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Using Embodied Multimodal Fusion to Perform
Supportive and Instructive Robot Roles in Human-Robot
Interaction

Manuel Giuliani · Alois Knoll

Abstract We present a robot that is working with hu-

mans on a common construction task. In this kind of

interaction, it is important that the robot can perform

different roles in order to realise an efficient collabora-

tion. For this, we introduce embodied multimodal fusion,

a new approach for processing data from the robot’s

input modalities. Using this method, we implemented

two different robot roles: the robot can take the instruc-

tive role, in which the robot mainly instructs the user

how to proceed with the construction; or the robot can

take the supportive role, in which the robot hands over

assembly pieces to the human that fit to the current

progress of the assembly plan. We present a user evalu-

ation that researches how humans react to the different

roles of the robot. The main findings of this evaluation

are that the users do not prefer one of the two roles of

the robot, but take the counterpart to the robot’s role

and adjust their own behaviour according to the robot’s

actions. The most influential factors for user satisfac-

tion in this kind of interaction are the number of times

the users picked up a building piece without getting an

explicit instruction by the robot, which had a positive

influence, and the number of utterances the users made

themselves, which had a negative influence.

Keywords Human-Robot Interaction, Embodied

Multimodal Fusion, Robot Roles

Figure 1: JAST/JAMES human-robot interaction system.

1 Introduction

When humans work together, they take different roles

in the interaction. For example, when two persons as-

semble a shelf, usually one of them takes the lead and

gives instructions on how to follow the assembly plan.

The other person helps the instructor to build the shelf

and to gather the right parts for the next building step.

This aspect of role taking in social interactions, such

as common construction tasks, is studied in social psy-

chology as well as in robot-robot interaction. Previous

work shows for example that the assignment of roles can

bias the opinions of human interaction partners about

each other [24] and that it leads to more efficient task
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solving, both in human-human as well as in robot-robot

cooperation [27,29].

We believe, that role assignment is also important

for a successful human-robot interaction. Therefore, in

this publication we are following two main research

questions: first, which mechanisms do we have to im-

plement on a robot in order to assign different roles to

the robot when it is working together with a human on

a common task? And second, in a common construc-

tion task, do humans prefer a robot that takes the role

of an instructor or a supporter? Thus, we introduce

a new methodology, the so-called embodied multimodal

fusion (EMF), with which we realise different roles on

a human-robot interaction system. The main idea be-

hind EMF is a combination of a representation for the

actions a robot can execute with an algorithm that com-

putes the relevance of these actions based on the robot’s

input modalities.

To prove the applicability of embodied multimodal

fusion, we conduct a human-robot interaction experi-

ment in which näıve participants have to build target

objects from a wooden toy construction set together

with the robot shown in Figure 1. The robot takes

either the role of an instructor or a supporter. We use

the robot in both settings for a between participants

experiment, in which we collect objective and subjec-

tive measurements to compare the changes in behaviour

and opinion about the robot between the two experi-

ment participant groups.

2 Related Work

In sociology, the so-called role theory [2] outlines how

the different roles that humans take when interacting

with each other influence human behaviour. Role theory

discriminates different types of roles: cultural roles (e.g.,

priest), social differentiation (e.g., teacher), situation-

specific roles (e.g., eye witness), bio-sociological roles

(e.g., as human in a natural system), and gender roles

(e.g, wife or husband). In this work, we are interested

in situation-specific roles, because we perform different

roles with our robot and measure how humans react to

these robot roles.

The effects of role taking in human-human interac-

tion are studied since the 1970ies. The well-known Stan-

ford prison experiment by Zimbardo et al. [35] showed

what effect the assignment of roles has on the behaviour

of humans. In the experiment, a group of male students

took on randomly assigned roles of prisoners and guards

in a mock prison situated in the basement of the Stan-

ford psychology building. The experiment showed that

participants adapted to their assigned roles quickly: the

guards put down a rebellion by the prisoners and ulti-

mately subjected some of the prisoners to psychological

torture. Many of the prisoners accepted their role and

began to act submissively in order to avoid the guards’

measures.

Ross et al. [24] show that the assignment of roles

can change the judgement of interaction partners. In

an experiment, they grouped participants into pairs and

assigned a role to each of them: one participant, the so-

called questioner, had to ask questions of general knowl-

edge while the other participant, the answerer, had to

answer the questions. When asked for their judgement,

the majority of all experiment participants as well as

independent experiment observers rated the questioner

as being more superior than the answerer. The effec-

tiveness of role assignment in human-human interaction

was shown by Stewart and Strasser [27]. The authors

showed in an experiment that people share more infor-

mation in discussions when some of them were explic-

itly assigned the role of a knowledge expert before the

interaction.

In contrast to this work, we are looking at a sit-

uation in which a human and a robot work together

on a construction task. This means that human and

robot interact in a case of joint action, which Sebanz

and Knoblich define as “any form of social interaction

whereby two or more individuals coordinate their ac-

tions in space and time to bring about a change in the

environment” [25]. Research in joint action showed that

for successful joint action, different aspects are impor-

tant, such as joint attention, action observation, task

sharing, action coordination, and agency. The effective-

ness of joint action was researched by Clark and Krych

[6], who used an experiment design which was simi-

lar to the experiment design that we are reporting in

this work. In Clark’s and Krych’s experiment, two hu-

mans were asked to assemble Lego work pieces together.

During the interaction, one of the humans was assigned

the role of a director, who knew the building plan. The

other human got the role of the builder, who had to fol-

low the director’s instructions. Clark and Krich showed

that the two partners were much slower when the direc-

tors could not see the workspace of the builder, because

they had to use more words and could not use gestures.

However, they did not measure the effect of different

roles on the experiment participant’s behaviour.

In robotics research, there are two areas in which the

role of a robot is of importance: on the one hand, there

are robots that have to interact with humans. Here, the

research focuses on different roles the robot can take in

an interaction and how the human partners of the robot

react to these roles. On the other hand, researchers are

interested in the roles of robots in multi-robot teams.
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Here, robots use different roles to solve a given task

more effectively.

Breazeal et al. [4] were among the first authors who

realised that for a social robot that is capable to interact

with a human it is of importance, which social role the

robot should take in this interaction. Hinds et al. [15]

presented one of the earliest studies that researched how

humans react to different robot roles. They conducted

an experiment, in which a human and a robot had to

work together. In the experiment, the authors varied

the appearance of the robot as well as the behaviour

(i.e. the role) of the robot. The results of the experi-

ment show that humans rely more on human-like robots

and feel more responsible for the task when the robot

looks more machine-like. The experiment also showed

that the participants felt less responsible for the task

when they worked with a robot who took the role of a

supervisor, which is also supported by our findings.

Tapus and Mataric [30] show a therapist robot that

monitors and encourages humans in rehabilitation ex-

ercises. This robot shows either an introverted or an

extroverted personality. Tapus and Mataric were able

to show in an experiment that introverted patients in-

teracted significantly longer with the introverted robot,

while extroverted patients interacted longer with the

extroverted robot, respectively. In contrast to our find-

ings, it seems that in this type of interaction, humans

prefer to have a partner with similar personality traits

to their own.

Stone and Veloso [29] were among the first who re-

alised that role assignment is also important for multi-

robot teams. They presented an approach for dynamic

assignment of roles in robot-robot teamwork. For that,

they teamed up their robots in formations, in which

every robot was given a certain role. The increased ef-

fectiveness for task solving was demonstrated by the

authors by wining the RoboCup football league in 1999.

Chaimowicz et al. [5] proposed a new methodology for

coordinating multi-robot teams in the execution of co-

operative tasks, which was based on dynamic role as-

signment. They used this mechanism to solve a cooper-

ative transportation task that had to be fulfilled by a

group of robots. Looije et al. [21] argument that for ur-

ban search & rescue robots (USAR) affective computing

is important. Amongst other things, they present the

theoretical basis for the implementation of social roles

on a USAR, so that the robot can adapt its own be-

haviour on a rescue mission, corresponding to whether

it is interacting with a fellow helper or a victim.

In summary, the related work from sociology shows

that roles are an important element of human-human

interaction, which affects human behaviour. The work

from both, sociology and robotics, furthermore shows

that in human-human, human-robot, and even robot-

robot joint action, the assignment of roles to the inter-

action partners leads to a more efficient and successful

interaction. On the following pages, we will now add

a new aspect to this research and explore how humans

react to different roles of a human-robot interaction sys-

tem with which they are asked to work together.

3 Human-Robot Interaction System

For this work, we use a completely autonomous human-

robot interaction system (Figure 1) which supports

multimodal human-robot collaboration on a joint con-

struction task. This system was developed for the EU-

funded project JAST1 (Joint Action Science and Tech-

nology) and is now used in the EU-funded project

JAMES2 (Joint Action for Multimodal Embodied So-

cial Systems). The robot has a pair of manipulator arms

with grippers, mounted in position to resemble human

arms, and an animatronic talking head [31] capable of

producing facial expressions, rigid head motion, and lip-

synchronised synthesised speech. The robot uses speech,

gesture [34], and object recognition [23] as input modali-

ties. Additionally, the robot has a task planner [12] that

provides building plans for the target objects that the

robot builds together with a human partner.

The robot is able to work together with a human on

a common construction task. In this task, both partners

assemble wooden construction toys (Figure 2) on a

common workspace, coordinating their actions through

speech and gestures. The robot can pick up and move

objects in the workspace and perform simple assembly

tasks. In the scenario considered here, human and robot

are both given an assembly plan that they jointly exe-

cute. The robot assists the human by explaining neces-

sary assembly steps and by offering pieces as required.

To ensure that the robot has to engage in conversa-

tion with the human and needs to hand over assembly

pieces, the workspace is divided into two areas—one be-

longing to the robot and one to the human. That means

that joint action is necessary for task success.

We programmed the robot so that it can take two

different roles in the interaction: in the instructive role,

the robot first gives instructions to the user how to

assemble pieces according to the assembly plan before

handing over construction pieces from its own work

area. In the supportive role, the robot first hands over

construction pieces from its own work area to the hu-

man and only gives instructions if the human does not

pick up the right construction pieces from her/his work

1 http://www6.in.tum.de/Main/ResearchJast
2 http://www.james-project.eu
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area or if the robot has no further pieces to handover

from its work area. This means that in theory when the

robot is set to the supportive role, it can be the case that

it never gives instructions to the human, but only if the

human picks up all necessary pieces, before the robot

can give instructions. However, this never happened in

the experiment. Although the construction pieces can

be screwed and stuck together, the robot is not able

to perform assembly actions itself. However, the robot

supports its human co-worker with the following list of

actions:

– give, the robot hands over a construction piece from

its own work area to the human. While handing over

the piece, the robot also says which piece it is cur-

rently giving to the human.

– tellAbout, the robot instructs the human to pick up

a piece from the human’s work area because it fits

to a building step of the currently loaded plan.

– askFor, the robot asks the human to put a certain

construction piece on the work area, because it is

needed for a given plan and the robot cannot detect

it with its object recognition.

– tellBuild, the robot asks the human to build one of

the substeps of the currently loaded plan.

– thankFor, the robot thanks the human for a con-

struction piece that the human has put on the table.

4 Embodied Multimodal Fusion

The different behaviours that the robot displays when

it is set to either the instructive or the supportive role

is generated by executing robot actions in varying or-

derings. In this section, we describe a new approach for

selecting when to execute these actions, based on the

input information that the robot gets from its input

modalities: embodied multimodal fusion (EMF).

A robot that should interact with humans in a way

that seems natural to the human, needs to have input

modalities for understanding the human’s utterances,

for example speech and gesture recognition, and to ob-

serve the state of its environment, for example object

recognition. Furthermore, the robot needs to integrate

all of this information in order to successfully interact

with humans, a process that is called multimodal fusion.

The goal of multimodal fusion is to enable a robot to

understand the information from various input modali-

ties and to combine this information into an integrated

representation so that the robot is able to perform its

designated task.

Multimodal fusion has been applied mainly in multi-

modal dialogue systems. Here, the proposed approaches

for multimodal fusion can be separated into two main

classes: late fusion or semantic fusion methods pro-

cess the data from their input modalities with separate

recognition modules and fuse the interpretations of the

modules in a central interpretation module. Some newer

examples of multimodal dialogue systems that use late

fusion are SmartKom [32] and COMIC [3]. In contrast

to that, early fusion or feature level fusion systems in-

tegrate input channels that are closely bound to each

other, for example speech and lip movements or speech

and pointing gestures. These modalities can be fused by

combining features from both modalities into one fea-

ture vector. The resulting feature vectors are used for

training of statistical models, which are then used for

recognition of multimodal events. Examples for multi-

modal systems that use early fusion are Quickset [7]

and MATCH [17].

Late and early fusion have in common that they are

centred around processing of human utterances, since

they were developed for multimodal dialogue systems.

In these systems, the fusion process is only started when

a verbal utterance by the human is at hand. This spo-

ken utterance is then enriched with information from

other modalities. Hence, these approaches work well in

scenarios in which robots are servants that get direct

spoken commands by a human. Successful implementa-

tions of these classic approaches for multimodal fusion

on human-robot interaction systems are for example

the works by Holzapfel et al. [16] and Stiefelhagen et

al. [28]. However, we argue that for an interaction that

humans perceive as natural, especially in the context

of task-based scenarios, the robot needs to be able to

engage in a mixed-initiative interaction. For that, the

robot has to execute actions not only if it gets a direct

command by the human, it also has to take in con-

sideration information about its environment and the

progress of a given task and choose appropriate actions

to respond to this information.

EMF processes information from all input modali-

ties in parallel to make use of human utterances as well

as knowledge about the robot’s environment and task.

The main idea behind EMF is that each robot is able to

execute a defined set of actions. For example, the robot

that we are using in this publication can execute the

actions askFor, give, tellAbout, tellBuild, and thankFor,

which we described in the previous section. If the robot

should collaborate with a human in a meaningful way,

it needs to produce the correct action at the right time.

For this reason, rather than only focussing on the in-

put by the human and how to represent it, as it is done

in classical multimodal fusion for multimodal dialogue

systems, the robot should also have a representation

for its own actions and a way to determine which of

these actions it should execute in a given context. This
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enables the robot to engage in a mixed-initiative inter-

action with humans, which leads to an interaction that

is perceived by the humans as more natural.

Thus, the basic processing steps in EMF are: (1)

the robot generates representations of objects in corre-

lation to actions that it can execute with these objects.

For representation generation, the robot uses informa-

tion from all input modalities that provide informa-

tion about objects, for example object recognition or

task planning. (2) The robot uses information from all

modalities, including modalities providing information

about human utterances, to calculate the relevance of

each of its possible actions that it finds in its generated

representations. (3) The robot uses the relevance val-

ues to select one representation and executes the action

that is represented by it.

In the following sections, we introduce the represen-

tations for objects and actions, which are used in the

EMF approach. We show how EMF generates these rep-

resentations using information from object recognition

and task planning. Subsequently, we present an action

selection mechanism that is used by EMF to select the

right action to execute in any given situation.

4.1 Objects and Actions

The representations used in EMF are based on the idea

that for a robot, objects and actions are inseparably in-

tertwined, which is influenced by Gibson’s Affordances

[13]. The rational behind this is that objects are de-

fined by the actions one can execute with them. For

example, a glass can be used as a container for liquids,

but the same glass can also be a supporting stand for

other objects when it is turned upside down. Vice versa,

some actions cannot be executed without the appropri-

ate object, for example nailing cannot be done without

a hammer. The European project Paco+3 called this

connection between objects and actions object action

complex (OAC). Krüger et al. [19] presented a formal

definition of OACs, which states that an OAC consists

of a unique identifier, a prediction function that codes

the systems belief on how the world will change through

the OAC, and a statistical measure that represents the

success of the OAC within a window of the past. In our

work, we do not need the full capabilities of OACs, but

a way to represent objects and actions in the EMF ap-

proach. Thus, from now on we will talk about OAClets,

which are defined in Definition 1.

Definition 1 An OAClet is a triple (O,A,R) contain-

ing an object O which is associated to an action A and

3 http://www.paco-plus.org/

vice versa, and a score R that denotes the relevance of

the OAClet in a given situation.

EMF uses the data from the input modalities of

a robot to maintain a set of OAClets. This set is a

list of all possible actions that the robot can execute

in a given situation. Using this list, EMF calculates

the relevance of any of these actions for that situa-

tion. In order to add OAClets to the list and to rate

their relevance, we formally define two classes of modal-

ities: OAClet-generating modalities (OGM) are used to

generate OAClets (Definition 2); OAClet-evaluating

modalities (OEM) (Definition 3) are used to calcu-

late the relevance scores of a set of OAClets.

Definition 2 An OAClet-generating modality is a

robot input modality that provides information about

an existing or abstract object O. This information is

used to add one or more OAClets containing O with

appropriate actions A to a set of OAClets.

Definition 3 An OAClet-evaluating modality is a

robot input modality that provides information about

an object O and/or an action A. This information is

used to recalculate the relevance score R of every

OAClet in a set of OAClets containing either O or A.

For relevance score calculation, every OEM has an in-

dividual function.

The robot that we are using in this publication has

two OGMs, object recognition and task planning, and

three OEMs, speech and gesture recognition, and task

planning as well. The following example illustrates how

EMF uses the information from the robot’s input modal-

ities. In the example, object recognition has recognised

two objects in the working area of the robot, a red cube

and a yellow bolt, and two objects in the human’s work-

ing area, a blue cube and a green bolt. Furthermore,

the task planner has loaded the plan to build a tower,

which consists of a green bolt, a blue cube, and a red

cube as shown in Figure 2c. Hence, EMF maintains

the following list of OAClets:

cube(red) give 0.33

bolt(yellow) give 0.0

cube(blue) tellAbout 0.33

bolt(green) tellAbout 0.33

In this work, we are using relevance scores that range

between 0 and 1. Furthermore, the relevance scores of

all OAClets sum up to 1. At this point in the interac-

tion, the robot can either choose to hand over pieces to

the human by using action give or it can tell the humans

to pick up pieces from their work area by using action

tellAbout. Three OAClets have the same relevance score

in this situation, because they contain objects that are



6 Manuel Giuliani, Alois Knoll

needed to build a tower, an information that was pro-

vided by the task planner. When the human points to

the red cube and says “give me this cube”, the infor-

mation from speech and gesture recognition is used to

recalculate the relevance scores of all OAClets:

cube(red) give 0.6

bolt(yellow) give 0.1

cube(blue) tellAbout 0.2

bolt(green) tellAbout 0.1

Here, EMF increases the scores of all OAClets that con-

tain either a cube or action give. Furthermore, it in-

creases the score of the OAClet that contains the cube

the human pointed at. This leads to a situation in which

the robot can use the relevance score to decide which

OAClet it should execute next. In the next section, we

explain the full action selection mechanism the robot is

using in our implementation.

4.2 Action Selection

Due to the continuous update of possible actions in its

list of OAClets, the robot can now choose OAClets for

execution independently from the human. For that, we

implemented a simple action selection algorithm, which

is sufficient for the experiment that we describe in Sec-

tion 5. There are three events in which the robot will

execute one of its OAClets:

– When the human gives a direct command containing

an action and an object (e.g., “give me a red cube”)

and there is an OAClet in the list of OAClets that

represents the according action and object. This

replicates the typical behaviour of classical multi-

modal fusion algorithms.

– When the relevance score of an OAClet exceeds a

predefined threshold.

– When the relevance score of several OAClets exceed

the predefined threshold at the same time. In this

case, an action hierarchy is used to determine which

OAClet should be executed.

The action hierarchy is inspired by the task hier-

archies of Sentis and Kathib [26]. An action hierarchy

defines an order in which actions should be executed.

For this work, we used two action hierarchies for the two

robot roles that we implemented. In the instructive role

we used an action hierarchy as follows:

tellAbout > give > tellBuild > askFor > thankFor

This hierarchy leads to a behaviour were the robot

preferably tells the humans which building piece they

need to pick up, and only hands over pieces to the hu-

man when that is not possible. In comparison to that,

the action hierarchy for the supportive role stacks the

robot actions in a different order:

give > tellBuild > tellAbout > askFor > thankFor

Here, the robot preferably hands over building pieces

to the humans and tells them to assemble pieces. The

robot only tells the humans which pieces to pick up

when these other actions are not available.

5 Experiment

In the previous section, we have shown how we imple-

ment robot roles on our human-robot interaction sys-

tem by using EMF. Now, we report the results of an

evaluation that was targeted to research how humans

rate these different robot roles. We describe the exper-

iment set-up, demography of the experiment partici-

pants, data collection, data analysis, and results.

5.1 Experiment Design

This experiment used a between participants design

with one independent variable: each participant inter-

acted either with the robot that used the supportive

role setting, or else with a system that used the instruc-

tive role. We will refer to these dimensions as supportive

versus instructive. The 40 participants were assigned

randomly to one of the two experiment conditions.

The robot was completely autonomous and did not

get any other information than the data from its input

modalities: speech, gesture, and object recognition, as

well as task planning. The participants were instructed

that they should work together with the robot on a

common task, but they were not informed that the

robot would take a role in the interaction. The com-

mon task of human and robot was to build target ob-

jects together. In each of the experiments, human and

robot built two target objects together, always in the

same order, first the windmill (Figure 2a), after that

the railway signal (Figure 2b). For both target ob-

jects, the human was given an assembly plan on paper

and the robot got the plan from its task planner.

The participants stood in front of the table fac-

ing the robot, equipped with a headset microphone for

speech recognition. Participants got instructions that

they could speak with the robot by using a set of pre-

defined phrases: they could either ask the robot for one

of the pieces in the robot’s work area by giving a direct

order, for example by saying “give me a blue cube”, or

they could ask the robot to repeat its last utterance by

saying “pardon me?”.
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(a) Windmill (b) Railway signal

(c) Tower (d) L shape

Figure 2: Target objects for the experiment. Both target ob-
jects consist of a base that is named tower. A windmill is a
tower combined with two small slats; a railway signal is a
tower combined with an l shape.

The pieces required for the target object were placed

on the table, using the same layout for every partici-

pant. The layout was chosen to ensure that there would

be enough similar construction pieces on both sides of

the table for every subplan of the target objects so that

the robot could either perform action give and handover

an object from its side of the table or action tellAbout

and instruct the users to pick up an object from their

work area. For example, for the tower of the windmill

there was a red cube in both table areas, so that the

robot could either hand over the cube from its own

work area or instruct the participants to pick up the

cube from their work area. Along with the assembly

plan mentioned above, the participants were given a

table with the names of the pieces they could build the

objects with.

5.2 Participants

40 participants (27 male), who never worked with the

robot before, took part in this experiment. The mean

age of the participants was 27.20 (7.06), with a mini-

mum of 17 and a maximum of 59. Of the participants

who indicated an area of study, the two most common

areas were mathematics (11 participants) and computer

science (8 participants). On a scale of 1 (“I do not agree

at all”) to 5 (“I completely agree”), participants gave

a mean assessment of their knowledge of computers at

3.68 (1.00), of speech recognition systems at 1.90 (1.03),

and of human-robot interaction systems at 1.60 (1.01).

For their participation in the experiment, the partic-

ipants got the chance to win a voucher for an online

shop.

5.3 Hypotheses

In this experiment, we compare how humans react to

the instructive and supportive role of the robot when

they build target objects with it. We are mainly inter-

ested if the experiment participants accept both roles

of the robot or if there is a clear preference for one of

the two roles. In particular, we have the following two

hypotheses:

H1 Experiment participants who work with the robot

in the supportive role, generally asses their interac-

tion with the robot more positive.

H2 Experiment participants who work with the robot

in the supportive role display a more proactive be-

haviour, while participants using the instructive

robot will take a more passive role in the interac-

tion.

We derive hypothesis H1 from work by Dautenhahn

et al. [9] who presented experiment results that indi-

cate that humans prefer robots that take the role of

an assistant or servant rather than the role of a friend.

This notion was also recently reported in two industry-

sponsored surveys [22,1]. Hypothesis H2 is motivated

by the work of Hinds et al. [15] who showed that humans

take more responsibility for the assigned task when the

robot does take the role of a supporter.

Since we gathered a wide range of subjective and

objective measures in this study, we did not make pre-

dictions as to which specific measure the experimental

manipulations will have an effect.

5.4 Data Acquisition

At the end of each experiment, the participants re-

sponded to a usability questionnaire consisting of 29

items, which fell into four main categories: feelings of

the user (10 items), intelligence of the robot (7 items),

robot behaviour (6 items), and task success (6 items).

We present all questionnaire items in Table 1. The

items were based on those used in two previous user

evaluations [10] [14], but were adapted for the scenario

and research questions of the current study. The ques-

tionnaire was presented using software that let the par-

ticipants choose values between 1 (“I do not agree at

all”) and 100 (“I completely agree”) with a slider. Due

to the presentation of the questionnaire items on a com-

puter display, we decided to use a slider instead of more
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widely used scales, such as for example a Likert scale.

It has been shown by Cook et al. [8] that the usage

of sliders in screen-based questionnaires produces the

same reliability in the ratings as using Likert scales,

but provides an increased usability for the users.

In addition to the questionnaire, we collected a set of

objective measurements from the automatically gener-

ated system log files and from annotations of the videos

we took during the experiments. All in all, we had five

different objective measurements:

– the number of verbal utterances by the participants,

which is the number of times the users asked the

robot for a certain construction piece or to repeat

its last utterance,

– the number of times the participants picked up a

construction piece from their side of the table, where

the robot did not instruct them to pick up the ob-

ject, we will refer to these pickup actions as antici-

patory pick up actions,

– the number of instructions the robot gave to the par-

ticipants, i.e. the instructions in which the robot told

the human which piece to pick up next from the

work area,

– the number of correct pick up actions after instruc-

tion, i.e. the number of times a participant picked

up the correct object when the robot instructed

him/her to do so, we will refer to this as instructed

pick up actions, and

– the overall duration the participants needed to build

windmill and railway signal.

We took the first two measurements from the system

log files and annotated the videos of the experiment

participants with Anvil [18] to collect the remaining

three measurements. Not all participants agreed that

we videotaped them, thus we only have video data for

32 of the 40 participants, 17 videos of participants who

used the instructive robot and 15 videos of participants

who used the supportive robot.

5.5 Results

In this study, we analysed the collected data in sev-

eral ways. First, we compared the subjective answers of

the experiment participants to the user questionnaire

to find out if there are any significant differences be-

tween the answers of the group that worked with the

supportive robot and the group that worked with the

instructive robot. Second, we compared the objective

measurements that we took from the system logs and

the videos to find differences between the two groups.

Third, we calculated which of the objective measure-

ments could potentially predict the subjective answers

by the experiment participants.

5.5.1 Subjective Measurements

Table 1 shows the results from the user questionnaire.

We computed Cronbach’s alpha, which is a measure-

ment of internal consistency. The consistency of the

questionnaire has a value of α = 0.838 which falls over

the acceptable range of α > 0.700. We applied a Mann-

Whitney test on the answers to the user questionnaire

to analyse if the different robot roles had a significant

effect on the ratings by the two participant groups. Gen-

erally, participants gave a positive feedback of an aver-

age 82.84 (20.26) points on the questions of the feel-

ings of the user category, in which they had to rate

if their interaction with the robot was enjoyable. How-

ever, the participants rated the robot’s intelligence with

only 56.35 (26.16) points. There was no significant dif-

ference in these questions between the two groups.

We found significant differences (p-value < 0.05) in

the ratings for 4 of the 29 statements of the user ques-

tionnaire. Table 1 shows the results for all items of the

user questionnaire, the significant results are marked

with bold text.

5.5.2 Objective Measurements

We show the results of the objective measurements in

Table 2. We computed if there is a significant differ-

ence between the two user groups, again via a Mann-

Whitney test. We found a significant difference for the

number of robot instructions, which is not surprising,
but shows that the instructive robot gave significantly

more instructions to the user. Participants who got

more instructions by the robot, also did significantly

more instructed pickups. Furthermore, participants who

worked with the supportive robot significantly picked

up more construction pieces without getting instruc-

tions from the robot to do so.

5.5.3 Predictive Measurements

To complete the result analysis of this study, we calcu-

lated a predictor function to compute if the objective

measurements we collected in this evaluation could pre-

dict the subjective statements of the user questionnaire.

Being able to predict subjective user satisfaction from

more easily-measured objective properties can be very

useful for developers of interactive systems: in addition

to making it possible to evaluate systems based on auto-

matically available data without the need for extensive

experiments with users, such a performance function
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Table 1: Statements of the user questionnaire with mean rating and standard deviation for both participant groups. Significant
results are displayed in bold fonts. Please note that some of the statements are negatively stated, which means that a lower
score is better in these cases.

Statement Supportive Instructive Mann-Whitney

mean (stdev) mean (stdev) p-value U-value

Feelings of the user

I felt confused when using the robot. 22.50 (27.97) 17.50 (23.66) p = 0.651 U = 183.0
It was easy to work with the robot. 83.75 (19.22) 86.10 (17.19) p = 0.978 U = 198.5
I found the robot easy to use. 83.80 (12.81) 90.80 (13.03) p = 0.043 U = 126.5

I found the conversation engaging. 44.40 (33.56) 46.85 (27.19) p = 0.860 U = 193.0
I found it exciting to interact with the robot. 76.40 (23.60) 79.35 (21.02) p = 0.693 U = 185.0
I felt tense when using the robot. 32.30 (29.33) 42.85 (27.47) p = 0.137 U = 144.5
I really had to concentrate to use the robot. 21.75 (24.09) 26.30 (28.83) p = 0.645 U = 182.5
I found the conversation boring. 42.45 (29.60) 41.00 (25.19) p = 0.989 U = 199.0
I liked using the robot. 84.75 (16.38) 87.65 (17.59) p = 0.378 U = 167.5
The robot appeared to be intelligent. 56.55 (27.34) 56.15 (25.63) p = 0.946 U = 197.0

Intelligence of robot

The robot understood what I said to it. 62.95 (23.50) 75.55 (27.85) p = 0.108 U = 141.5
The robot responded quickly. 55.60 (19.86) 68.20 (29.02) p = 0.071 U = 133.5
I found the voice of the robot easy to understand. 95.60 (5.31) 95.85 (8.20) p = 0.415 U = 172.0
I knew what I could say or do at each point 71.05 (30.32) 90.10 (12.73) p = 0.038 U = 123.5

in the conversation.
It was clear what to do when the robot 70.65 (21.46) 57.35 (15.66) p = 0.034 U = 124.0

did not understand me.

The robot worked the way I expected it to. 61.90 (26.56) 72.40 (24.01) p = 0.310 U = 162.0
I found the robot to be knowledgeable. 88.60 (13.24) 88.05 (19.59) p = 0.514 U = 176.0

Robot behaviour

It seemed natural when the robot picked up objects 63.50 (27.61) 73.05 (25.19) p = 0.309 U = 162.0
from the table.

found it helpful when the robot picked up objects 69.80 (29.83) 76.15 (21.71) p = 0.635 U = 182.0
from the table.

The robot showed an active behaviour. 72.30 (23.14) 75.55 (17.09) p = 1.000 U = 199.5
The robot showed an passive behaviour. 22.20 (23.42) 20.20 (21.97) p = 0.596 U = 180.0
The robot gave too many instructions. 33.95 (28.21) 16.70 (22.53) p = 0.026 U = 117.5

The instructions from the robot were sufficient. 87.95 (18.98) 95.00 (7.90) p = 0.114 U = 143.0

Task success

I was able to work with the robot successfully. 89.25 (10.51) 91.85 (16.63) p = 0.114 U = 143.0
The robot helped me well to build the windmill. 83.80 (11.04) 77.40 (25.17) p = 0.725 U = 186.5
The robot helped me well to build the railway signal. 74.75 (21.40) 79.00 (25.52) p = 0.409 U = 169.0
The assembly tasks were too difficult. 7.20 (12.68) 1.55 (2.56) p = 0.321 U = 167.0
It was easy to understand how to put the pieces together. 92.50 (8.59) 94.15 (8.41) p = 0.523 U = 177.0
It was easy to understand which pieces to use. 94.20 (9.56) 91.30 (16.54) p = 0.862 U = 193.5

can also be used in an online, incremental manner to

adapt system behaviour to avoid entering a state that

is likely to reduce user satisfaction, or can be used as

a reward function in a reinforcement-learning scenario

[33].

To compute the predictor function, we employed a

procedure similar to that used in the PARADISE evalu-

ation framework (PAradigm for DIalogue System Eval-

uation) [33]. The PARADISE model uses stepwise mul-

tiple linear regression to predict subjective user satis-

faction based on measures representing the performance

dimensions of task success, dialogue quality, and dia-

logue efficiency, resulting in a predictor function of the

following form:

Satisfaction =

n∑
i=1

wi ∗ N (mi)

Themi terms represent the value of each measure, while

the N function transforms each measure into a normal

distribution using z-score normalisation. Stepwise lin-

ear regression produces coefficients wi describing the

relative contribution of each predictor to the user satis-

faction. If a predictor does not contribute significantly,

its wi value is zero after the stepwise process. Table 3

shows the predictor functions that we calculated using

stepwise multiple linear regression.
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Table 2: Objective results. Significant results are displayed in bold fonts.
Measure Supportive Instructive Mann-Whitney

mean (stdev) mean (stdev) p-value U-value

No. of user utterances 1.25 (1.94) 1.65 (1.69) p = 0.336 U = 165.5
No. of user actions 4.80 (1.97) 0.76 (0.90) p < 0.001 U = 64.0

No. of robot instructions 4.60 (2.28) 10.3 (1.49) p < 0.001 U = 8.0
No. of correct pickups 2.10 (2.36) 9.35 (1.93) p < 0.001 U = 5.0

Assembly duration (seconds) 256.43 (50.47) 265.86 (46.22) p = 0.683 U = 124.0

Table 3: Calculated predictor functions using stepwise linear regression. For calculation, four objective measurements were
used, which are abbreviated in the table with Dur (duration to build both target objects), AntiPick (number of anticipatory
pick up actions by experiment participant), InstrPick (number of pick up actions by experiment participants when the robot
instructed them to do so), and Utt (number of utterances by experiment participant) .

Measure Function R2 Significance

Feelings 198.51 + 1.07 ∗ N (Dur) + 43.67 ∗ N (AntiPick) 0.28 Dur: p = 0.060 AntiPick: p = 0.124
−36.86 ∗ N (Utt) + 26.16 ∗ N (InstrPick) Utt: p = 0.009 InstrPick: p = 0.117

Intelligence 141.70 + 0.72 ∗ N (Dur) + 32.55 ∗ N (AntiPick) 0.32 Dur: p = 0.0375 AntiPick: p = 0.0620
−17.90 ∗ N (Utt) + 23.23 ∗ N (InstrPick) Utt: p = 0.0341 InstrPick: p = 0.026

Behaviour 487.33− 10.96 ∗ N (AntiPick) 0.12 AntiPick: p = 0.051

Task success 447.74 + 0.40 ∗ N (Dur)− 17.54 ∗ N (Utt) 0.23 Dur: p = 0.010 Utt: p < 0.001

The calculated predictor functions show that all of

the objective measurements influence user satisfaction

in one way or the other:

– The number of user utterances has a strongly neg-

ative influence on the three categories feelings of

the user (abbreviated with Feelings in table), in-

telligence of the robot (abbr. Intelligence), and task

success. The duration to build both target objects

had a slight positive effect in the same three cate-

gories.

– The number of anticipatory pick up actions by the

participants had a positive influence on categories
feelings of the user and intelligence of the robot, and

a negative influence on category robot behaviour.

– The number of instructed pick up actions had a

strong positive influence on the categories feelings

of the user and intelligence of the robot, but not on

the other categories.

The R2 values of this study are in the same range

as the values of our previous user evaluations [11,14].

However, the values are not as high as those reported

in [33] and [20].

5.6 Discussion

The results of this study show an interesting correla-

tion: we expected that the experiment participants will

prefer the supportive robot over the instructive robot

(see H1). However, the data suggests that the users ac-

cept both robot roles and simply take the counterpart in

the interaction with the robot. This can be seen from

the significant answers to the statements of the user

questionnaire, where the users that worked with the

supportive robot answered more positive to the state-

ment “I knew what I could say or do at each point in

the conversation”. This indicates that the participants

showed a more proactive behaviour themselves and fol-

lowed the assembly plan more by themselves when the

robot gave less instructions. This is in line with the

work of Hinds et al. [15], who found that humans who

work with a robot that takes the role of a supervisor,

felt less responsible for the task.

In contrast to that, the users who worked with our

instructive robot rated the statement “The robot gave

too many instructions” lower than the users from the

other group, which we interpret as confirmation for hy-

pothesis H2: participants who worked with the instruc-

tive robot show a more passive behaviour. One of the

objective measurements also supports this claim: users

who worked with the supportive robot showed a proac-

tive behaviour and executed anticipatory pick up ac-

tions significantly more often than users of the other

group. These results are in line with research from cog-

nitive psychology and cognitive neuroscience. For ex-

ample, Sebanz et al. [25] review a set of studies from

these fields, which show that humans attune their ac-

tions when working together.

The results of the calculated predictor functions are

not very surprising. However, it is interesting to note

that the number of anticipatory pick up actions had

a positive influence on the statements in the category
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feelings of the user and a negative effect on the category

robot behaviour. The positive influence on the feelings

of the user is a confirmation for hypothesis H1: the

participants prefer to be proactive, thus a supportive

robot fits better to their preferences. The negative ef-

fect of these measurements on the assessment of the

robot’s behaviour can be explained with robot errors

during the interaction: when the robot made an error

and for example gave the wrong instructions to the user

or stopped working (which could happen sometimes

during the experiments because of wrongly recognised

construction pieces), the users had to pick up the pieces

to finish building the target objects without getting in-

structions by the robot.

The number of user utterances also had a negative

influence on the user satisfaction. This can be easily ex-

plained: in this experiment, the system was configured

so that the participants did not have to speak with the

robot, as long as it performed well. The users only had

to talk to the robot when they either did not understand

the robot’s utterances and had to ask for repetition or

they needed to give a direct command to the robot to

ask for a piece of the robot’s work area, which almost

only happened when the robot made an error. Thus,

the number of user utterances is a clear indicator for

problems during the experiment.

One shortcoming of our study is the fact that we did

not add an experiment condition in which we told ex-

periment participants which role the robot will take in

the interaction. This way, we possibly would have been

able to replicate the findings by Stewart and Strasser

[27], who showed that the assignment of roles increases

effectiveness of collaboration. Then again, the interest-

ing result that shows that participants simply attune

their behaviour to the robot role would have been weak-

ened by such an experiment design.

6 Conclusion

In this work, we researched two aspects of role assign-

ment for robots in human-robot interaction: on the one

hand, we introduced a new approach for implementing

roles on a robot, on the other hand, we showed in an

evaluation how humans rate two different robot roles in

a collaborative scenario.

Therefore, we first introduced embodied multimodal

fusion (EMF), a multimodal fusion approach that is

based on a representation format in which objects and

actions are represented as combined units. This way,

EMF maintains a list of all actions that a robot can

execute in a given situation at all time points in an

interaction. We showed how the EMF action selection

mechanism can be used to implement different robot

roles. With that, we realised two different roles on a col-

laborative human-robot interaction system. Secondly,

we evaluated these roles with a user study. In this ex-

periment, our robot assembled target objects from a

wooden toy construction set together with 40 experi-

ment participants. Here, we used EMF to program the

robot to take different roles in the interaction: on the

one hand, the robot took the role of an instructor and

gave the humans instructions on how to build the target

objects before helping them by handing over appropri-

ate construction pieces; on the other hand, the robot

took the role of a supporter that directly started hand-

ing over construction pieces to its human partner and

only gave instructions when necessary. The analysis of

the gathered experiment data showed that, in contrast

to our expectations, the participants did not prefer one

of the two robot roles but simply took the counterpart

to the role of the robot and adjusted their own be-

haviour to the behaviour of the robot. This was shown

in one of the objective measurements as well as in the

subjective ratings of the users.

To our knowledge, there have been no similar exper-

iments conducted yet to research the role of a robot in

such collaborative construction tasks. We see two ma-

jor findings that arise from our work: (1) in cooperative

human-robot interaction, the robot can either take an

instructive or a supportive role, the users will accept

both of them; (2) however, once the robot role is set,

the robot behaviour needs to be consistent to its role,

otherwise user satisfaction will decline.
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