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Abstract— The presented work focuses on investigating the
influence of different hand-over timing strategies on the fluency
and efficiency of a human-robot team in an assembly task.

To this aim, four different timing strategies were experimen-
tally performed with 37 volunteers: (I) a fixed time interval
between two hand-overs, (II) a reactive behavior, where the
robot is triggered by the human, (III) a fixed time intervals
depending on the current component, and (IV) a predictive as-
sembly duration estimation algorithm. During the experiment,
the time-to-completion of the task and the waiting times for
human and robot were measured as reciprocal indication for
the efficiency and respectively the fluency of the team.

The results indicate that the efficiency of the human-robot
team is significantly increased using a predictive timing strategy,
because it enables the robot to provide the needed component
just-in-time. The decrease in waiting times for the human
worker leads to improved fluency of the collaboration. In
addition, the predictive strategy enables the robot to perform
preliminary tasks if no assistance is needed. Therefore, a nearly
full usage of both partners’ capacities can be reached.

I. INTRODUCTION

Autonomy, flexibility, and adaptability of future produc-
tion systems are key issues required in the field of production
engineering [1].They will enable future automation steps in
the area of a value creation by humans supported by robotic
co-workers. This also encourages a trend towards extremely
short product cycles. As a consequence of current flexi-
ble automation techniques including flexible manufacturing
systems (FMS) and reconfigurable manufacturing systems
(RMS) [2], latest research in the field of robotics focuses on
a new generation of robots with the capability to physically
assist the human (hybrid assembly) [3], [4], [5].

Beside the actual physical interaction and the correspond-
ing methodologies for controlling the robot, research in the
field of cognitive science has focused on understanding the
underlying mechanisms of joint-action among humans [6]. A
fundamental issue for efficient joint actions among humans
lies in the ability to predict each other’s actions [7], which
enables the adaption and coordination of one’s own actions
to the interaction partner. Neuroscience has found evidence
that humans are able to predict the actions of other humans
and the attributed goals by simulating observed behavior
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Fig. 1. Assisted assembly set-up used in the experiments. Human and
robot are sitting opposite to each other on a table. Behind the black
barrier invisible to the human, the robot simulates additional tasks when
no assistance is needed. When the human hand crosses the black line, the
robot is triggered (strategy (III)). A marker-based tracking system (ARTrack)
is used to estimate the hand position of the human

using the so-called mirror neuron system [8]. It is generally
assumed that the main functional role of mirror neuron
system in the parietal cortex is to understand motor acts
performed by others in an automatic way by matching them
to the own motor repertoire [9].

Hence, action coordination and the corresponding timing
of actions is assumed to be central for an efficient and fluent
collaboration. If we think of two human workers cooperating
in an assembly task, a well trained assistant has the ability to
estimate the duration of the assembly steps of his foreman.
This is possible, because the assistant knows his foreman
and can incorporate influencing factors including skills-,
fatigue or stress-levels. Besides the cumulated experience
about individual or situational differences, the complexity
of the current assembly step is another important factor to
predict an accurate timing. A good assistant needs both:
a model of the foreman, as well as knowledge about the
complexity of each assembly step.

Transferred to a human-robot assembly team, the behavior
of the robot needs to meet the human counterpart to act as a
good assistant. In a scenario where a robot system has to pass
parts required for an assembly task to the human worker, the
next point in time to hand-over an object to the human needs
to be predicted as good as possible. This reduces waiting
times to a minimum for both, human and robot, and thus
increase the efficiency of the team.

The transfer of predictive or anticipatory concepts (e.g.
the timing of assistive actions [10]) to robotic assistance
systems will enable more efficient, intuitive, and natural
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human-robot teams as e.g. shown in [11] and [12], where
a significant improvement of task efficiency compared to
reactive behavior was demonstrated. Furthermore, subjects
felt that a robot with anticipatory capabilities contributed
more to a fluent interaction than a reactive robot.

Therefore, we compare and evaluate in this paper different
timing strategies to coordinate the assistive actions of the
hybrid assembly system JAHIR [13], [14] (see Fig. 1).

II. MATERIALS AND METHODS

A. Experiment Hypothesis

In the present work we will test the hypothesis that a
predictive and adaptive timing capability of an assistive robot
system will increase the fluency and efficiency of human-
robot cooperations. Hence, we will compare a predictive
and adaptive timing strategy with fixed, or sensor triggered
timing strategies.

To test the hypothesis we performed the same assembly
task experiment as presented in our previous work [15], [10]
with the assistance of the robot system JAHIR while keeping
the same hand-over position. In the current experiment,
we implemented four different strategies to coordinate the
robots’s assistance: (I) a fixed time interval, (II) a purely
reactive behaviour waiting for a signal that the human
has finished the assembly step, (III) a fixed time interval
dependent on the complexity of the actual assembly step,
and (IV) the in [10] developed assembly duration estimation
algorithm. To measure the efficiency of the collaboration,
we measured the time-to-completion of the assembly, as well
as the waiting-times for human and robot to determine the
fluency of the collaboration.

Strategies (I), (III), and (IV) provide information about
the time interval between two hand-overs. This offers the
possibility for the robot to perform preliminary tasks in the
meantime. In the paper, we will refer to this measure as
time-management concept, that additionally increases team
performance.

B. Recapitulation of base-line experiment

In previously presented work [10], we have performed
an experiment focusing on the timing of actions within an
assembly task. As depicted in Fig. 2, subjects were sitting
on a desk and had to build towers upon a board using cubes
that differ in the number of bolts needed to attach them to
each other. The variation of the number of bolts required
to connect two cubes is related to the assembly complexity
and therefore to the time needed for the assembly step. A
box containing the bolts was positioned to the left. Cubes
were available to the human from a slide placed in a way
that the next cube was roughly at the handover-position of
an imaginary cooperation partner [15]. The sequence of the
cubes on the slide with respect to the number of holes was
varied among the persons. However, the number of holes of
two subsequent cubes always matched each other.

At total, the construction of one tower consisted of five
assembly steps, which is the connection of six cubes. Each

Fig. 2. Baja experimental set-up. Subjects assemble a tower by combining
six cubes provided by a cube vendor in front of them with several bolts
taken from a box on their left. During the experiment sensor record the
position of the thumbs, the forefingers, the back of both hands, the head,
the torso, and the gaze [10]

subject had to built six towers. In this experiment data from
23 subjects were recorded.

We have defined the assembly duration (AD) as being the
time between two consecutive grasps of cubes. Within this
time frame, the subjects perform the assembly. Therefore, it
is assumed for the experiment with robotic assistance, that
no further assistance is needed during the assembly duration
(AD). Due to the fact that the right component is available all
the time and the human never has to wait for the component,
the base-line experiment can be interpreted as an assembly
experiment with an optimal assistant. The assembly duration
therefore should be minimal in the baseline experiment.

A Polhemus Liberty tracking device, which measures
with 240 Hz the position and quaternion of multiple sensors
recorded the movements of the subjects. The sensors were
attached to the thumbs, the forefingers, the back of both
hands, the head, and the torso. A video of the tower building
experiment can be accessed online1. For a closer look and
more information please refer to [10].

The measured ADs build the basis for strategy (I) and (III)
as defined below (see Section II-E). Also, based on this data,
a method was developed to predict the assembly durations,
which is also described in detail in [10]. This method is the
predictive timing strategy (IV).

C. Experimental set-up

The human-robot collaboration experiment was performed
on the robotic platform JAHIR (Joint-Action for Humans
and Industrial Robots) [16], [13], [17]. JAHIR is a hybrid
assembly system [3], [4] created and embedded in a Cog-
nitive Factory scenario [18] in order to bring human and
robotic co-worker closely together in a common workspace
for collaborative applications.

Human and robot jointly use a workbench, which is
divided into specific workspaces for human, robot, and a
hand-over region as shown in Fig. 1. The robot can act in
its own workspace invisible to the human and interact in the

1http://www.youtube.com/watch?v=tfW4L7Idpqk
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Fig. 3. Trigger Signal for Assembly Duration Start/Stop. Either the robot
needs to wait in the hand-over position if the predicted time was too short
(upper part of the image) or the human needs to wait for the object—i.e.,
triggers the robot to perform the hand-over—if the predicted time was too
long (lower part of the image). This error estimation is one input value for
the prediction module

area overlapping with the human workspace for the hand-
overs. In this experiment, the robot always moved behind
the black barrier simulating concurrent work if no assistance
is needed. A video of the tower building task experiment can
be accessed online2. A standard position controlled industrial
robot with six degrees of freedom, a maximum payload of
six kilograms, and a manipulation sphere of 0.902 m radius is
used as collaborative robot. The tool center point is extended
with a force/torque sensor that triggers the gripper during the
hand-over.

To achieve human-inspired hand-overs of the robot during
the experiment, the robotic motions were generated using
decoupled minimum jerk trajectories with an time constant
of 1.5 s [19].

D. Minimizing biasing effects

To minimize biasing effects due to possible changes in
the environment, we meticulously have kept the exact same
hand-over position and geometric workspace for the human
as in the previous base-line experiments presented in Sec-
tion II-B.

The AD with robot assistance is—in line with our previous
definition—the span of time between the robot releasing the
cube and the time when the human reaches out for the next
one. This definition includes the case, that there might be
waiting time for the human, if the robot reacts to slow and
vice versa. Hence, the waiting time is correctly not part of
the assembly duration. The waiting times are illustrated in
Fig. 3, where −δt represents the waiting time for the robot
and +δt represents the waiting time for the human.

E. Strategies to coordinate hand-over actions

1) Average time: Since the duration of individual assem-
bly steps of the tower assembly was recorded during previous

2http://www.youtube.com/watch?v=J3u-v39vBbA

experiments without robot assistance (see Section II-B), the
averaged time between two hand-over actions is given by

thandover =
1

K · I

K∑
k=1

I∑
i=1

di,k (1)

with di,k being the duration of the ith of I assembly step of
subject k.

Applying this strategy, the robot coordinates the hand-
over action so that the handing over position is reached after
the averaged assembly duration. No sensory information is
used in this strategy. The human has here a constant time
thandover to assemble the component until the robot delivers
the subsequent one. Note that thandover does not dependent
on the component complexity and therefore is related to a
fixed work cycle.

2) Sensor trigger: This timing strategy depends only on
signals from the human. The robot starts the handing over
procedure after the hand of the worker is reaching out
towards the hand-over point. If the worker stretches his arm
further than a spatial threshold (marked as a black line on the
table; see Fig. 1), the robot immediately finishes the current
task and starts assistive the hand-over. This strategy is purely
reactive and comparable to industrial machines where the
human worker activates each step. Here, the human controls
the process ensuring the maximum on quality and safety.
This kind of timing strategy is comparable to robots that are
verbally and explicitly commanded step-by-step by a human
partner.

3) Component dependent average time: Based on the
data from the base-line experiment (see Section II-B), the
averaged assembly duration for each component class c was
calculated resulting in the time between two hand-overs:

thandover(c) =
1

K · L

K∑
k=1

L∑
l=1

dl,k(c) (2)

with dl,k being the assembly durations of the kth subjects
performing the lth assembly step of the same component
class c.

The hand-over is here coordinated in a way that the robot
presents the subsequent component after the corresponding
averaged assembly duration for this component has elapsed.
This strategy is based on the in industrial manufactur-
ing widespread concept of Methods of Time Measurement
(MTM) [20]. It is an integrant to compute execution times,
based on predetermined times of basic motion sequences,
body movements and a variety of physical task parameters.

4) Assembly duration prediction: As fourth strategy we
apply the predictive assembly duration estimation described
in [10] to coordinate the hand-overs. The prediction is
performed by a probabilistic Bayesian framework realized
as a system of Kalman filters as described in [10]. This
framework continuously updates the parameters describing
the workers assembly behavior, using an underlying rela-
tionship between duration and complexity of the assembly
step. The validation of our framework [10] showed that
there are accurate predictions within less than 4 assembly

http://www.youtube.com/watch?v=J3u-v39vBbA
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Fig. 4. Strategy efficiency. time-to-complete barplot: from left to right:
Average time condition, Sensor condition,Component dependent average
time condition, Duration prediction condition. Dark grey is the averaged
time-to-complete for one tower, including the waiting times for human and
robot. Grey and light grey are the averaged waiting times for human and
robot. Error bars indicate the standard error of the mean.

steps. This strategy comprises the idea that for efficient
cooperation or joint-actions predictions about the partners
actions are essentials [7]. Comparing the predictions and
the observations the method allows adapting to the human’s
behavior.

F. Experiment Procedure

37 volunteers (22 male, 15 female) aged from 19 to 55
years (29.08 ± 9.04 years) were monetarily compensated
for their participation in the study. To get used to the robot
system and the task two towers were build in cooperation
with the robot. In the course of the experiment, all subjects
had to repeat the tower building task four times per strategy.
The sequence of the timing strategies was randomized, to
control for systematic sequence effects. After each strategy
the volunteers had to fill an NASA TLX workload assessment
questionnaire. However the analysis of the ’Task Load Index’
is not scope of the present work.

For each strategy, the robot performed random movements
behind the black curtain (see Fig. 1), when not needed
for assistance. These random movements of the robot were
introduced to give the subjects the feeling that the robot is
in use and to justify variations of waiting times.

The dependent variable representing efficiency is time-to-
completion of the task, which was calculated starting form
the grasp to the first cube till the grasp of the last cube of a
tower. Additionally, we measured waiting times as indicators
of a fluent cooperation. The robot’s waiting time is defined
as the time the robot has to wait at the hand-over position
till the human takes the component (−∆t), while the human
waiting time is defined as the time the human has to wait
for the next component to be delivered by the robot (+∆t).
As stated before, we consider both measures as essential for
efficient human-robot-interaction.

III. EVALUATION

A. Experimental Results

We recorded the time-to-completion and the waiting times
for human and robot for each tower in each condition.
Small values of the time-to-completion and waiting times are
interpreted in terms of an increased efficiency and fluency.
The average times for the different hand over strategies to
complete the task per strategy are shown in Fig. 4 (error
bars indicate the standard deviation). Results of a one-way
ANOVA and Tukey’s post hoc tests across the methods for
the averaged time-to-completion of a tower, reveal a signif-
icant difference between the ”assembly duration prediction”
strategy (IV) and the other strategies (ANOVA (F (3, 144) =
94.47 , p < .001) , Tukey test; p < .05) with the smallest
time-to-completion (45.4 ± 6.3 s (mean±SD)). The ”com-
ponent dependent average time” strategy (III) (57.4 ± 1.5 s)
and the ”averaged time” strategy (I) (58.8 ± 1.8 s) follow
up. The ”sensor” strategy (II) shows the largest time-to-
completion of the task (61.6 ± 11.0 s) .

The ”sensor” strategy also shows the largest variability.
Since the human worker has full control over the process,
this variability reflects different assembly behaviours of the
subjects. The freedom to individually choose the working
pace means that the robot can only react with large latency.
If the robot receives the signal that the human is ready for
the next component, the robot has to quit its current task
and initialize the assistance. This includes moving to the
component, grasping of the component, and finally moving
to the hand-over position. Hence, the human has to wait
the longest for the assistance, compared to the other timing
strategies.

There is no significant difference in the time-to-completion
of the task for the ”averaged time” strategy and the ”com-
ponent dependent average time” strategy. The variability in
these conditions is very small. Each assembly step has a
fixed time interval, so the human worker needs to adapt to the
robot pace. Since the timing is calculated as average from the
previous assembly experiment, we would expect in average
equal waiting times for robot and human. However we have
measured large human waiting times and small robot wanting
times. It seems that the average timing was not calculated
optimally for the robot-human team case. The performance
when acting alone cannot be taken without adjustment to
a foreman assistance team situation. In the robot assistance
experiments, the subjects performed the task much faster than
when acting alone.

The ”assembly duration prediction” strategy shows the
best performance in terms of efficiency. The time-to-
completion was the fastest compared to all other strategies.
The sum of waiting times is also the lowest. The robot
waiting times are also smaller than the human waiting times.
This is due to the initial values of the predicted, which are
also taken from the average behavior of the previous exper-
iment, where humans had to do the task alone. However,
the predictor can adjust the internal model to the individual
assembly behavior, so the difference between the waiting
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Fig. 5. Performance evaluation. Duration of the average tower assembly
time, with robot assistance in the Duration prediction condition (37 subjects)
(left) and without robot assistance, taken from previous works [10] (23
subjects)(right). The average time-to-complete in the robot assisted duration
prediction condition is significant smaller then when the human performs
the task alone. There are no waiting times when the human performs the
task alone, because the components are always available

times becomes smaller the longer the robot and human are
working together. Small waiting times also mean a fluent and
seamless cooperation, because there are no large brakes in
the task that interrupt the workflow.

A one way ANOVA across methods for the actual time-
to-completion (i.e. the time-to-completion with subtracted
waiting time for human and robot) shows no significance.
That means, that in the experiment subjects do not adjust
their working speed to the pace of the robot. Instead they
keep their preferred assembly behavior which results in
varying waiting times. Furthermore, this indicates that the
efficiency increases in the ”assembly duration prediction”
strategy due to reduced waiting times and results in an
increasing work-fluency.

Interestingly, if we compare results of the ”assembly du-
ration prediction strategy” with the results from our previous
work [10], the average assembly time measured with robot
assistance is significantly shorter (t− test; p < 0.001) than
the average assembly time in the base-line experiment, where
a human performed the task alone3. As shown in Fig. 5,
it took the subjects on average 45.4 ± 6.3 s in order to
assemble a tower with and 53.39 ± 9.47 s without robotic
assistance, although there were no waiting times when the
human performed the task alone, because the components
were always available.

B. Time management

We define time management as the ability of the robot to
plan and perform alternative or preliminary work based on
the times given from the timing strategies. In the experiment
we used the time management to make random movements
behind a black curtain when sufficient time between hand-
overs was determined. With the random movements we have
created the illusion that the robot is performing an additional
task. The time interval available for alternative tasks is the
duration, given by the timing strategy minus the time the

3http://www.youtube.com/watch?v=tfW4L7Idpqk

robot needs for preparing the assistance, which is moving
to the component place, grasp it and move to the hand-over
position.

The time management for the ”average time” strategy is
very simple: the robot has exactly the same time interval for
additional tasks between two assistive actions.

In the ”sensor” strategy, the system does not know in
advanced the time interval which can be used. The best
way to achieve a time management while keeping a fast
reaction to the humans assistance request signal, is to divide
the subtask in the shortest possible fragments. However,
the system always has to finish the current alternative task
fragment before it can switch to the assistive task, thus
increasing the human’s waiting time. The resulting waiting
times depend on how well the alternative task can be divided.
In contrast to a human worker, a full use of the robots
capacity can be achieved within this condition.

The ”component dependent average time” strategy allows
a very simple logic for time management, because the
time interval where no assistance is needed is predefined.
The alternative task can be separated in subtasks, which
can be achieved in one of the predefined time intervals.
Since there are different time intervals, the subtasks can be
sorted according the length. The subtask can then be chosen
respectively to the current time provided by the ”component
dependent average time” strategy.

The ”assembly duration prediction” strategy combines the
advantages of a time management with predefined times and
the adaption to the human’s natural pace. The predictive
mechanism provides a time interval where an assistance
task is very unlikely. This time interval is adapted to the
human’s assembly preferences. After each hand-over the
time management can choose subtasks, which fits best in
the available predicted time. So an increase workload of the
robot can be achieved.

IV. CONCLUSION

The result of the experiments show that the time-to-
completion of the assembly task is shortest with a predictive
timing of assistance, meaning that this is the most efficient
strategy. The waiting times also indicate the best fluency
for the duration prediction strategy, because the sum of the
waiting times for human and robot is the smallest compared
to the other strategies. A predictive timing combines the
advantages from sensory triggered and time triggered work-
flows, which is an individual adapted humans work pace and
the opportunity to do a time management for preliminary
tasks.

All alternative timing strategies led to significantly longer
time-to-completion and waiting times. Assembling within
sensory condition performed worst, however a full use of
the robot capacity can be achieved with additional task and
a time management.

The experiments showed that humans do not adapt to the
work pace given from the robot system in the ”average time
strategy” and ”component dependent average time strategy”.
Instead this led to increasing waiting times and thus an
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interrupted workflow. Furthermore, the constant assembly
behavior of the humans between the different strategies
directly combines fluency and efficiency. If the human does
not change the working pace, the increased efficiency in
the ”assembly duration prediction strategy” is due to a
decrease of waiting times an thus an effect of a more fluent
cooperation.

The not equally distributed waiting times in conditions
with predefined times (”average time strategy” and ”com-
ponent dependent average time strategy”) and the predictive
strategy indicate that the working speed of the human does
not only depend on factors like stress, skill level, and fatigue,
but also depends on whether performing a task alone or with
assistance.

In our experiment, working with a robot assistant partner
in the ”duration prediction strategy” increases the overall task
performance even compared with preliminary data (taken
from [10]) where the human had to perform the task alone,
but with omnipresent components. We assume the robot
partner is not only perceived as artificial assistant, but also
as competitive partner. Finishing a task faster than someone
or something expects it might be an additional motivation
for the subjects in our experiment.

Different behaviors of individuals when performing tasks
alone or in a team have already been reported [6] . One
example is [21] where in a pick and place experiment, an
increase of movement speed is reported when performed with
a partner. Our experiment shows that more efficient assembly
behaviors even occur when acting with a robot partner.

The experiments showed that with an integration of the
assembly duration prediction in a hybrid assembly system,
we can on the one hand perform the delivery of parts just-in-
time and thus decrease the time-to-completion by minimizing
waiting times for both partners, robot an human. On the
other hand, we can use the information about the estimated
timing from the predictor (tp) to achieve an optimal time
management for alternative tasks in between, which enables
a constant workload of the robotic system.

The time management was recently demonstrated in an
application scenario. A video of this application scenario is
available online4. The robot prepares boxes with a set of
components, which are needed for a future assembly of a
different product (toy car) along with assisting the human
for the first task (tower task). The preliminary task is done,
whenever the assembly duration prediction calculates a time
interval, which is big enough to perform the filling of the
boxes while the human performs the assembly of the tower.
This demonstration shows the generic usage and impact of
the presented results.
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