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Abstract—Filter based system state estimation is widely used
for hard-realtime applications. In long-term filter operation the
estimation of unobservable system states can lead to numerical
instability due to unbounded state uncertainties. We introduce a
filter concept that estimates system states in respect to changing
local references instead of one global reference. In this way
unbounded state covariances can be reset in a consistent way.
We show how local reference (LR) filtering can be integrated into
filter prediction to be used in square root filter implementations.
The concept of LR-filtering is applied to the problem of vision
aided inertial navigation (LR-INS). The results of a simulated
24 h quadrotor flight using the LR-INS demonstrate long-
term filter stability. Real quadrotor flight experiments show the
usability of the LR-INS for a highly dynamic system with limited
computational resources.

I. INTRODUCTION

System state estimation for control requires sensor data fu-
sion in hard realtime. For this purpose, probabilistic filters are
often used due their simplicity, low computational complexity
and deterministic timing behavior. To guarantee long-term sta-
ble state estimation a numerically robust filter implementation
as well as full system state observability are fundamental.
While numerically stable algorithms as for example square root
filters are well established, a state estimation formulation with
full observability can not always be guaranteed. This situation
is critical in two aspects: firstly, unbounded filter covariances
can cause numerical instability. Secondly, linearization of
non-linear systems often assumes small state errors. If the
errors rise unbounded the filter can become inconsistent. An
example of an unobservable set of states are yaw and position
estimates in Vision Aided Inertial Navigation Systems (VINS)
[1]. We will explain the general concept of local reference
(LR) filtering using the example of VINS.

VINS is used on many robotic systems to estimate the
current robot pose and further states, as for example velocity.
These estimated system states are the basis for autonomous
mobile robot operation including low level control, path plan-
ning and obstacle avoidance. For inherently unstable and
highly dynamic systems, as for example flying robots, state
estimation in hard-realtime is essential for system control.

In the recent years, the development of VINS showed
great progress. Mourikis et al. [2] demonstrated a hard-realtime
capable mono vision/IMU fusion algorithm using an Extended
Kalman Filter (EKF). In their aproach a certain window over
past poses is kept within the filter state vector to process

feature measurements taken from different locations along the
traveled trajectory. Using limited data windows makes realtime
implementation possible but turns the system into an odometry
system as trajectory loop closures can not be integrated.

In contrast to pure odometry systems, map based ap-
proaches make loop closures possible. Kaess et al. [3] com-
bined filtering and smoothing to realize loop closures and a
realtime capable state estimation system. A separator state
on top of the smoothing problem representing Bayes tree
is used as interface between a global smoother and a local
filter. In a synchronization step, updates on the separator are
exchanged between filter and smoother. The current separator
is continuously marginalized out of the filter to transfer states
from the filter to the smoother and use a new separator
state. Even though, the increase of globally referenced state
uncertainty can be drastically reduced in the case of trajectory
loop closures, it is still globally unbounded.

A further map based approach, which tackles the problem
of bad scalability and global inconsistency for EKF-SLAM
(Simultaneous Localization and Mapping) based systems, is
sub-mapping [4]. Local sub-maps, with arbitrary origins, are
combined within a global EKF. The demonstrated reference
transformation of features can be adapted to realize state
transformation for vision aided inertial navigation and locally
limit the uncertainty increase of unobservable states. In our
paper we generalize this idea and introduce a technique to over-
come the general problem of unbounded filter covariances for
unobservable filter states. Further, we consider hard-realtime
constraints.

In our local reference filter a transformation function be-
tween the unobservable states and a local reference is defined
while the local reference is augmented to the filter state
vector. The filter prediction step is used to switch the filter
states and its covariance to the new local reference which is
marginalized out at the same time. We demonstrate the concept
on a vision-aided inertial navigation filter. We sporadically
change the filter reference frame to a new frame with a lower
relative uncertainty compared to the current system state. All
filter states and covariances are transformed to the new local
reference frame which can be a node of any (non-realtime)
high-level navigation system either topological or metric (as
for example from a SLAM backend). In this way we separate
local realtime state estimation from global navigation and relax
timing constraints on the latter one. The implementation is
realized as square root UD filter [5] to improve numerical



stability on embedded computers with limited floating point
precision. The main contributions of this paper are:

• a Local Reference Square Root filter concept (LR-
filter) to realize long-term stable state estimation in-
cluding unobservable states

• the application of the LR-Filter concept to inertial
navigation (LR-INS)

• a mechanism to combine global (topological or metric)
navigation with long term stable, local, metric state
estimation with hard-realtime constraints

This paper is structured as follows: in Section II we explain
the general concept of the LR-filter and its implementation
in square root form. In Section III a Local Reference Inertial
Navigation System (LR-INS) is developed. In Section IV we
prove long-term filter stability in a simulated 24 h quadrotor
flight experiment and present experimental results of real
quadrotor flights employing the LR-INS. We discuss results
and limitations of the introduced LR-Filter in Section V to
conclude the paper in Section VI.

II. LOCAL REFERENCE FILTERING

In the LR-filter, the global state reference is transformed
to a local reference to limit the unbounded increase of filter
state covariances for unobservable system states. In terms
of filtering, this includes state augmentation, marginalization
and transformation. These operations can be included into a
modified filter prediction step which we will derive in the first
part of this Section. We give a short overview of the Square
Root UD Filter and apply the modified Local Reference Filter
prediction to Square Root filters. By including all operations
into the square root UD prediction step, the covariance matrix
factorization and its numerically superior properties can be
kept at any time.

A. State Augmentation, Marginalization and Reference switch-
ing within Prediction

To change the reference of filter states and its correspond-
ing covariance matrix a new local reference has to be defined
including at least states corresponding to the unobservable
system states. This local reference can be a partial clone
of the current system state optionally combined with sensor
measurements. At time k, we augment the local reference to
the current state vector xk by:

x̄k =

(
xk
xaug

)
= g(xk, zk) (1)

where zk is a sensor measurement disturbed by Additive
White Gaussian Noise (AWGN) with covariance Rk. The filter
covariance for the new state vector is calculated using the
Jacobian of g:

P̄k =
∂x̄k
∂xk

P k
∂x̄k
∂xk

T

+
∂x̄k
∂zk

Rk
∂x̄k
∂zk

T

= AkPA
T
k + T kRkT

T
k

(2)

where Ak is the augmentation matrix, T k is a noise transfor-
mation matrix. Using stochastic cloning [6], the augmentation

matrix has exactly one 1 per row and the noise transformation
matrix is the zero matrix.

We can apply a regular prediction step to the augmented
state which results for the covariance prediction in:

P̄ k+1 =ΦkAkP kA
T
kΦT

k + (GkQkG
T
k + T kRkT

T
k )

(3)
where the augmented system matrix Φk is an identity matrix
of corresponding size with the original system matrix in the
upper left corner. The augmented noise propagation matrix Gk

is a zero matrix of corresponding size with the original noise
propagation matrix in the top rows.

Analogously to Equation 1, we can define a transformation
function f that transforms the system states at time k + 1
(including all augmentations) into the new reference frame
defined by the augmented state and, at the same time, removes
the augmented reference state from the filter:

¯̄xk+1 = f(x̄k+1) (4)

Using the Jacobian of f(·) the transformed state covariance
can be calculated as:

¯̄P k+1 =
∂ ¯̄xk+1

∂x̄k+1
P̄ k+1

∂ ¯̄xk+1

∂x̄k+1

T

=

=SkΦkAkP kA
T
kΦT

kS
T
k

+Sk(GkQkG
T
k + T kRkT

T
k )STk

(5)

Equation 5 can be rewritten as:

¯̄P k+1 = Φ̃P kΦ̃
T

+ G̃Q̃G̃
T

(6)

which is exactly the form of a filter prediction step except
for the (potentially) non quadratic form of the system matrix
Φ̃. We will exploit this similarity in Section II-C to integrate
state augmentation, propagation, marginalization and reference
switching into the square root UD prediction algorithm.

Even though all operations for local filtering can be carried
out within one prediction step, they do not have to be executed
at the same time. For example, a reference switch can be
executed at any time after the augmentation of a potential
reference. Nevertheless, reference switching can be realized
without the risk of covariance rank deficiencies due to state
cloning if the formulation from Equation 5 is used. Otherwise,
state cloning may create a problem for square root filter
propagation algorithms.

B. Square Root UD filter

Often only single precision FPUs are available on small
embedded computers. As per Maybeck [7], the naive im-
plementation of Kalman filters inherently involves unstable
numerics. Square root filters have vastly superior numerical
properties. By factorization of the covariance matrix, symmetry
and positive definiteness are implicitly guaranteed. Imple-
mented in single precision they are at least as precise as
a naive implementation in double precision for a modest
increase in computational load. State cloning, which brings
the covariance matrix close to a singular state, can be critical
especially in a naive implementation. A numerically stable
implementation should be preferred. Therefore, we shortly



recap the Square Root UD filter algorithm. The square root
UD-Filter (SRUD) developed by Bierman and Thornton [5]
uses a matrix factorization of the filter covariance matrix in
the form P = UDUT where U is a strictly upper triangular
matrix and D a diagonal matrix. As per Maybeck [7], in
terms of numerical stability and complexity, the SRUD filter is
comparable to square root filters using Cholesky factorization
but without the need for calculating actual square roots. The
introduced method can be easily applied to both formulations.
To stay consistent with the original SRUD publication, we
keep the formulation with a strictly upper triangular matrix
U instead of a strictly lower triangular matrix L as in the
equivalent and more common LDLT decomposition.

Under the assumption of a diagonal noise matrix Q, without
loss of generality as a Kalman propagation noise term G̃Q̃G̃T

can always be decomposed to result in a diagonal noise matrix
Q, the filter prediction step

Uk+1Dk+1U
T
k+1 = ΦkUkDkU

T
kΦT

k +GkQkG
T
k (7)

can be reformulated as
Y DY T

Y = (ΦkUk Gk) , D = diag(Dk,Qk)
(8)

The prediction step in UDUT form is realized by trian-
gularization of Y by the Modified Weighted Gram-Schmidt
(MWGS) algorthim or by weighted Givens rotations. The re-
sulting quadratic, strictly upper diagonal part of Y corresponds
to Uk+1. The corresponding Dk+1 matrix results from the
triangularization process.

Filter updates are realized in two steps: first measure-
ments are decorrelated by diagonalizing the measurement noise
matrix R. Then, several scalar updates are carried out via
modified Cholesky rank one downdates.

C. Local Reference Square Root UD Filter

State augmentation and reference switching can be im-
plicitly realized in UD-form without de- and refactoring of
the covariance matrix. In Section II-A, we showed that filter
state augmentation and reference switching can be seen as
covariance prediction in a naive filter implementation. We use
this formulation as basis for implicit state augmentation and
reference switching for a UD factorized covariance matrix.
Substituting the covariance matrix P in Equation 6 by its
UDUT factorization leads to the prediction step

Uk+1Dk+1U
T
k+1 = Φ̃UkDkU

T
k Φ̃

T
+ G̃QkG̃ (9)

which is equivalent to the regular SRUD prediction Equation
7 except for the non quadratic form of the system matrix Φ̃.
At this point the diagonal matrix Dk still has the size of
the old state vector before augmentation or marginalization.
Applying triangularization on Y of Equation 8 implicitly
adapts the size of Dk+1 corresponding to the new state vector
size. Nevertheless, triangularization might fail if the resulting
covariance matrix is singular, depending on the used algorithm.
Stochastic cloning always introduces a covariance matrix rank
deficiency directly after cloning. By combining augmentation
and prediction the matrix rank can be filled up by the system
noise within one prediction step. Therefore, special care has
to be taken to choose a suitable discrete approximation of the
continuous prediction noise term G(t)Q(t)G(t)T .

III. LOCAL REFERENCE INERTIAL NAVIGATION SYSTEM

In this Section we apply the concept of LR-Filtering to
vision aided inertial navigation. We fuse odometry measure-
ments of a stereo camera system with acceleration and angular
rate measurements of an IMU. Furthermore, we assume the
sporadical availability of 6D-landmark measurements. The
pose of the landmark is included into the state vector to be
used as new local reference the filter states can be switched
into.

A. Vision Based Keyframe Inertial Navigation

Our inertial navigation system, previously introduced in
[8], is based on an error state space Extended Kalman Filter
in feedback configuration. The current kinematic and dynamic
states are calculated by the computationally cheap strap down
algorithm (SDA) at frequency fSDA. The frequency is chosen
corresponding to the expected system dynamics. The filter is
running at frequency fEKF ≤ fSDA calculating the error
covariances of the system states. The result of the filter update
step is used for state correction whenever a measurement is
available. We define the direct system main state and the
corresponding indirect (filter) main state as:

x =
(
pNx,TNxB

vNx,TNxB
qNx,TB bTa b

T
ω

)T
∈ R16 (10)

δ =
(
δpT δvT δσT δbTa δb

T
ω

)T ∈ R15 (11)

where the direct state includes the body position, velocity
and orientation quaternion relative to the navigation frame
Nx and IMU accelerometer and gyroscope biases. Using
quaternions as attitude parameterization guarantees an efficient
and gimbal lock free rotation representation. The indirect main
state includes the corresponding errors of the direct state. As
we assume small angle errors, attitude errors in the indirect
system state can be expressed as three dimensional orientation
vector with minimal parameterization.

For the inertial navigation system error propagation we em-
ploy the following linearized, continuous-time error transition
model as for example derived by Wendel [9]:

δ̇ = F δ + Gn

=


O3x3 I3 O3x3 O3x3 O3x3

O3x3 O3x3 −
⌊
aNxNxB

⌋
−CNx

B O3x3

O3x3 O3x3 O3x3 O3x3 −CNx
B

O3x3 O3x3 O3x3 O3x3 O3x3

O3x3 O3x3 O3x3 O3x3 O3x3

 δ

+


O3x3 O3x3 O3x3 O3x3

CNx
B O3x3 O3x3 O3x3

O3x3 CNx
B O3x3 O3x3

O3x3 O3x3 I3 O3x3

O3x3 O3x3 O3x3 I3

n
(12)

where aNxNxB is the specific force (body acceleration relative
to the current navigation frame Nx expressed in Nx), b. . .c
the skew symmetric matrix operator of a vector and CNx

B
the rotation matrix transforming a vector expressed in the
body frame to the frame Nx. The uncertainties in the error
propagation for translation and rotation are modeled as additive



zero-mean, white Gaussian noise (AWGN). The accelerometer
and gyroscope biases are modeled as random walk processes
driven by AWGN. The noise vector ns has the spectral density
Q, such that

Q = diag(Qa,Qω,Qba ,Qbω ) (13)
Qs = E

[
nsn

T
s

]
| s ∈ {a,ω, ba, bω} . (14)

The system matrix F is discretized at time step k for the filter
time interval T = 1/fEKF as Φk = eΦT .

Our visual odometry algorithm provides a transformation
measurement from a keyframe to the last captured image with
the according measurement noise. The algorithm choses the
keyframe with the smallest accumulated measurement noise
as reference. In this way, drift can be avoided while moving
in a small area or while standing, compared to frame to
frame odometry. To process these delta pose measurements
and compensate for measurement delays introduced by the
vision pipeline, we clone the robot pose at the time of image
capturing. Whenever a new image is captured by the stereo
cameras, we register the hardware camera synchronization trig-
ger to instantaneously initiate pose state cloning. Analogously
to Equation 1 we define the augmented state vector as:

x̄k =

(
xk
xp,σ

)
= gx(xk, z̃k)

δ̄k =

(
δk
δp,σ

)
= gδ(δk, z̃k)

(15)

where xp,σ = (pNx,TNxB
qNx,TB )T and δTp,σ = (δTp δTσ )T are

pose and pose error, respectively, at time k. As no mea-
surements are involved the noise transformation matrix T k
of Equation 2 is the zero matrix while Ak = ∂gδ

∂δk
. Further

details on the keyframe based VINS, including corresponding
measurement Equations, can be found in [10].

B. Local Reference Augmentation

Similarly to visual odometry measurements, we employ
state cloning for the processing of 6D landmark measurements
of a camera. We clone the current robot pose as frame Bz

at the exact time of the camera hardware trigger measuring a
potential reference frame Nx+1 (PRF). At the time of arrival of
the measurement the PRF state is augmented in the filter using
its measurement noise R for initialization. This augmentation
is similar to classical EKF-SLAM feature augmentation except
for two differences: first, we use an error state space filter
formulation. Second, the robot measurement pose and PRF
augmentation can occur at different times. These measurement
time delays are implicitly compensated by state cloning at the
exact hardware trigger time of image capturing and referencing
the corresponding augmented robot pose in the filter update
step. The PRF pose augmentation measurement, corresponding
to Equation 1, is expressed in the current navigation frame Nx
as

gx,Nx+1
(x, z̃Nx+1) =

(
δNxNxNx+1

δNxNx+1
)

)
(
pNxNxBz +CNx

Bz
(CBz

C p̃
C
CNx+1

+ pBBC)

qNxBz q
B
C q̃

C
Nx+1

) (16)

where pNxNxBz is the augmented estimated robot pose at time
of image capturing, p̃CCNx+1

the PRF position in the cam-
era frame, pBBC the known translation vector between IMU
frame and camera, CNx

B the estimated rotation matrix between
navigation and IMU frame, qBC and CB

C the known camera
orientation between IMU and camera frame as quaternion and
rotation matrix respectively and q̃CNx+1

the PRF orientation
measurement quaternion. From Equation 16 we can derive
gδ,Nx+1

and find the relevant parts of the noise augmentation
and noise transformation matrices referencing the partial error
state δTp,σ augmented at the time of image capturing as:

Aδp,σ =

(
I3x3 −

⌊
CNx
Bz

(CBz
C p̃Nx+1

+ pBzC )
⌋

03x3 I3x3

)

T δp,σ,k =

(
CNx
c 03x3

03x3 CNx
c

) (17)

After augmentation of the PRF further PRF measurements can
be processed in the filter. Therefore, we repeat state cloning
at the exact camera measurement trigger time to save the
new body frame Bz and process the (delayed) arriving mea-
surement by the linearized PRF error measurement equation
expressed in the camera frame Cz with RCz

Nx
= RC

BR
Bz
Nx

zδ = Ξ

(
δp,σ
δNx+1

)
+ nNx+1

Ξ =

(
−RCz

Nx
RCz
Nx

⌊
pNxNxB − p

Nx
NxNx+1

⌋
RCz
Nx

03x3

03x3 −RCz
Nx

03x3 RCz
Nx

)
(18)

C. Navigation Frame Switching

Position and yaw relative to the initial reference frame are
unobservable. Therefore, we switch the filter reference to an
augmented PRF. All states relative to the navigation frame,
which are poses and velocities, have to be transformed into the
new reference frame Nx+1. We know the PRF estimate relative
to the current reference frame Nx by the translation vector
pNxNxNx+1

and the rotation as matrix CNx+1

Nx
and corresponding

quaternion qNx+1

Nx
.

In analogy to Equation 4, we can formulate reference
switching as function on the current state vectors. Direct state
positions, velocities and orientations are transformed as

pNx = C
Nx+1

Nx
(pNx − pNxNxNx+1

) = C
Nx+1

Nx
∆pNx

v
Nx+1

NxB
= C

Nx+1

Nx
vNxNxB

qNx+1 = q
Nx+1

Nx
qNx

(19)

The corresponding linearized transformations in tangent space
can be derived as:

δNx+1
p = C

Nx+1

Nx
(δNxp − δNxNxNx+1

+
⌊
∆pNx

⌋
δNxσ,Nx+1

)

δNx+1
v = C

Nx+1

Nx
(δNxv,NxB +

⌊
v̂NxNxB

⌋
δNxσ,Nx+1

)

δNx+1
σ = CN1

Nx
(δNxσ − δNxNx+1

)

(20)

In the same transformation, we marginalize out the PRF state.
After filter switching the PRF measurement of Equation 18
becomes an absolute pose measurement.



In some situations a full reference switch is not practical.
For UAV navigation, for example, the navigation frame x-
and y-axes should be orthogonal to the gravity vector. This
can be realized by manipulating the rotation matrix CNx+1

Nx
in a way that only a rotation about the gravity vector is
applied. Even the identity matrix can be used as transformation
matrix defining the current orientation as the new reference
orientation. Nevertheless, using the latter alternative yaw drift
is not bound whereas using the former the yaw reference is
readapted to a local but static reference frame. We employ
option one in the following experiments.

IV. EXPERIMENTS

We demonstrate the concept of our LR-INS in simulations
and in quadrotor flight experiments. In both situations we
switch off the keyframe feature of our visual odometry system
to accelerate the increase of covariances for unobservable
states. The resulting frame to frame odometry is used on many
vision based UAVs and can be compared to a configuration
with velocity measurements from optical flow sensors.

A. Simulated UAV flight

We show the long-term stability of the LR-INS in a
simulated 24 h quadrotor flight. In our simulation environment,
we defined four distinct landmarks. The quadrotor is randomly
commanded to the landmark locations. With the quadrotor
closer than two meters a noisy PRF measurement expressed in
the virtual camera frame is simulated. Furthermore, IMU mea-
surements and delta pose measurements (also in virtual camera
frame) are simulated during the entire flight time. All sensor
measurements are disturbed by zero mean AWGN. Table I lists
the corresponding simulation parameters. The same parameters
are used within the filter. Considering the simulated visual
odometry sensor we choose rather conservative frequency and
noise parameters compared to our real implementation to
accelerate the increase of state uncertainty and emphasize the
effect of reference switching. Figure 1 depicts the LR-INS

TABLE I. 24 H SIMULATION PARAMETERS

Parameter Value Unit
IMU frequency 180 Hz
Acceleration std. dev. 1e-2 m/s2

Gyroscope std. dev. 1e-3 deg/s
Visual odometry frequency 5 Hz
Visual odometry position std. dev. 1e-3 m
Visual odometry orientation std. dev. 5e-1 deg
PRF frequency 5 Hz
PRF std. dev. 2e-2 m
PRF std. dev. 1e-1 deg

filter results for position, velocity and attitude. All estimates
stay well inside their 3σ uncertainty bounds except for some
sporadic outliers on the z-axis. Furthermore, all uncertainties
are bound due to regular local reference switching. During the
24 h flight the reference frame was switched 6386 times. We
use the Normalized Estimation Error Squared (NEES) divided
by the number of included states to rate the consistency of
the filter. For an ideal filter the weighted NEES should have a
mean of 1. We get a NEES mean of 0.83, 0.44 and 0.09 for
position, velocity and attitude, respectively. This means that
the filter covariance estimates are conservative for all three
states which is important for most applications. The deviation

Fig. 3. Quadrotor platform used for LR-INS flight experiments.

of the NEES from 1 has two reasons: First, our simulation
framework does not simulate variations in the IMU sensor
biases. Second, linearization of the non linear system and
measurement equations causes sub-optimal estimation results.
Hesch et Al. [11] analyzed VINS consistency considering
changes in the system mode observability due to linearization
effects. Their method can be applied to our VINS to further
improve filter consistency.

Figure 2 depicts a 2 minute zoom view for unobservable
x-position and yaw angle. The estimates for the other unob-
servable states, which are y-and z-position, show a similar
behavior. The moment of PRF augmentation is marked by
black circles, the filter switch into the PRF by magenta
circles. With the integration of PRF measurements the state
uncertainties are stabilized. As expected, they drop as soon
as the PRF is used as new filter reference. At the time of
switching the state errors do not completely vanish as we
switch into the estimate of the new local reference while the
ground truth gives the real PRF poses.

B. Relative UAV navigation

We verified the usability of the LR-INS approach in flight
experiments using the quadrotor platform depicted in Figure
3. The system is equipped with a sensor unit [12] including a
stereo camera system an ADIS16405 IMU, a core2duo com-
puter board for visual odometry calculation, an FPGA board
for Semi Global Matching (SGM) stereo image processing
of 0.5 MPixel@14.6Hz and an Omap3530 based real-time
processor board for sensor data fusion and control.

Disparity images are the basis of our key-frame based
visual odometry algorithm. Using hardware acceleration in-
creases the measurement frequency but we still have a la-
tency of about 250 ms for the entire vision pipeline. The
measurement delay is implicitly compensated by the hardware
triggered pose augmentation of the LR-INS. An analysis of the
influence of visual odometry measurement delay and frequency
can be found in [8].

The left stereo camera is used for PRF detection. Four
PRFs in form of APRIL tags are spread within the exper-
imental area. This area of 4x5x2m (LxWxH) is defined by
our motion capture system which tracks the pose of a marker
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Fig. 1. LR-INS filter results for a 24 h quadrotor flight: estimation errors in red and 3σ uncertainty bounds in blue. The Normalized Estimation Error Squared
in blue (NEES) is weighed by the number of included states, its mean is marked by the red line.

mounted on the quadrotor serving as our ground truth. The
relative positions between the PRFs are used as controller
waypoints. With the quadrotor reaching the waypoint a switch
into the PRF is conducted and the next waypoint is set (at the
last waypoint starting at the first again). In Figure 4 we depict
the estimation errors compared to ground truth.

Similarly to our simulation, the covariances for position
drop at the time we switch into a PRF. As we set the ground
truth relative to the measured landmark as well, the measured
errors become zero. In contrast, the yaw angle covariance
becomes higher at switching time. This is caused by the high
measurement uncertainty of the PRF compared to the very
small yaw drift between filter switches. The increase of yaw
covariance induces spikes in the covariances for roll and pitch
which are caused by the transformation by the uncertain yaw
angle.

Considering error values, the quality of the estimate for
position is worse than what we usually achieved using visual
odometry only (as for example published in [10]). Further-
more, small jumps in the position error can be observed. These
are caused by bad measurements from the APRIL tag detector.
As we do not have the real covariance of the PRF measurement
we use constant values. Considering the angle errors, there are

small oscillations. It can be seen that in these areas the ground
truth also sometimes drops out completely. This supports the
assumption that the oscillations are coming from bad ground
truth measurements.

The NEES shows regular patterns and is considerably
higher than in our simulations. We assume that both effects
are caused by the static measurement covariances of the
APRIL detector which does not reflect the real quality of
the measurement. Therefore, we are working on a quality
measurement of the detector.

Nevertheless, the actual goal of reference switching, the
limitation of covariance increase of unobservable position and
yaw can be clearly seen. The quadrotor conducted a flight
locally precise to the given references. The whole filter runs
with hard-realtime constraints as it is used for control of the
highly dynamic quadrotor.

V. DISCUSSION

The introduced LR-filter is a simple method to realize long-
term stable filter based state estimation including unobservable
system states. By the integration of all needed operations into
a general filter prediction step the actual filter implementation
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in blue. Black circles indicate augmentation of PRF, magenta circles mark filter switch into PRF.
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Fig. 4. LR-INS filter results for a real quadrotor flight:

method can be freely chosen. State augmentation and reference
switching can be easily integrated into square root filters which
are numerically superior compared to naive implementations.
The computational overhead of square root implementations
can be lowered by choosing a clever state ordering. Re-
triangularization within the prediction step proceeds from the
first row not in triangular form to the matrix triangle base.
Therefore, states constant during prediction should be held at
the triangle peak whereas changing states should be kept close
to the bottom of the triangle.

Filter methods are a good choice in applications with

hard-realtime constraints and limited computational resources.
Nevertheless, linearization effects degrade the theoretical opti-
mality of the filter. Depending on the non-linearity of the state
switching function further linearization errors are induced.
Nonlinear, iterative fixed lag smoothers would not suffer
from these effects but at the cost of higher computational
requirements. Unbounded covariances for unobservable states
would not result in numerical problems for smoothers as the
anchor state prior can be easily changed.

Our experiments demonstrated that the application of the
LR-filter to vision aided inertial navigation results in a long-



term stable navigation solution, the LR-INS. In our experi-
ments, we used exteroceptive PRFs. Nevertheless, it is also
possible to use directly an augmented robot pose as reference
frame for switching. Furthermore, a filter switch could be real-
ized only internally. By re-transforming the estimated system
states back to the original global frame, state transformation
can be made transparent to external modules as for example a
controller while the increase of state covariances is still limited.
It has to be considered that the covariances refer to the local
reference and not to the global.

The LR-INS can be easily combined with other high level
navigation solutions as for example topological navigation or
SLAM systems that can also be based on different sensor
domains. Human like navigation from one distinct landmark
to the next can be easily realized at low computational cost.
Considering multi-robot scenarios, navigation relative to a
common (changing) reference can be easily realized with a
simple navigation filter.

VI. CONCLUSION AND FUTURE WORK

We introduced a Local Reference filter approach for stable
long-term state estimation including unobservable states. All
required operations, which are state augmentation, marginal-
ization and transformation are included into a modified filter
prediction step. With this formulation local reference filtering
can be integrated into numerically stable square root filters.
We applied the LR-filter to vision aided inertial navigation
and developed the Local Reference Inertial Navigation System
(LR-INS).

We conducted a 24 h simulation of the LR-INS with
6386 reference switches. We showed that the covariances are
bound for all states including position and yaw which are
unobservable. The evaluation of the Normalized Estimation
Error Squared (NEES) showed that the filter is conservative
but consistent.

We demonstrated the usability of the LR-INS for control
of a highly dynamic, inherently unstable quadrotor with lim-
ited on-board processing resources. Switching continuously its
reference frame, the quadrotor can navigate robustly using
time delayed relative pose updates from an on-board stereo-
odometry system. The LR-INS was demonstrated to be suit-
able for navigation and control of systems with hard-realtime
constraints.

As a next step, we will combine our Local Reference
Inertial Navigation System with a high-level, scalable, topo-
logical mapping approach. In this way long-term locally metric
navigation can be realized on resource limited mobile robotic
platforms.
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