0.323 s obtained forz%¢, some trajectories are
such that those behaviors are excluded in reality. Howevetable and return to the original steady state, while other
when computing the linearization error compositionallgr-c trajectories converge to another steady state as depicted.i
relations between states are preserved. This is dematbtrak for selected projections. The steady state from which the
by comparing the results of the monolithic and compositionarajectories start is referred to as steady statevhere steady
linearization error computation for selected projectiofishe state is the other possible steady state. The reachable set
reachable set in Fig. 3. Although a different shade of gray é@mputation for this scenario computes umik, = 0.323 s.
used to plot the reachable sets of the compositional appro@dterwards, the reachable set computation does not coaverg
for the linearization error computation, the differencen caanymore and grows over all bounds. The reason is that
only be observed after zooming in for most projections. Theajectories diverge at the critical clearing time causrigrge
accuracy of the results in Fig. 3 is indicated by simulatiohs sensitivity for the algebraic state with respect to the dyita
system trajectories from randomly chosen initial statdsiclv state. As a consequence, the linearization error computati
are plotted as black lines. Note that the results for thebatije become very large so that the overapproximative computatio
variables jump after the pre-fault and fault-on phase sinoé the linearization error no longer converges. In Fig. 4 th
the system model switches. Besides the 14-bus system, tbachable set until the clearing time is shown for selected
compositional linearization error computation is alsodgd projections.
for the IEEE 30-bus benchmark system. Using the sameln order to determine the critical clearing time for all
generator models and parameters as for the 14-bus systemjnritial states, the recommended strategy is to start froen th
reachable sets for the 30-bus system are presented in Fig. 3ckitical clearing time obtained by a single simulation ahdrt
the full system and the partition into four subsystems (aréguiteratively decrease the critical clearing time until alhtes
showing the subsystems is not shown due to space limitationgturn to the original operating region as presented in Sec.
Again, the overapproximation is marginal for most variable VII-B.
Although the overapproximation of the compositional com-
putation of the linearization error is small, the savings in 440
computation time are significant. This is because the linaar 420
tion error computation consumes aroud@’ of the overall
computation time. Thus, the compositional linearizatioroe

region of

Fig. 4(b) 394

400 393.9

computation is clearly preferred over the compositionaheo 5380 53938

putation of the reachable set, since the latter resultsginifsi 360

cant overapproximation, while the savings in computationa 3937

time are comparable for both methods. The computational initial set oo

times until all states return to the initial set (return tjme 320 ’

using the compositional linearization error computatior a 0 2 4 23 235 24

listed in Tab. Il for the considered case studies when the brofect 51n5 b 7 o 01 5

linearization errors of subsystems are computed in paralle (@ Proection omy, wi. - (b) Zoom of the projection ot wr.

using4 cores. All computations are performed in MATLAB initial set | steady  steady
. 0.05 -0.09 statea state 3

on an Intel XEON X5690 processor with47 Ghz. Note that —

the 30-bus system can be computed in less time than the
14-bus system when using compositional linearizationrerro

computation with four subsystems. Considering that a eingl€'_ s i\\/ £ < _012

simulation takes around.5 s using the odel5s solver in " i = 013

MATLAB, the simulations of all corner cases of the 30-bus _p; |RQ\) " & '

system with18 dynamic variables requirez'® simulations, @ region of  —0.14 :
Fig. 4(d) R([0, terit])

which requires a computation time 893216 s, which takes ~0.15 -0.15
around100 times longer than the formal analysis. o2 4 6 152 253

61 01
(c) Projection ondy, 2. (d) Zoom of projection oy, d2.
C. Critical Clearing Time Fig. 4. Selected projections of reachable sets for thecalitlearing time

- ] ; lysis of the IEEE 14-bus example. Black lines show randomulations
Reachability analysis can also be used to determine t?(ﬂgthe time intervalt € [0,4] s, gray areas show reachable sets until the

critical clearing time for a set of initial states rather riha critical clearing time { € [0, 1)), and the white box the initial set. The
single initial state. Since a single simulation run is fagten right figures show zoomed regions within the left figures.
a complete reachability analysis, one should start detengi
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D. Effects of Variable Energy Production cascading effects are avoided. The presented approacbkdd ba

The effect of variable renewable energy production afd! @n z_;\bstraction to linear di_fferentia_l inclu_sions, whiish
demonstrated for the 14-bus system, where the genera@ézf Of interest to other analysis techniques in power syste
active power at busl3 and 14 are directly injected (see OF for checking |f.I.|near modclells are Just|_f|ed. In order to
[28]), whereVt € [0,5]s : PZ4(t), Pl (t) € {LP*|p* ¢ Improve the scalability, compositional technlq.ues greppsed
[0.04,0.06]p.u} modeling that the production uncertainty®" the system level and on _the level of the Imeanzauonn_a_rro
grows linearly over time. The conventional power plants®mputation. The case studies revealed that the compuaitio
produce only active power at busand2: P.; = 2 [p.u.] computation of the_ linearization error is prgferable sutfme_
and P., = 0.4 [p.u.]. Selections on reachable sets over timgoMputational savings are comparable, while the correlati
for the time interval[0, 5] s are presented in Fig. 6 togethePetween state variables are much better preserved.
with random simulations for which a constant input is chahge The presented approach can be used for the same types of

every0.2 s, causing jumps of algebraic variables. analysis for which simulation techniques are applied. dligh
a single simulation is computed faster than a reachable set,
N the simulation of all corner cases takes more time than the

12 413 ‘414 computation of the reachable set. For the-bus system,

reachability analysis is arountl)0 times faster than sim-
11 10 T ulating all corner cases due to the polynomial complexity
4 9 L5 of the presented approach. Note that the intention of the
Ma 8 NWF"@ presented approach is not to replace simulation techniques

\/

techniques are especially useful to obtain a first idea about
the system behavior, while reachability analysis can plevi
> rigorous results in the presence of uncertainties.

A further application of reachability analysis is to comput
the largest invariant set around a steady state [51], he., t
largest set that cannot be left when starting in that set.
Incorporating the proposed approach into an algorithm for

TABLE II computing the largest invariant set is part of future work.
COMPUTATION TIMES AND TIMES TO RETURN TO INITIAL SET

fI;G but complement them for a more rigorous analysis. Simutatio
-3

Fig. 5. |EEE 14-bus benchmark system. Gray lines show stdasyisorders.
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