
TECHNISCHE UNIVERSITÄT MÜNCHEN
Lehrstuhl für Echtzeitsysteme und Robotik

Non-Linear Control Strategies for
Musculoskeletal Robots

Michael Jäntsch

Vollständiger Abdruck der von der Fakultät der Informatik der Technischen Universität München
zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzender: Univ. Prof. Dr.-Ing. Alin Albu-Schäffer
Prüfer der Dissertation: 1. Univ. Prof. Dr.-Ing. habil. Alois Knoll

2. Dr. Guido Herrmann, Reader (University of Bristol, UK)

Die Dissertation wurde am 09. Oktober 2013 bei der Technischen Universität München eingere-
icht und durch die Fakultät für Informatik am 05. Februar 2014 angenommen.





A B S T R A C T

Recently, focus has shifted to more human-friendly robots, especially in the field of ser-
vice or rehabilitation robotics, where research aims at bringing robots into increasingly
unstructured environments. Here, humans still outperform robots in almost every as-
pect. One way towards this goal is to mimic more and more of the mechanisms of the
human musculoskeletal system. These so called musculoskeletal robots incorporate com-
pliant antagonistic actuation in a biologically inspired skeleton. Furthermore, complex
joints like spherical joints and multi-articular muscles are realized. In the last decade
impressive musculoskeletal robots have been developed, where the focus was mainly on
constructing working prototypes. However, the field of controlling such robots has made
very little progress, so far. Reasons for this are manifold, starting from unavailable sensor
modalities, due to novel skeletal structures, to the difficulties in modeling the interaction
of the muscles with the skeleton.

In this work, (1) a generic model for the class of musculoskeletal robots was derived
by extending standard models for robot dynamics, (2) several non-linear control strate-
gies were developed and (3) a robotic arm was constructed to evaluate the novel control
approaches. Non-linear controllers derived in this work include feedback linearization,
which is also the main control technique used for tendon-driven robots and was there-
fore extended to be applied to the characteristics of musculoskeletal robots. Furthermore,
a novel control law, based on Dynamic Surface Control (DSC), which is an extension to
backstepping, was developed. In contrast to previously used techniques, the systematic
approach of backstepping provides a method to obtain a cascade of controllers without
neglecting the dynamics of the low-level control laws, hence providing provably stable
closed-loop behavior. This scheme was further extended by adaptive neural network con-
trol to compensate for unmodeled dynamics such as friction. The dynamic model, incor-
porated by the different controllers utilizes a standard rigid body model of the skeleton
which was extended to support spherical joints. In the presence of complex joint types
and muscles that wrap around skeletal structures, analytic models of the mapping be-
tween the joint and the muscle space are extremely complex to obtain. To overcome this
issue machine learning techniques were applied to attain the muscle kinematics.

The different control laws were evaluated on a physical robotic platform which was
specifically developed to cover the control challenges of the class of musculoskeletal
robots. Hence it comprises a spherical shoulder joint and a revolute elbow joint. Actu-
ation was realized by several uni-articular muscles and a bi-articular muscle spanning
both joints. Results obtained on this platform show that it is possible to achieve stable
closed-loop behavior, where the novel control laws developed in this work yield improved
trajectory tracking performance, compared to existing approaches.
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Z U S A M M E N FA S S U N G

In jüngster Zeit hat sich der Forschungsschwerpunkt im Bereich der Service- und Re-
habilitationsrobotik auf Roboter verschoben, die auch in zunehmend unstrukturierten
Umgebungen und in enger Zusammenarbeit mit dem Menschen eingesetzt werden kön-
nen. In diesen Szenarien sind Menschen nach wie vor in der Lage, Roboter in jeglicher
Hinsicht zu übertreffen. Eine Möglichkeit diesbezüglich Fortschritte zu erzielen, ist die
konsequente Nachahmung des menschlichen Bewegungsapparats. Diese sogenannten
musculoskeletalen Roboter bestehen aus einem System aus antagonistisch angeordneten
Muskeln und einem biologisch inspirierten Skelett, wobei sowohl komplexe Gelenktypen,
wie z.B. Kugelgelenke, als auch multiartikulare Muskeln realisiert werden. Obwohl in
den letzten Jahren einige beeindruckende musculokeletale Roboter konstruiert wurden,
lag der Fokus bisher hauptsächlich auf der Realisierung von betriebsbereiten Prototypen,
während im Bereich der Regelung bisher nur wenige Fortschritte erzielt werden konnten.
Dies liegt zum einen an der Verfügbarkeit der notwendigen Sensoren für die neuartigen
Gelenkstrukturen, als auch an der Modellierungsproblematik der Muskelkinematik, d.h.
des Zusammenspiels zwischen Muskeln und Skelett.

In dieser Arbeit wurden (1) ein generisches Dynamikmodell für die Klasse der muscu-
loskeletalen Roboter hergeleitet, indem die Standardmodelle aus der klassischen Robotik
erweitert wurden, (2) mehrere nichtlineare Regler entwickelt und (3) ein Roboterarm
konstruiert, auf dem die nichtlinearen Regler evaluiert wurden. Bei den nichtlinearen Re-
glern kamen sowohl Feedback-Linearisierung, als auch Dynamic Surface Control (DSC),
welches auf Backstepping basiert, zum Einsatz. Während Ersteres die bisherige Lösung
für die Regelung von sehnengetriebenen Systemen darstellt und lediglich auf die spezi-
fischen Problemstellung von musculoskeletalen Robotern zugeschnitten wurde, stellt Let-
zteres einen neuen Lösungsansatz dar. Der DSC Ansatz wurde zusätzlich um Adaptive
Neuronale Netze zur Kompensation von Reibungseffekten erweitert. Die Problematik
der Modellierung der Muskelkinematik in solchen Systemen wurde mithilfe von Algo-
rithmen aus dem Bereich des maschinellen Lernens gelöst. Dies ist speziell für den Ein-
satz in Systemen mit komplexen Gelenktypen und Muskeln, die das Skelett umschließen,
sinnvoll, da analytische Modelle in diesem Fall extrem komplex werden können.

Die unterschiedlichen Regelungsansätze wurden auf Basis eines realen Robotersystems
evaluiert, welcher explizit dafür entwickelt wurde, die Regelungsproblematik der mus-
culoskeletalen Roboter abzudecken. Aus diesem Grund besteht dieser aus einem Kugel-
gelenk für die Schulter und einem Drehgelenk für den Ellbogen und wird mit mehreren
uniartikularen und einem biartikularen Muskel angetrieben. Die erzielten Evaluierungs-
ergebnisse zeigen, dass die entwickelten Regelungsalgorithmen in der Lage sind das
Gesamtsystem zu stabilisieren und die Regelgüte gegenüber existierenden Algorithmen
zu verbessern.
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1
I N T R O D U C T I O N

1.1 background

Up to now, robots have been mainly used in factory environments, where industrial
robots offer extremely high precision and repeatability for tasks in which trajectories
can be planned ahead. In these cases it was the unrivaled performance which led to
the high increase in robot utilization in large production sites, where major parts of
the manufacturing process can be automated and robots can work unhindered by the
presence of humans.

Recently, the focus has shifted to more human-friendly robots, especially in the field
of service or rehabilitation robotics, but also when physical human-robot interaction for
manufacturing tasks is considered. Service robots will work together with humans in our
future homes, to serve in a variety of assignments, ranging from entertainment to difficult
or tedious tasks such as helping individuals with special needs or fetching and deliver-
ing objects [116]. This field is identified as a large market for robotics in Europe, but
the robots of today have shortcomings when unstructured environments are considered.
Here, humans still outperform robots in almost every aspect. This is due to the uncer-
tainty that comes with these environments which cannot be sufficiently perceived and
modeled and therefore leads to errors in task execution. Compared to production sites,
the challenges lie both in the structure of the objects, which robots will be interacting
with, but also in the unpredictability of other agents like humans.

In these cases stiff robots are very likely to damage themselves or their surroundings.
This problem can be diminished but never truly solved by probabilistic planning algo-
rithms and ever better sensors. The chance of collisions between robots and humans can
be diminished but never be fully eliminated, risking serious injuries [39]. The technology
of soft robots is widely considered as the method of bringing robots into our modern
homes and factories [6]. These robots are characterized by additional compliance in the
actuation mechanisms which can, on the one hand, be achieved by so called active compli-
ance, utilizing rich sensor feedback and a superimposed impedance control [42]. Hence,
the robot reacts with the impedance defined by the controller. Passive compliance, on the
other hand, is realized in hardware by mechanically adding an elastic element between
the drive and the joint. Here, we distinguish between traditionally actuated robots, where
drives are located in the joints, and mechanisms which mimic the biological concept of an-
tagonistic actuation. These soft tendon-driven systems, feature opposing actuators with
an elastic element in the tendon which offer better intrinsic robustness to kinematic er-
rors and are capable of using all motors for changing the stiffness, as well as driving the
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4 introduction

(a) (b) (c)

Fig. 1.1: Compliant Humanoid Robots. (a) The actively compliant robot Justin [6] by the DLR, (b) Ko-
jiro [85] by the JSK and (c) The anthropomimetic robot EDS [76] by The Robot Studio.

joints [6]. A subcategory of these robots is identified, which do not only mimic the type
of actuation but feature also biologically inspired skeletons and muscles and are hence
called musculoskeletal robots.

Up to now, most soft robots are realized by a rigid structure and actively compliant
joints (see Fig. 1.1a). However, this approach is limited by sensor bandwidth and control
frequency. Especially in cases where the robot collides with rigid objects at high speeds,
this limitation poses a huge threat to the robot joints, since control is not fast enough to
react to sudden impacts [39]. The advantages of using passively compliant actuators for
robotics can be clearly identified as the ability to absorb energy in the elastic elements.
This can be exploited (1) to safely work in unstructured environments, as collisions with
objects or possible human co-workers do not necessarily lead to human injuries and/or
the overloading of the robot’s joints and (2) by actively storing energy. The latter could
be utilized in periodic tasks, like walking or playing the drums, by cyclically storing and
releasing the energy in the elastic elements, which leads to higher energy efficiency. Fur-
thermore, the elasticity can be exploited by pre-loading. When performing fast dynamic
movements, like throwing a ball, the human body is able to store energy by co-contracting
muscles. This yields the possibility of releasing this energy at will and with much higher
forces and speeds as would have been possible otherwise [6].

By employing tendon-driven actuation, the actuators can be placed with more free-
dom, to e. g. improve the weight distribution of the robot. Therefore, this technique has
been identified as a possible solution in high speed manipulation tasks or for the design
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of robotic hands. In contrast, musculoskeletal robots combine this type of actuation with
the advantages of soft robots and the biomimetic idea of understanding by building [102].
The Anthropomimetic Principle [43] proposes to not only copy the outside of the human
body, but also the internal mechanisms, in order to build humanoid robots that do not
only appear to have the outer shape of a human, but also its internal dynamic proper-
ties. This includes the skeleton, as well as muscles, tendons and ligaments. Hence these
anthropomimetic robots form a subcategory of the larger class of musculoskeletal robots,
which do not necessarily mimic humans but also other biological systems by employing
artificial muscles. Currently, there are only a few robots that copy the human internal
structure in the sense of the Anthropomimetic Principle. Examples are the robots Kenta, Ko-
taro, Kojiro, Kenzoh and Kenshiro (see Fig. 1.1b and [67, 83–85, 90]), built by the Jouhou
System Kougaku Laboratory of the University of Tokyo (JSK), as well as the ECCEs, de-
veloped within the EU-funded project Embodied Cognition in a Compliantly Engineered
Robot (Eccerobot) (see Fig. 1.1c and [143]). The latter emerged from the project Conscious
Robot (Or Near Offer) System (CRONOS) [43]. By employing this principle, a completely
new type of robot emerges, whose dynamic properties are very similar to the ones of
humans. The Anthropomimetic Principle yields the possibility to build humanoid robots
that can work in unstructured environments due to their soft nature. Additionally the
system dynamics of such robots facilitate the interaction with humans. At the same time
they incorporate the advantages of passively compliant and tendon-driven robots.

1.2 motivation

Even though, research of the last years has produced extremely impressive robots that
were able to mimic more and more details of the sensory-motor system of biological crea-
tures, the field of controlling such robots has made very little progress, so far. While
demonstrations of these robots show mere Feed-Forward (FFW) control, the existing
feedback control techniques from the field of tendon-driven control [50, 99, 113] have
failed to scale to more complex structures. This is due to the fact that musculoskeletal
robots in general exhibit several characteristics that are usually not present in engineered
tendon-driven systems. These include (1) the integration of joints with multiple Degrees
of Freedom (DoF) like spherical joints, (2) the additional elastic elements in the tendon
paths, (3) multi-articular muscles and (4) so called ill-defined muscle kinematics. In most
tendon-driven robots the lever arms of the tendons remain constant with the joint angles
due to pulleys that guide the tendons. In musculoskeletal robots this is not the case, how-
ever, and lever arms change while the system moves. Furthermore, the complex skeletal
structures irrevocably lead to muscles that collide with the bones in some configurations.
Those ill-defined muscle kinematics are extremely complex to model analytically. How-
ever, specifically the existence of those challenging structures accounts to a large degree
for the dynamics of biological systems. For instance, it has been shown that bi-articular
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muscles are responsible for the synchronization of several joints in explosive movements,
like jumping [134].

Modeling and generating physiologically consistent trajectories for simulated muscu-
loskeletal systems is at the same time ongoing research in biomechanics, where the goal
is to compute “muscle excitation patterns that produce coordinated movements” [131]. In
biomechanics the motivation is to analyze the role of different muscles in certain move-
ments, where only a few states, like joint angles or excitation patterns of some mus-
cles, can be measured. While not exactly solving the control problem, the definition of
biomechanical models can provide the missing link between the existing controllers for
tendon-driven robots and the controllers to be developed for musculoskeletal robots.

The construction of anthropomimetic robots is of great interest not only to the field
of robotics, but also for neuroscientists and biomechanicists. There have been several
hypotheses, including the Equilibrium Point Hypothesis (EPH) [25] and the Internal Dy-
namics Model Hypothesis (IDMH) [59], of how humans are able to control their bodies,
which even extensive discussions and experiments could not prove or refute. By devel-
oping algorithms for the exact problem of controlling human-like dynamic structures,
possibly new light can be shed on this ongoing question.

While working cooperatively, humans predict movements of their fellow co-workers
by experience and therefore find it easier to react. When robots work together with hu-
mans, human-like trajectories and dynamics are hence desirable. Especially humans that
are well trained at certain tasks display extremely smooth and effortless motor control
over a certainly very complex body, which is still far from being matched by any robot.
Obtaining these smooth and natural movements has become a hot topic in robotics, espe-
cially when robots are supposed to work in close proximity to humans [128]. We can try
to achieve this by actively computing human-like trajectories, but as long as the internal
mechanisms of the robot are so different from the ones in the human body, this goal
might never be truly achieved. A soft robot with human-like dynamics would enable
the future service robot to work safely together with humans in the unstructured and
dynamic environments of people’s homes.

1.3 contributions

By drawing inspiration from biomechanical models and utilizing machine learning for
obtaining relationships that are too complex to model analytically, an extensible con-
trol framework can be developed which offers guaranteed performance under certain as-
sumptions. The control performance for musculoskeletal robots can be greatly improved
by applying advanced techniques from the field of non-linear control. Due to the more
complex structure, the feedback control laws from tendon-driven robotics deliver poor
performance in musculoskeletal systems and can even become unstable, depending on
the complexity of the robot. Even though it is well known that humans perform most
of their fast movements, utilizing FFW control, it is clear that more fine grained move-
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ments are only possible by the means of feedback control. In this thesis, state of the art
feedback control laws for tendon-driven robots are compared with modern non-linear
control techniques, showing great improvements in performance. The goal is to lay the
foundation for controlling such robots which can be extended towards more complex
tasks like impedance control or explosive movements. For this purpose a generic model
for the class of musculoskeletal robots is developed, which can be used both for feedback
as well as FFW control. It will become clear that the application of previously developed
control laws to more complex musculoskeletal robots leads to instability of the closed
loop dynamics, due to unmodeled effects. The novel control law, based on Dynamic Sur-
face Control (DSC) which is an extension to backstepping solves these issues. It is further
extended by introducing adaptive neural network control for the compensation of mod-
eling errors due to friction.

The effects of colliding muscles, i. e. muscles wrapping around skeletal structures, are
extremely difficult to capture in a analytical models. Hence the possibility of utilizing
machine learning techniques is proposed, showing how it is possible to obtain reliable
models of the muscle kinematics, i. e. the muscle lever arms. This even includes com-
plex assemblies with spherical joints and multi-articular muscles. Results are presented
for a musculoskeletal robot arm which has been developed specifically to capture the
challenges present in this type of robots, namely complex joints and colliding muscles.

1.4 thesis outline

This thesis comprises 9 chapters, starting after this introduction with Chapter 2 which
presents an overview of tendon-driven and musculoskeletal robotics and related works in
control, as well as the necessary background for machine learning that will be utilized in
later chapters. In Chapter 3, the design of the musculoskeletal arm is presented which was
used to obtain the results for the control techniques developed in this work. This includes
the mechanics and sensory-motor system, as well as the electronic control architecture.

The dynamic system models are described in Chapter 4. These models are subdivided
into several subsystems which can be analyzed separately, such as the skeletal dynam-
ics, the muscle dynamics, and finally the muscle kinematics which can be obtained by
different methods of machine learning.

In Chapter 5 the extensions for existing controllers based on the method of feedback lin-
earization are presented. A novel control law is developed in Chapter 6 which utilizes the
method of backstepping to obtain a fully non-linear controller. This controller is extended
to account for the unmodeled effects of friction by introducing adaptive compensation
terms in Chapter 7.

A comparison of the results for the different possibilities of controlling musculoskeletal
robots developed in this thesis, is presented in Chapter 8. The performance of all feedback
controllers is shown for the developed musculoskeletal robotic arm. Finally, concluding
remarks are given in Chapter 9.





2
B A C K G R O U N D

This chapter serves the purpose of giving some basic background over the techniques
used in this work. First, an overview of existing tendon-driven and musculoskeletal
robots is given in Section 2.1, presenting a categorization of the different kinds of robots.
Subsequently the related work in tendon-driven robot control is discussed in Section 2.2,
together with the related techniques from biomechanics, as well as the underlying prin-
ciple of feedback linearization. Finally, an important factor in modeling musculoskeletal
robots is the representation of the muscle kinematics, i. e. a geometric description of the
tendon routing. This is especially difficult, as the utilization of complex joint types irrevo-
cably leads to collisions between the muscles and the skeleton. These so called ill-defined
muscle kinematics are extremely complex to capture in analytical models. In this work,
utilization of machine learning is proposed for obtaining useful models. Therefore, an
overview of the utilized techniques from this field is given in Section 2.3.

2.1 robots

2.1.1 Tendon-Driven Robots

Research on tendon-driven robots dates back to the 1970s and beginning of 1980s [86].
Force transmission through tendons had been identified as a possibility to reduce the
weight of moving parts, e. g. for high speed manipulation or in the design for robotic
hands. Tendon-driven robots can be differentiated by the tendon configuration, which is
the number of tendons per DoF in the joints. Three main configurations exist, N, N+ 1,
and 2N (see Fig. 2.1), while the first can also be classified as a flexible joint from the
control perspective, since the tendon merely adds compliance into the drive chain. The
N+ 1 configuration allows for more flexible placement of the actuators and exhibits the
minimum number of tendons and actuators needed to controlN positional DoF [50]. This
is due to the fact that tendons can only pull, not push. The 2N configuration therefore
facilitates the utilization of the additional control inputs for different purposes which
include co-contraction of muscles for storing energy or controlling the joint impedance.
For the latter, the number of tendons to control the full impedance matrix is m = n(n+

3)/2, which amounts to m = 2 for a revolute and m = 9 for a spherical joint with three
DoF [66]. Therefore, and due to the introduction of multi-articular muscles, the additional
configuration of 2N+ is introduced, denoting many more muscles per DoF than 2N.

In the case of robotic hands it has been the tight size constraints that have been driv-
ing the research on tendon-driven technology. As early as 1986, a dextrous hand had
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Fig. 2.1: Tendon Configurations. (a) Configuration N is a single actuator for N DoF. (b) Configuration
N+1 allows for tendon-driven control. (c) Configuration 2N is the minimum configuration to do
impedance control. (d) Configuration 2N+ denotes many more actuators e. g. for multi-articular
muscles or complex joint types. (adapted from [50]).

been built in collaboration between the Center for Engineering Design at the University
of Utah, and the Artificial Intelligence Laboratory at the Massachusetts Institute of Tech-
nology [49]. Tendon-driven technology enabled the placement of the motors outside of
the hand, and therefore highly increased the number of possible DoF. For the Utah/MIT
dextrous hand the DoF in the joints amounted to 19. Both the DLR, as well as NASA
have been developing robotic hands to date, of which the DLR Hand II [74], the newer
hand of the DLR Hand Arm System (HASy) [37], and the humanoid hand of the GM-
NASA Robonaut-2 robot [1] are examples. Commercial products are available from the
Shadow Robot Company which offers both pneumatic as well as electrical versions of
their hands [117].

While robotic hands have become ever more complex over the years, larger tendon-
driven robots have only recently come back into focus. In general tendon-driven robots
can be categorized into several subcategories, depending on the tendon routing. Robots
that have a design that is still relatively close to industrial manipulators have the N con-
figuration, where the tendon is routed circular, leading from the actuator spindle to the
joint spindle and back. The motor torque is directly transferred to the joint, depending on
the radii of both the actuator and the joint spindle, allowing the motor to be placed apart
from the joint. The most prominent example, here, is the BioRob, where tendons have
been used to place the actuators into the base of the four DoF robot, reducing the total
effective weight to only 0.5 kg for a load bearing capability of 2.0 kg [73]. Similarly, Isella 2
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features tendon routing in a circular manner with a novel drive mechanism, the so called
QuadHelix-Drive. Here, 4 tendons are coiled on a single actuator shaft, contracting two
of them and extending the others. In Isella 2 these four tendons are used to drive a single
joint, forming two circular tendon routes [111]. A more modular approach is available
from IGUS, where an arbitrary number of 3d printed joints can be assembled. Each of
the joints can have up to two DoF and is actuated by tendons that are guided by Bowden
cable housings. Utilizing these modular joints, lightweight robots with a maximum num-
ber of five DoF can be built, where the motors are placed in the base of the robot. This
configuration allows the assembly of robots that have a mass to payload ratio of 1 : 1 or
even larger [47]. Utilizing Bowden cables, however, increases tendon friction significantly
and therefore forbids applications, where (active or passive) compliance or force control
is needed.

Utilizing the circular tendon routing, clearly extends the design space towards more
lightweight robots. However, only biologically inspired antagonistic actuation yields the
possibility to not only change the position of a joint, but also the compliance, as well as
to store energy [6]. Here we can differentiate between a setup where the lever arm of the
joint is constant over all joint angles, and where the lever arm is a function of the joint
angle. Most of the hands, but also some tendon-driven manipulators include pulleys
for routing the tendons, hence the lever arms are invariant. Generally control design
is simplified by this choice, however, designing joints with multiple DoF is impossible
without taking variable lever arms into account [66].

2.1.2 Musculoskeletal Robots

Musculoskeletal robots, feature the imitation of both a skeleton as well as muscles that
are able to actuate it. In biological agents, the skeleton is made up of comparably stiff
bones to which muscles are attached at insertion points or surfaces [36]. Flexing a muscle
affects the torque of all joints that are located in between these insertion points, while
muscles are called uni-, bi- or multi-articular depending on the number of joints that are
crossed. Hence, musculoskeletal robots can be classified as those tendon-driven robots
with the 2N+ configuration that also include multi-articular muscles.

The technology of musculoskeletal robots has been used to build biologically inspired
robots in different fields of research. Especially the notion of Embodiment has driven
the development of biologically and human inspired robots. A widely discussed line of
thought in the field of Artificial Intelligence (AI) claims that it is not possible to recreate
human-level artificial intelligence in a pure computational system, except for very lim-
ited and strictly confined fields like chess playing or expert systems. It is believed that
intelligence needs a representation in the real world [15]. By mimicking biological sys-
tems we have learned to utilize the interaction of embodied agents with themselves and
the environment to generate sensory feedback that truly represents the reality [103]. One
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Fig. 2.2: Pneumatic Musculoskeletal Robots. (a) Mowgli, a bipedal jumping robot [93], (b) Airic, a
musculoskeletal shoulder complex [26], and (c) a musculoskeletal athlete robot, designed for
running [94] are shown.

goal is to understand how such complex bodies as our own, or of other biological beings,
can be controlled by a brain.

Already relatively simple musculoskeletal robots like Mowgli (see Fig. 2.2a) have been
shown to outperform classically engineered robots by exploiting the inherent dynamics
of the mechanics. It was observed that the movements of jumping and landing demand
large forces in the muscles for very short periods and the energy expenditure of repetitive
jumping and landing cycles can be decreased by storing energy in between cycles. The
musculoskeletal structure consists of six McKibben pneumatic actuators including four
bi-articular muscles, allowing for pre-tensioning before take-off. The structure was shown
to efficiently decrease the control effort for the performed movements, as there was no
need to directly control the timing of take-off and landing. Instead, this effort was off
loaded into the morphology of the structure [93].

In robots like Mowgli bi-articular muscles play an important role. It has been shown
by Gregoire et al. [38] that mono-articular muscles in the human knee and the ankle
cannot deliver much force and cannot explain the power output in jumping movements.
Furthermore, multi-articular muscles can serve in the synchronization between joints in
explosive movements [134], as well as in reaching tasks [62]. It is widely believed that bi-
articular muscles deal with large scale movements of multiple joints. Several groups have
replicated parts of the human body utilizing McKibben actuators to investigate these hy-
potheses. The automation technology supplier Festo built the Airic (see Fig. 2.2b), a full
shoulder complex with 30 muscles (including bi-articular) in 2007 [26]. A musculoskele-
tal athlete robot was built by Niiyama et al. [94], investigating explosive movements in
human running (see Fig. 2.2c). After starting from a catapult to provide a stable start, it
was possible to demonstrate the robot running for five steps by pure FFW control. Simi-
larly, Hosoda et al. [46] built an anthropomorphic musculoskeletal upper limp. The main
goal was to understand embodied intelligence, by investigating soft interaction with the
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Fig. 2.3: Musculoskeletal Robots can be categorized by the type of actuation, as well as the tendon
compliance.

environment. The humanoid robot arm consists of a shoulder, an upper arm, an elbow, a
forearm, a wrist and a hand. Excluding the hand, the arm has 7 DoF, with a total of 14

muscles.
Pneumatic artificial muscles have been developed to closely replicate the mechanical

properties of biological muscles. A rubber inner layer, wrapped in a fiber shell contracts
in length and expands radially when air pressure is applied. The produced force is both
subject to the extension and the applied pressure. The main drawback, however, is the con-
trollability of such a muscle which is diminished by the highly non-linear input-output
relationship. This relationship changes with the age of the rubber, as well as with the tem-
perature. Furthermore, valves are used to control the pressure that can only be opened
and closed at frequencies of approximately 40Hz to 50Hz [16]. Even though, advanced
behavior could be demonstrated with musculoskeletal robots with pneumatic actuators,
the movements are mostly FFW and cannot be controlled in a feedback manner.

Unlike pneumatic actuators, musculoskeletal robots with electromechanical drives con-
sist of an electromagnetic motor that winds a cable on a spindle and hence either inner-
vates or relaxes the artificial muscle, depending on the direction of motor rotation. Rad-
kah et al. [107] have built BioBiped, a fully compliant, tendon-driven robot to investigate
robot walking with this type of actuator. Especially in walking, the energy expenditure
as well as overall performance of robots is still far below human level. Similar to the
musculoskeletal athlete robot, BioBiped proves that utilizing compliant tendon-driven
technology with bi-articular muscles is the key towards human-like performance in loco-
motion. An intelligent mixture of active and passive actuation both uni- and bi-articular,
led to a stable hopping behavior. The actuators used in this robot were categorized as
bi-directional Series Elastic Actuator (SEA), uni-directional SEA, mono-articular passive
structure, and bi-articular passive structure. While the first falls into the category of circu-
lar tendon configuration (N configuration), the latter three utilize the 2N+ configuration
with variable lever arms.

The Jouhou System Kougaku Laboratory of the University of Tokyo (JSK) has devel-
oped several generations of musculoskeletal robots with electromechanical drives. Start-
ing with Kenta in 2002 [83], a robot with a flexible spine and a total of 96 muscles was
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(a) (b) (c)

Fig. 2.4: Musculoskeletal Robots at the JSK. The robots (a) Kotaro (2006) [84], (b) Kenzoh (2011) [89]
and (c) Kenshiro (2012) [67] are shown.

built. Development continued with Kotaro [84] for the World Exhibition (EXPO) in 2005

(see Fig. 2.4a). Improvements included predominantly the mechanical structure which
resulted for the first time in a floating shoulder blade. Most parts of the skeleton were
3d printed utilizing Selective Laser Sintering (SLS). Kojiro appeared only one year later
with improved actuation due to the application of brushless Direct Current (DC) motors
instead of the standard brushed DC motors, previously used [85].

Kenta, Kotaro and Kojiro were musculoskeletal robots, but they did not include com-
pliant actuation, by introducing elastic materials. Therefore they belong to the category of
musculoskeletal robots with stiff tendons (see Fig. 2.3). In 2011, Kenzoh was developed,
reflecting both the human power output as well as the compliance. The goal was to in-
vestigate dynamic tasks where pre-loading of muscles, impedance control, as well as the
passive shock absorption are of interest. For the latter, decoupling between actuator and
joint by an elastic element is needed to protect the gearbox from high peaks in cases of
collisions. The same is true for the storing of energy, while it is fully sufficient here to
include linear springs. However, when impedance control is considered, co-contraction
of muscles has to lead to stiffer joint behavior. This is not the case when linear springs
are added. For a simple example of a revolute joint with point to point routing and fixed
lever arms (see Fig. 2.5), the torque τ can be expressed as

τ = rj
[
k1(θ1rs − qrj) − k2(θ2rs + qrj)

]
(2.1)
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Fig. 2.5: Antagonistic actuation. By expressing the stiffness of the joint with respect to the actuator
positions θ1, θ2, it can be seen that the joint stiffness cannot be controlled directly when linear
spring stiffnesses k1, k2 are assumed.

with rj as the fixed muscle lever arm and rs as the actuator spindle radius. The joint
stiffness kq is then defined as the partial derivative of the torque with respect to the joint
angle.

kq =
∂τ

∂q
= −r2j (k1 + k2) (2.2)

The negative sign arises from the definition of the torque in the same direction as the joint
angle, i. e. the stiffness counteracts a positive joint deflection with a negative torque. From
Eq. 2.2 it is observed that if the spring constants of the muscles are constant, i. e. springs
are linear, joint stiffness is also constant. Applying this to robots with variable lever arms,
the joint stiffness will not be constant, as lever arms change with the joint angle. However,
joint stiffness remains uncontrollable as actuator positions do not directly affect the lever
arms. Only if the spring constants depend on the expansion, the joint stiffness becomes
a function of the actuator positions θ1, θ2 and is therefore adaptable by co-contraction.
Usually progressive springs are chosen to achieve low stiffness at low co-contraction,
examples of which are [63, 80].

In 2012 the newest musculoskeletal full body robot of the JSK, Kenshiro came into
existence. The aim of developing a humanoid that can be used as a human body simulator
led to a robot with bi-articular muscles and movement capabilities that are very close to
its human role model. To achieve this, planar muscles were introduced which are capable
of acting not only upon a single attachment point, but on a line, by routing the cable back
and forth between the attachment areas. This also has the advantage of introducing an
additional reduction ratio, improving overall efficiency [11, 67]. However, the notion of
elastic elements in the muscles was dropped.

In 2006 Holland and Knight [43] came up with the Anthropomimetic Principle. The initial
goal was to create a robot that was capable of developing self consciousness. Since the
only creature that was proven to be self conscious is the human, a robot torso was devel-
oped that was as close to the human body as possible. This meant not only copying the
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Fig. 2.6: ECCE Family. (a) The first anthropomimetic robot CRONOS [43] (b), the ECCE-3 and (c) the
ECCE-4 is shown.

outer envelope of the human as it is done by most other humanoid robots, but also mim-
icking the inner structures, like bones, muscles, and tendons. The first anthropomimetic
robot, named Conscious Robot (Or Near Offer) System (CRONOS), consisted of a hand
modeled skeleton and muscles that consisted of cheap screw driver motors, kite line and
shock cord as an elastic element. The thermoplastic material, used for the skeleton can be
molded by hand at a temperature of 60◦. For the upper torso a number of 45 muscles was
replicated. In contrast to the JSK robots at that time, where the focus was on the function-
ality, the main concern for the development of CRONOS was to replicate the skeleton and
muscle insertion points, and therefore achieving dynamics that were very similar to the
human body. The muscles that were chosen to be duplicated in this robot were the ones
responsible for larger scale movements, omitting the ones used for fine grained dexter-
ous movements, e. g. in the hands. In all robots, as well as humans, proprioception—the
sense of the relative position of neighboring parts of the body—is fundamental for well-
controlled movements and interactions with the environment. While CRONOS was only
sensorized by potentiometers on the gearbox shafts, to measure the actuator positions,
the project was carried on within the Embodied Cognition in a Compliantly Engineered
Robot (Eccerobot) framework, where sensorization, control, and simulation of robots just
like CRONOS was investigated [76]. Several robot torsos (see Fig. 2.6) were developed
that were subsequently equipped with ever better sensors and actuators, starting from
CRONOS which was retro-fitted with additional sensors and hence became the first gen-
eration of the ECCEs. While the second generation, the Eccerobot Design Study (EDS)
(see Fig. 1.1c) was mainly meant to improve the mechanical structure, in the ECCE-3 (see



2.2 control 17

Fig. 2.6b), the screw driver motors had been replaced by high-quality DC motors with
shaft encoders. It featured a full-fledged spine with a total of 16 actuators. Altogether the
robot was actuated by 48 muscles. The next step was to equip the next robot—the ECCE-4
(see Fig. 2.6c)—with force sensors in all muscles. Next to the spine, a floating shoulder
blade was introduced to cover the full range of human arm movement [143] increasing
the number of muscles to 52. All robots of the ECCE family can therefore be categorized
as musculoskeletal robots with electromechanical drives and passive compliance.

Within the Eccerobot project the use of different flexible materials for adding the com-
pliance to the muscles have been investigated. The goal was to improve the efficiency and
safety of the robots, as well as increasing the possibilities of adapting to uncertain envi-
ronments. Starting from shock cord as it is used in marine applications which has been
shown to behavior linearly within 80% of the resting length [140], the need for a progres-
sive spring relation brought forward a Polyurethane used for conveyor belts. However,
the latter showed highly unwanted plastic deformation which made obtaining a model
difficult. Furthermore, the inexistence of Computer Aided Design (CAD) data made (1)
obtaining kinematic and dynamic models an extremely time consuming and error prone
task [140] and (2) diminished the producibility of the robots.

2.2 control

The topic of control for tendon-driven robots has been ongoing work in research for
several decades. While benefits were seen mainly in being able to actuate manipulators
remotely [50] and therefore reducing the active inertia of the robots, the elasticity of
tendons was identified as a major drawback, together with the problem of slackening
tendons. With the realization of musculoskeletal robots, the elasticity of the tendons is a
wanted feature that first needs to be handled and later exploited by control algorithms.

In the following, a short introduction into feedback linearization is given which was
used by most control algorithms for tendon-driven robots to date. Subsequently, a sum-
mary of the related works from the field of tendon-driven control is given in Section 2.2.2.
Similar techniques have been utilized by biomechanicists on simulated human bodies for
the purpose of gaining physically and physiologically realistic movement data. These ap-
plications show the scalability of this approach and are hence presented in Section 2.2.3.
Finally, possible utilization of the existing techniques for controlling musculoskeletal
robots is discussed in Section 2.2.4.

2.2.1 Feedback Linearization

Possibly the simplest method to find a control law for a system that exhibits non-linear
dynamics, is the method of feedback linearization. Here, the known non-linear terms
are compensated by the controller, to subsequently apply linear methods to stabilize the
linearized system. It requires the system to exhibit a certain structure. However, there is a
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set of well-defined tools to apply coordinate transforms to a wider range of systems such
that the method can still be applied [60]. The necessary structure is as follows,

ẋ = Ax+Bγ(x)[u−α(x)] (2.3)

where x is the system state and u the control input. If this is the case, a state feedback law
can compensate for the non-linear terms α and γ by subtraction and division, respectively,

u = α(x) + γ−1(x)v (2.4)

where v is now the new control input that can be used to stabilize the linearized system.
In robotics a wide range of controllers have been developed of which most can be seen

as special cases of computed torque control which is an application of the method of
feedback linearization [119]. The equation of motion in the canonical form for a torque
controlled robot can be given as follows [119],

τ = H(q)q̈+C(q, q̇)q̇+ τG(q) (2.5)

while H(q) denotes the mass matrix, C(q, q̇) accounts for Coriolis and centrifugal effects,
and τG(q) is the vector of gravity terms. Eq. 2.5 can be rewritten to exhibit the structure
necessary to apply feedback linearization.[

q̈

q̇

]
=

[
0 0

In 0

]
·

[
q̇

q

]
+

[
H−1(q)

0

]
[τ−C(q, q̇)q̇− τG(q)] (2.6)

Where In denotes the n× n identity matrix. The control law found by this method com-
putes a torque τ which is necessary to achieve a reference joint acceleration v = q̈ref (see
Fig. 2.7).

τ = H(q)v+C(q, q̇) + τG(q) (2.7)

Hence, the now linearized system can be stabilized with e. g. a PD controller, utilizing
the virtual control input v. Convergence can be proven, utilizing linear system theory.
However, perfect system models are crucial to fully compensate the non-linear dynamics.
In case of deviations in the model parameters or unmodeled dynamics (e. g. friction) the
assumptions for the proof of stability do not hold and the closed loop dynamics might
become unstable.

2.2.2 Tendon-Driven Robot Control

Jacobsen et al. [50] developed a linear controller for a single joint with two tendons,
showing a performance that was considered to be as good as a system with a single joint
actuator. However, neither gravity effects nor coupling between multiple joints was taken
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Fig. 2.7: Computed Torque Control (adapted from [119]). The dynamic model of the manipulator in
the canonical form is used to compute a torque τ that is needed for a reference acceleration v.
Hence, the Coriolis and centrifugal terms C(q, q̇) and the gravity terms τG(q) are used together
with the mass matrix H(q) to linearize the system.

into account. Similarly, Potkonjak et al. synthesize a robust controller for an isolated joint,
using the so called puller-follower concept, where one of the muscles—the puller—is
exerting a certain force and the follower keeps the muscle from going slack [105]. This ap-
proach was extended to multi-joint systems, by introducing gravity compensation [106],
without considering more complex joints or multi-articular muscles.

In contrast, controllers for tendon-driven hands have been developed invariably by
utilization of feedback linearization for the joint dynamics (see Section 2.2.1) and low-
level tendon control. The joint dynamics can be simplified for this case, since the joint
torques due to Coriolis and centrifugal components are negligible compared to the grip-
ping forces. Salisbury and Craig [113] were the first to implement a tendon-level control
scheme, using the Stanford/JPL hand which was an N+ 1 configuration. Since the joint
dynamics controller, based on feedback linearization, utilizes the joint torque as control
variable, a matrix of the constant lever arms M was introduced to capture the effects of
the tendon routing, such that

M · f = H(q)q̈+C(q, q̇)q̇+ τG(q) (2.8)

where f is the vector of tendon forces. Here, M is in Rn×m, with n as the number of
skeletal DoF and m as the number of tendons. The underspecified problem of comput-
ing tendon tensions for joint torques was solved by setting one of the tendon tensions
to a positive value. For N+ 1 configurations this ensures positive tendon tensions. Sub-
sequently the inverse of the remaining tendon lever arm matrix was used to compute
the other tendon tensions. Each tendon was equipped with an independent PI controller
with an additional FFW term. Lee et al. [72] propose a similar controller which features
additional stiffness control for a 2N tendon-driven robotic hand. The problem of invert-
ing the matrix of tendon lever arms is solved by utilizing the weighted pseudo inverse
and an offset for the constraint of positive tendon tensions. The controller includes a po-
sition estimation algorithm for approximating the joint angles from the measured motor
positions and the tendon tensions. The low-level tendon tension controller was imple-
mented as a PID control law with FFW part. Based on this work, Abdallah et al. [1]
proposed a new type of controller, where the low-level tension control is replaced by an
actuator position controller. Here, the reference actuator positions were computed from
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the tendon stiffness and the reference tendon force. The problem of inverting the matrix
of lever arms was solved utilizing the pseudo inverse for the N+ 1 configuration. It was
extended in [2] by a sophisticated optimization procedure which can be used in real time
to compute minimum tendon forces for the reference joint torques.

Closely related to the control problem for tendon-driven hands is the one for parallel
cable-driven robots which are used for high-speed manipulation [58]. These manipula-
tors are usually implemented with an N + 1 configuration to minimize the number of
actuators, while the weight of the moving parts is reduced by transferring the actuators
to the static part. Fang et al. [23] proposed a trajectory tracking controller with optimal
tension distribution, utilizing a pose-dependent matrix of lever arms. The full manipula-
tor dynamics were used for feedback linearization, in conjunction with a low-level tendon
force controller.

The feedback linearization schemes presented so far assume perfect low-level tendon
control, since the design of the two control layers is conducted independently. In contrast,
Palli et al. [99] proposed a feedback linearization controller for the full system dynamics,
including the actuator dynamics. In this implementation, the control law was formulated
for an arbitrary assembly of revolute joints with two antagonistic actuators, each, even
though extensions for more complex assemblies could possibly be developed.

For the control of a tendon-driven mechanism with two revolute joints and six muscles
(including 2 bi-articular muscles) Kobayashi et al. showed an adaptive control scheme [63].
Here, the joint, as well as the actuator dynamics were approximated by Radial Basis
Function Networks (RBFNs) (see Section 2.3.3), utilizing the trajectory tracking errors
as inputs for the respective gradient descent learning rules. Hence, the plant dynamics
could be learned during controller operation. The passivity based control law utilized the
pseudo inverse of the matrix of lever arms and an offset for positive tendon forces. It has
to be noted that the matrix of lever arms was constant in the joint angles and not part of
the adaptation process.

Mitrovic et al. [81] proposed a supervised learning approach to acquire the plant dy-
namics as well as its stochastic properties, for a planar 1 DoF joint with two antagonistic
actuators. The system considered here was relatively simple, featuring a 2N approach
and only one revolute joint. Furthermore, the controller did not have to deal with grav-
ity effects, due to the planar nature of the setup. However, the system dynamics were
acquired completely by machine learning techniques, including the muscle kinematics.
This learning approach was extended for the simulation of a tendon-driven robotic arm
with two DoF and six muscles, two of which were bi-articular [82]. It could be shown that
it is possible to simultaneously learn the forward dynamics of a tendon-driven system
and apply Optimal Feedback Control (OFC). However, the curse of dimensionality makes
real-time execution of such a control scheme for more complex robots impossible at this
stage.
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2.2.3 Biomechanics

Biomechanicists utilize methods, that are quite similar to the tendon-driven controllers
presented in the previous section, for extracting muscle excitation patterns for given joint
space or task space trajectories. It could be shown that it was possible to obtain physically
and physiologically realistic data by running robotics control algorithms on simulations
of the human body. Even though the control task does not need to be robust in any
way, since models are perfectly known in simulation and no disturbances are introduced,
the complexity of the utilized simulation models exceed by far the tendon-driven robots
developed up to date.

Even though developed for comparably simple tendon-driven robots, biomechanicists
extended the approach of utilizing a high-level feedback linearization controller and low-
level tendon controllers for more complex simulation scenarios. Hence, it could be shown
that, at least in simulation, these algorithms scale very well with the number of joints and
muscles. Furthermore, complex joint types like the human shoulder joint, multi-articular
muscles and highly non-linear tendon routing schemes were introduced. Even though
these are exactly the challenges of the control problem of musculoskeletal robots, one
has to bear in mind that the results contain no evidence of the robustness, necessary for
physical implementations. This is due to the fact that perfect system models are always
available in simulation.

In Thelen et al. [130, 131], a method called computed muscle control was developed to
compute muscle activations for given kinematics from human motion data. This well-
known problem, when dealing with simulations of the human musculoskeletal system,
had previously been solved using dynamic optimization methods, which are extremely
computationally expensive. The presented method utilized a low-level muscle activation
controller and a feedback linearization controller for the high-level skeletal dynamics,
similar to the previously presented controllers for tendon-driven hands. However, the
complex relationship between joint torques and muscle forces was captured by the so
called muscle Jacobian (see Section 4.3 and [149]), which can be computed from the geo-
metric properties of the muscle routing, even for muscles that collide with the skeleton.
The under-determined problem of computing muscle forces for joint torques was solved
utilizing quadratic optimization. This approach was extended by de Sapio et al. [21, 22]
for controlling the simulation of a human shoulder-arm complex. It could be shown that
this approach in combination with the optimization criterion of minimizing the normal-
ized muscle activation leads to good correlation between human reaching postures and
the resulting postures of the simulated shoulder model [22]. Furthermore, operational
space control for the human shoulder-arm complex could be shown [21]. Especially solv-
ing the problem of muscle as well as joint redundancies in a single optimization step is
of interest for the control of musculoskeletal robots.

Aside from Thelen, there were other biomechanicists who explained the movement
generation of the human body by controlling a simulated musculoskeletal human model
consisting of a musculo-tendon network and a skeleton. Yamane and Nakamura [146] took
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control algorithms from robotics to control joint torques and a matrix of lever arms ob-
tained from the simulated model to realize physically and physiologically realistic move-
ments for a full human model with a total of 997 muscles. Here the approach was to
optimize the muscle tensions towards measured Electromyography (EMG) data for the
muscle activations that were measurable and explain the remaining activations with the
physically consistent model.

In [128], Tahara et al. proposed a task space control scheme for a musculoskeletal planar
arm, that overcomes the issues of joint and muscle redundancies. It was shown that the
virtual spring-damper hypothesis [9] in combination with bi-articular muscles leads to the
slightly curved trajectory of human reaching movements, without the need for complex
optimization. The shape of the trajectory could be altered by the magnitude of the internal
forces and therefore the stiffness of the arm. Later work based on this, namely Kino et
al. [62], showed how the introduction of bi-articular muscles improves controllability of a
musculoskeletal arm, utilizing the Equilibrium Point Hypothesis (EPH) [25] and Tahara
et al. [126, 127] focused on learning stiffness ellipsoids for given tasks. In contrast to the
other biomechanical work, presented so far, Tahara et al. verified the control approach
for the physical implementation of a 2-link planar arm with six muscles (including 2

bi-articular muscles) [129].

2.2.4 Discussion

Looking at the musculoskeletal robots like the ECCEs or the family of robots built at the
JSK (see Fig. 1.1c and Fig. 1.1b, respectively), it becomes obvious that controllers devel-
oped for such structures need to solve the identical control challenges, also present in
humans. There have been several hypotheses on how humans are able to control their
very complex bodies, namely the EPH [25] and the Internal Dynamics Model Hypothesis
(IDMH) [59], however up to date the details of human motor control remain unknown.
It is clear that the control problems for spherical joints, multi-articular muscles, and vari-
able lever arms have to be solved in a robust way, even for ill-defined muscle kinematics,
i. e. muscle kinematics that are difficult to model due to collisions of the muscles with
the skeleton. The control approaches presented in Section 2.2.2 show several feasible
approaches, like the separation into high-level and distributed low-level control or the
adaptation to unknown parameters. However, only the techniques from biomechanics ex-
hibit the necessary flexibility and scalability due to the utilization of the muscle Jacobian.
Table 2.1 gives an overview over the robots and biomechanical models covered so far, in
comparison with the class of musculoskeletal robots.

The work on control for actual musculoskeletal robots is at a very preliminary stage,
e. g. presenting the interpolation of actuator positions between previously gathered sam-
ples and subsequent FFW control [75]. Similarly, all the presented applications for mus-
culoskeletal robots have been implemented in a FFW manner [46, 88, 92, 107], failing by
far to reach human-level control performance. It is obvious that when reaching tasks are
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Table 2.1: Robot/Simulation Model Configurations. The table shows the complexity of the controlled
tendon-driven robots in comparison to the presented biomechanical models and the muscu-
loskeletal robots for which a controller is to be found. The 2N+ configuration denotes systems
where the number of tendons is larger than twice the number of joint DoF.

conf. joints lever multi-art. colliding

arms muscles muscles

Jacobsen et al. [50] 2N revolute constant ◦ ◦
Potkonjak et al. [105, 106] 2N revolute constant ◦ ◦
Salisbury & Craig [113] N+ 1 revolute constant ◦ ◦
Lee et al. [72] 2N revolute constant ◦ ◦
Abdallah et al. [1, 2] N+ 1 revolute constant ◦ ◦
Fang et al. [23] N+ 1 6-DoF variable ◦ ◦
Palli et al. [99] 2N revolute constant ◦ ◦
Kobayashi et al. [63] 2N revolute constant • ◦
Mitrovic et al. [81, 82] 2N+ revolute variable • ◦
Thelen et al. [130, 131] 2N+ spherical variable • •
de Sapio et al. [21, 22] 2N+ spherical variable • •
Yamane & Nakamura [146] 2N+ spherical variable • •
Tahara/Kino et al. [62, 126–128] 2N+ revolute variable • ◦
Musculoskeletal robots [67, 143] 2N+ spherical variable • •

considered, the sole use of FFW control is insufficient, even though it is well understood
that large parts of human control utilizes FFW models, i. e. the utilization of a learned
inverse dynamics model to compute motor commands for planned movements. Robust
and scalable feedback control laws that utilize the dynamics in a FFW manner for muscu-
loskeletal systems are lacking up to now, especially when complex joints and ill-defined
muscle kinematics are considered.

2.3 machine learning

Up to now most robots have had stiff kinematics, where motion kinematics and dynam-
ics can be established analytically, and even for the available soft robots like the DLR
light weight robot arm or variable stiffness actuators, the flexible joints can still be mod-
eled in a straightforward manner [7]. However, there are also problem statements where
an algorithmic solution is not feasible, as models become too complex to be properly
parametrized. In these cases, machine learning techniques can help, provided that enough
data can be generated for the learning algorithms to work with. Even though the data
might not account for all effects in the future, machine learning algorithms are well able
to construct a good and useful approximation of the underlying unknown processes [8].
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In general, machine learning algorithms can be classified as one of the following: (1)
supervised learning, (2) unsupervised learning, and (3) reinforcement learning. In super-
vised learning, the goal is to optimize the output for given inputs towards known correct
values that are given by a supervisor. This is not true for unsupervised learning. Here,
the algorithm has to find structures in the input space on its own, by identifying certain
reoccurring patterns. The last category—reinforcement learning—can be applied to prob-
lems where a goal can be reached by a sequence of actions. The algorithm solely requires
a measure of how good or bad an ordered set of actions performed, either during execu-
tion or at the end of the task. For instance these actions can be moves in a game, which
lead to winning or losing the game. Apart from games like chess, reinforcement learning
has lately been applied to tasks in robotics, where a goal, e. g. a reaching task, is defined
and the algorithm has to find a sequence of motor commands to perform the task with-
out knowing anything about the system [61, 101]. While the latter approach is promising
for future application, the main problem is that a large number of trials need to be per-
formed to learn a single task. Safe system operation can in general only be guaranteed in
simulation. Furthermore, the search space needs to be simplified by introducing so called
motor primitives [65]. In the case of musculoskeletal robots, these motor primitives have
to be established first, before an application of these techniques is even possible.

In this work, however, the problem statement is to learn a certain part of the kine-
matic model—the muscle kinematics—which cannot be modeled by conventional ana-
lytic methods. This can be achieved by gathering samples from the robotic system, both
for the system inputs, as well as the system outputs. Therefore, the problem at hand, is
a supervised learning problem. In supervised learning there are two separate problems,
(1) classification and (2) regression. In the first, samples are considered to either be in a
given class or not, the output is boolean. If the output is numerical, it is called a regres-
sion problem, or in other words the goal is to approximate a numerical function which is
able to predict the mapping between in the input and the output space. The training set
can be defined as follows,

X = {xt, rt}nt=1 (2.9)

where xt are the function inputs and rt the corresponding outputs. If samples could
be drawn without the effects of noise, the problem could be stated as an interpolation
problem where an n − 1 degree polynomial can be used. It can be fitted by solving a
set of linear equations of order n− 1. However, in real world problems there is always
measurement noise and this procedure would lead to an overfitting of the function, i. e.
learning the function including the errors due to the noise. Therefore, we draw a lot more
samples and use methods from regression to fit a function

y = f(x|c) (2.10)

where c are the parameters for the model f(·). Here, f(·) is the regression function, for
which the machine learning algorithm optimizes the parameters c towards an optimal
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value of a predefined error measure. A common error measure is the Mean Square Error
(MSE).

MSE =
1

n

n∑
t=1

||f(xt) − rt||
2 (2.11)

In some cases it makes sense to write the error in units that match the data, hence utilizing
the Root Mean Square Error (RMSE).

RMSE =
√
MSE (2.12)

In the following, three methods for regression are covered, starting with the simple
method of polynomial fitting (see Section 2.3.1), subsequently discussing Feed-Forward
Neural Networks (FFW-NNs) in Section 2.3.2 and finally RBFNs are introduced in Sec-
tion 2.3.3.

2.3.1 Polynomial Regression

A simple solution for the regression problem for scalar inputs and outputs is polynomial
function fitting, where a predefined polynomial of order m is fitted.

g(x,a) =
m∑
j=0

ajx
j (2.13)

Fitting can be achieved by minimizing an error function which is a measure of how good
the fitted function performs for the given samples. A common choice is the MSE (see
Eq. 2.11) which can be rewritten for the scalar case.

MSE =
1

n

n∑
t=1

(g(xt,a) − yt)2 (2.14)

The problem of polynomial fitting can be solved by choosing a vector a that minimizes
the error function. Due to the fact that this error function is quadratic in the coefficients
a, its partial derivative ∂MSE∂a is linear. Therefore, the optimization problem has a unique
solution [13]. Using matrix formulation, a linear equation can be set up

y1

y2

y3
...

yn


︸ ︷︷ ︸
y

=



1 x1 x21 . . . xm1

1 x2 x22 . . . xm2

1 x3 x23 . . . xm2
...

...
...

. . .
...

1 xn x2n . . . xmn


︸ ︷︷ ︸

X

·


a0

a1
...

am


︸ ︷︷ ︸
a

(2.15)
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Fig. 2.8: Neural Network. A (a) biological neuron (adapted from [56]) is shown next to (b) a graphical
representation of a Feed-Forward Neural Network (adapted from [8]).

that is overdetermined for regression problems (n > m+ 1); The number of samples is
usually a lot larger than the degree of the polynomial plus one. Therefore, an approxima-
tion for a can be found, using the generalized inverse X.

â = X · y = (XTX)−1X · y (2.16)

Note that solving the linear problem y = X · a through the generalized inverse is equiva-
lent to minimizing the MSE [69].

The method of polynomial fitting can be used for scalar functions, where all samples
are gathered, and the regression problem is solved once, as is the case in any offline
learning problem. If necessary this method can be extended to the online case by utilizing
a Recursive Least Squares (RLS) algorithm [55].

2.3.2 Feed-Forward Neural Networks

Artificial Neural Networks (ANNs) take inspiration from the human brain in which a
very large number (1011) of neurons operate in parallel [8]. These neurons are intercon-
nected by synapses which are believed to be both responsible for the computational power,
as well as the memory. Interconnections can grow dynamically by impinging terminal but-
tons upon another neuron’s dendrites or soma (see Fig. 2.8a and [56]). The goal of ANNs
in general is not to simulate the functionality of the human brain, but to mimic some as-
pects in order to develop algorithms that can learn complex relations similar to humans.
While different kinds of ANNs have been developed to cover different aspects of the
functionality in biological neural networks, the most simple, and most widely used kind,
is the FFW-NN. In this type of neural network, neurons are solely interconnected from
one layer to the next, without forming feedback connections (see Fig. 2.8b). The reason is,
that these networks are simple to evaluate, and more importantly, still relatively simple to
train and can be used to recognize complex relationships in a set of samples or to classify
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patterns. In the following, a special type of FFW-NN, the Multilayer Perceptron (MLP), is
introduced.

2.3.2.1 The Multilayer Perceptron

An MLP has a set of input neurons—forming the input layer—which are used to present
the input data to the network. Each neuron is connected to each neuron in the subsequent
layer by directed weighted connections. While there can be an arbitrary number of so
called hidden layers, the last layer is called the output layer. In the simplest case, the
output of a neuron oj is only the sum of the inputs, while an additional neuron with
output +1 is added for each layer, to be able to introduce an offset.

oj =

d∑
i=1

wjixi +wj0 (2.17)

Where wji denotes the corresponding layer weight, xi the activation of the ith input layer
neuron and d the dimensionality of the input layer (see Fig. 2.8b). More general, a neuron
can be associated with an activation function, which describes the relationship between
the output of a neuron and the sum of the inputs. Assuming a linear activation function,
as in Eq. 2.17 leaves the function of the neural network to be linear, as well. For the
purpose of modeling non-linear functions it is therefore necessary to find suitable non-
linear activation functions. The activation aj of a neuron j is given as follows, defining
the input to the activation function fa.

aj =

d∑
i=1

wjixi +wj0 (2.18)

oj = fa(aj) (2.19)

Possible functions include the threshold or the piecewise linear function, but also the
tangens hyperbolicus, or the logistic sigmoid function. All of these have the property to
squeeze an infinite input range into a finite output range which is a useful property for
activation functions. As we will see later in Section 2.3.2.2, it is important that the activa-
tion functions are differentiable, as training algorithms rely on the gradient to adjust the
weighted connections towards a given goal. For this reason, mostly the logistic sigmoid
function or the tangens hyperbolicus are used. While the output of the former ranges
from 0 to +1, the latter ranges from −1 to +1. The sigmoid function σ and the tangens
hyperbolicus tanh and their respective derivatives are given as follows.

σ(x) =
1

1+ e−x
d

dx
σ(x) = σ(x)(1− σ(x)) (2.20)

tanh(x) =
e2x − 1

e2x + 1

d

dx
tanh(x) = 1− tanh(x)2 (2.21)
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It can be proven, that a single hidden layer is sufficient to approximate any non-linear
function, given the hidden layer contains enough neurons [45]. Therefore MLPs are a
class of universal approximators. In the case of a single hidden layer, the outputs of the
hidden layer neurons zi can therefore be expressed with respect to the input neurons xj
and the corresponding weights wji.

zj = fa

(
d∑
i=1

wjixi +wj0

)
(2.22)

Subsequently this enables the computation of the output layer yj, subject to the hidden
layer neurons zk and the corresponding weights vjk. Note that in this case it is assumed
that the output layer has no activation function (see Fig. 2.8b).

yk =

d∑
j=1

vkjzj + vk0 (2.23)

When FFW-NNs are used to approximate arbitrary non-linear functions, it is often help-
ful to normalize the input, as well as the output data. The reason is that this step moves
the data to the unsaturated range of the chosen activation function. Therefore, a normal-
ization to [−1, 1] or [0, 1] increases the performance for the logistic sigmoid or the tangens
hyperbolicus, respectively [71].

2.3.2.2 Training a Multilayer Perceptron Network

An artificial neural network may either be trained online or offline. In the offline case, the
network is presented with a set of training samples, while the training method computes
the network weights. Subsequently, the network can be used to compute the output for
a given input. Online training, on the other hand, means showing the network the sam-
ples one by one, while the network weights are updated gradually after each so called
instance. Especially the ability to adapt slowly to new situations is helpful in noisy en-
vironments where a trade-off between adapting to each (noisy) sample and keeping the
past experiences forever has to be found.

Therefore, in online learning, the adaptation of the weights is expressed subsequently
for each sample, while training is started from random weights. In non-linear regression,
the error can be expressed for each sample Xt = {xt,yt}, while in general both xt, as
well as yt are vectors. Therefore, xt,i and yt,k are the ith input and kth output neuron,
respectively. The error can be written as follows.

E(Xt, v,w) =
1

2

∑
k

(rt,k − yt,k)
2 (2.24)
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As the output yk is linear in the output layer weights, each of them can be updated using
gradient descent. Here, the weights are updated with a delta that is proportional to the
gradient of the error function with respect to the weights

∆vkj = −η
∂E

∂vkj
= −η

∂E

∂yk

∂yk
∂vkj

(2.25)

= η(rt,k − yt,k)zj (2.26)

while η denotes the update factor. Due to the activation function the chain rule is used
for the first layer weights. Note that in contrast to the output layer weights, the gradient
of E with respect to the first layer weights depends on all outputs k.

∆wji = −η
∑
k

∂E

∂wji
(2.27)

= −η
∑
k

∂E

∂yk

∂yk
∂zh

∂zh
∂wji

(2.28)

= η

{∑
k

(rt,k − yt,k)vkj

}
zj(1− zj)xt,i (2.29)

Here, the term ∂E
∂yk

∂yk
∂zh

acts as the unknown error measure in the hidden units. The error
of the output units is back-propagated to the hidden layer. Hence, the two update rules in
Eq. 2.26 and Eq. 2.29 denote the well known Backprop (Backpropagation) algorithm [112].
The rules can be easily extended towards updating weights for multiple samples at once,
by summing up ∆vkj and ∆wji for sets X = {xt, rt}nt=0.

If samples are presented subsequently, they are often presented multiple times, while
each presentation of the full set is called an epoch. In this case a smaller update factor
η can be chosen, which leads to slower convergence. This is compensated by multiple
epochs and leads to a better generalization. As each weight is updated for each sample
independently from he other samples, update values for subsequent samples might lead
to updates that cancel each other out. This effect can be addressed by randomizing the
order of the presented samples after each epoch.

When parameters are chosen for a given problem, the input and output layer sizes are
fixed for the application, as they denote the dimensionality of the inputs and outputs.
Therefore, the choices that can be made, are restricted to the number of hidden units, the
update factor η, and the number of training epochs. If the number of hidden units is chosen
too small, the underlying structure of the learned process is not sufficiently captured. If
it is chosen too large, the data is overfitted. Similar to polynomial fitting with polynomial
orders being too high, the learned function captures the noise in all samples leading to
poor generalization. The same is true when the samples are presented to often. As there
is no general rule for this problem, we can only find a measure for the generalization and
choose these parameters by experience until an optimum in the generalization is reached.
For this purpose, the samples are split into a training and a validation set by picking
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Fig. 2.9: Radial Basis Function Network. The (a) structure shows the input neurons which are connected
to a single hidden layer which has radial basis activation functions and a single output neuron,
while (b) depicts a family of radial basis functions.

samples for each randomly from the initial set. While the training set is then used for
training, an additional set is gained that can be used to measure generalization. For this
purpose the network is evaluated for each sample in the validation set. Due to the fact
that the network had no knowledge of these samples during training, the MSE over the
validation set is a good measure for generalization [8].

2.3.3 Radial Basis Function Networks

An MLP is a valuable tool for regression, however, the Backprop algorithm exhibits non-
linear characteristics. When regression is performed as part of an adaptation process
within a control algorithm, it is desirable to use a regression model that is Linear in the
Parameters (LP). A versatile regression model that is often used in adaptive control is the
RBFN which is a neural network with a slightly different structure from the MLP. This
type of network is LP when only a single hidden layer is used (see Fig. 2.9a). It has been
proven that an RBFN can approximate any continuous function, given that the number of
neurons is sufficient and the parameters of the radial basis functions are appropriate [104].

In contrast to an MLP, in an RBFN there are only weights in the output layer (see
Fig. 2.9a), hence simplifying the learning procedure, since the additional step of back
propagating the error becomes unnecessary. However, the Radial Basis Functions (RBFs)
need to be parameterized manually. An RBF is defined as follows [13],

Φ(x) = exp −
(x− c)T · (x− c)

σ2
(2.30)

while c denotes the center of the RBF and σ its standard deviation (see Fig. 2.9b). By
learning the weights Θj (j = {1, . . . , l}), where l denotes the number of neurons, the
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neurons are activated for some ranges in the inputs. The full neural network can be
expressed mathematically as,

y = ΘTΦ(x) (2.31)

where Θ = [Θ1, · · · ,Θl]T denotes the vector of weights.
The advantage of utilizing only weights in the output layer, comes at the price of having

to manually choose the parameters for each of the RBFs. Fig. 2.9b shows a family of RBFs
with different centers and standard deviations, as would be used in an RBFN. When
parameters are chosen, it is important to sufficiently cover the input space, while the
individual neurons should at the same time not interfere too much. Similar to MLPs it
is also possible to normalize the inputs to some well defined range. The difficulty comes
when multi dimensional inputs are considered. The missing input layer weights remove
a dimension from the parameter space. Therefore, the information density is less in an
RBFN and additional neurons have to be added to cover the input space.





3
T H E A N T H R O B

Previously developed musculoskeletal robots showed severe deficits in controllability,
due to missing sensor facilities or unavailable dynamic models (see Section 2.1.2). Ad-
dressing these drawbacks, a musculoskeletal robot arm was developed. The goal was to
create a robot that reflects the challenges in control of musculoskeletal robots, by intro-
ducing (1) complex joint types like spherical joints, (2) actuation through multi-articular
muscles, (3) compliant actuation and (4) variable lever arms. At the same time it should
be possible to extract the dynamics of the skeleton from the CAD models. Hence, an ideal
test bed for musculoskeletal control algorithms was developed.

To solve the aforementioned problems with previous anthropomimetic robots, 3d print-
ing techniques were utilized to manufacture the anthropomorphic shapes. The skeletal
structure of the arm was developed to have approximately 2/3 of the size of a human
male of 1.70m in height. Therefore, it yields an upper arm with 200mm and a forearm
with 180mm length (for human reference data see [123]). Furthermore, the robotic arm
was designed to carry a load of 500 g.

3.1 skeleton

The human upper extremity, consisting of shoulder complex, upper arm, elbow joint,
forearm and hand has developed to fulfill a wide range of motions. The shoulder complex,
comprising the clavicle, the scapula, and the shoulder joint, is often considered to be the
most complex joint in the human body. While the clavicle is articulated by a joint towards
the rib cage (sternum and first rib) and a joint towards the scapula, the latter contains the
glenoid cavity which holds the head of the humerus. This structure serves the purpose
of allowing for elevation and depression of the scapula, as well as extending the range
of movement of the humerus. The elbow joint, on the other hand, is a revolute joint
located between humerus and ulnar and allows for elbow flexion and extension, while
the radioulnar articulation is responsible for pronation and supination (rotation around
the axis of the forearm) [36].

For the purpose of creating a simplified test bed for control algorithms, it is not nec-
essary to recreate the full range of movements. By fixation of the scapula, as well as the
radius, a musculoskeletal robotic arm was developed with four DoF, three in the shoul-
der joint and one in the elbow (see Fig. 3.2). It allows for the full range of motion in the
glenohumeral joint, as well as elbow flexion and extension, while immobilizing shoulder
elevation and depression, and the pronation and supination of the forearm. Furthermore,
the range of motion of the humerus is limited, as the glenoid cavity remains fixed.

33
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(a) (b)

Fig. 3.1: Anthrob. The (a) rendering is shown next to the (b) final produced robot (design: awtec Zürich)

3.2 actuation

Not all muscles in the human arm could be integrated, nor was it necessary to do so,
as the human shoulder complex with a moving scapula and clavicle, as well as the hu-
man elbow have more DoF than the skeletal structure considered here. Therefore, only
those shoulder muscles were replicated that are involved in glenohumeral movements,
reducing the number of muscles of the rotator cuff to eight. Similarly, the omission of the
elbow pronation and supination led to a realization of the Biceps (brachii), Brachialis and
Triceps (see Fig. 3.3 and Table B.2). To capture the human dynamics of the arm, insertion
points were chosen to be as close as possible to their human counterparts. It has to be
noted that in the shoulder some muscles are not grown to the bone at specific points, but
rather apply force to the bone at larger surfaces (e. g. Infraspinatus [36]). In these cases
insertion points were chosen to resemble the functionality of the muscle. Furthermore,
the human Triceps has three heads, the long, lateral and medial head, of which the first is
bi-articular. The insertion point chosen for the artificial Triceps is equivalent to the medial
head, leading to a mono-articular muscle. In the case of the Biceps however, both heads
are bi-articular. These could be merged, as well, without loosing functionality.

A modular muscle unit was developed, serving the purpose of a musculoskeletal ac-
tuator, including all necessary sensors for control. It comprises a brushed DC motor and
gearbox, deflection pulleys for tendon routing, and a spindle that winds up two types of
high-performance cords, made from braided ultra high molecular weight Polyethylene
(Dyneema R© kite line; diameter: 0.6mm and 1.0mm), hence contracting the muscle. To
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Fig. 3.2: Anthrob Joints. Both (a) the shoulder joint with a fixed scapula and a ball and socket joint
between the glenoid cavity and the head of the humerus, as well as (b) the simplified elbow
joint with immobile radius and ulnar, are shown.

reduce radial forces on the output shaft of the gearbox a sliding bearing was introduced,
supporting the far end of the spindle (see Fig. 3.4). Next to reducing the size, such a
modular unit facilitates the producibility and maintainability of the robot.

As the arm should be able to lift its own weight plus an additional weight at the end-
effector of 500 g, properly dimensioning the motors was a key factor. However, especially
in the rotator cuff, where muscles take different roles depending on the pose, estimating
maximum forces was not straightforward. It can be assumed that in the shoulder at least
two muscles take the role of holding the arm. Clearly, maximum forces can be observed
at full abduction of the shoulder and extension of the elbow joint. Hence, by taking the
spindle radii into account, a selection of brushed DC motors and gearboxes was chosen
by computing maximum forces and rotational velocities, based on the worst case lever
arms. Therefore, two different configurations of brushed Maxon 12V DC motors and
gearboxes were chosen for the shoulder and the elbow joint, respectively (see Table B.1).

To mimic the visco-elastic properties of the human muscle, each actuator was equipped
with an Nitrile Butein Rubber (NBR) O-ring, as an elastic element. The properties of
NBR O-rings of different sizes were identified by experiments which were conducted to
measure the dynamic stress for a step in the strain [139]. It could be seen that the material
exhibits a stress relaxation behavior similar to the human muscle [54]. Stiffnesses for the
different muscles have been chosen to resemble findings in the human body [44]. For the
exact choices, refer to Table B.2.

3.3 sensory system

In the human body proprioception is achieved by a large set of different sensor modalities
that are intelligently fused to obtain the sense of relative position between neighboring
parts of the body. This is on the one hand achieved through sensors that measure the state
of the muscles, and on the other through—even though not very reliable—joint angle
sensors. Biological muscles are equipped with two types of receptors, which are (1) the
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Fig. 3.3: Anthrob Muscles. The 11 muscles are shown in a functional sketch from (a) rear and (b)
front, including 8 shoulder muscles, 2 elbow muscles and 1 bi-articular muscle (Biceps brachii).
(illustrations: A. Jenter / awtec Zürich)

muscle spindle, which is a sensory receptor encapsulated in the fleshy part of the muscle
and (2) the golgi tendon organ, which is located at the attachment point of the tendon to
the muscle fibers (see also Fig. 3.6). While muscle spindles are most sensitive to changes
in the muscle length, the tendon organs mainly measure the muscle tension [56]. The state
of an artificial muscle, based on an electromechanical drive can be fully determined by
(1) an actuator position sensor, (2) a current sensor and (3) a muscle force sensor. The first
and the second could be easily realized, as motors can be equipped with motor encoders
and there are several solutions to measure current which could be integrated into the
driver electronics (see Section 3.5). The latter calls for a customized solution, however.
One possibility was to only use the motor current sensor and estimate the output torque
of the gearbox. While this would lead to good results for higher torques or while the
actuator is moving, the static friction in the gearboxes renders this method useless for
low torques at motor stall. However, for muscle control, high-quality force measurements
are needed. Even though there are strain gauge based solutions available off-the-shelf,
they are rather large and hard to integrate into the musculoskeletal setup. Therefore, the
most elegant solution was to measure the force directly at one of the muscle insertion
points. From an integration point of view it is advantageous to place the sensor on the
driving end, as wiring is reduced, even though the measurement is biased by friction in
the tendon routing.

The modular motor unit facilitates measuring the tendon force. The tendon is guided by
two deflection pulleys and a ceramic eyelet to ensure that the force is measured under the
same angle, while being wound up by the spindle (see Fig. 3.4). The two bending beams
holding one of the two deflection pulleys are therefore under the stress of the muscle
force. This stress can be measured by strain gauges, applied to the bending beams. The
unit was carried out as a milled aluminum part, hence leading to a linear stress-strain
relationship which can be detected by four strain gauges, measuring twice the elongation
due to the stress, and twice the compression on the underside. This way the four resistors
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Fig. 3.4: Anthrob Actuator Module. The unit comprises a brushed DC motor, gearbox, and encoder, as
well as a carrier for the spindle, which includes the bending beams for measuring the tendon
force by means of four strain gauges.

could be interconnected to form a four-arm Wheatstone bridge. A perfectly balanced
Wheatstone bridge has an output voltage of zero. It serves the purpose of adding and
subtracting the positive and negative changes in the resistance, due to the elongation and
compression of the resistors, respectively. Any changes that affect all resistors equally,
e. g. temperature, are canceled out automatically [138]. Therefore the output voltage can
be easily amplified by an instrumental amplifier. For this purpose custom electronics
were developed and produced that could be mounted directly to the force sensor and
are able to amplify the Wheatstone bridge output voltage by an amplification gain of 100

or 200, depending on the maximum force produced by the muscle. Furthermore, perfect
balancing of the Wheatstone bridge could not be ensured, due to production inaccuracies.
Hence, facilities for manual balancing were integrated into the electronics by means of a
potentiometer.

Even though human motor control does not directly rely on high quality joint angle
sensors, but rather a sense of the lengths of muscles and ligaments are used to get an
estimate of proprioception [56], the control algorithms developed in this work rely on
reliable joint angle measurements. It would be possible by means of a good model to infer
joint angles from actuator positions and tendon forces. However, such a model needs to
be learned from samples of the system (see Section 2.3). Unfortunately it is difficult to
obtain an analytical model of the muscle kinematics, due to collisions of the tendons
with the rigid structures. But even when machine learning techniques are utilized to
obtain the muscle kinematics, such a supervised learning approach needs joint angle
data to be available during the learning phase. Therefore, the decision was made to rely
on direct measurements of the joint angles. Measuring the joint angle of the elbow joint
was realized in a straightforward manner, as it comprises a single DoF, by including
a potentiometer measuring the rotation of the elbow axis. For a spherical joint this is
rather difficult as shown by Nakanishi et. al. [89]. The easiest way was to use an extrinsic
motion capture unit to obtain the missing information. Therefore, a stereo-vision based
approach, developed by Wittmeier [139, 142], was utilized that is able to capture the full
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Fig. 3.5: Anthrob Hand. The (a) cross-sectional view of the forefinger is shown, depicting the solid state
hinge joint, as well as (b) the two parts of the printed hand, the thumb and the metacarpus
with the four fingers.

pose of bodies equipped with infrared markers. By adding markers to the scapula, as
well as the humerus, the rotation of the shoulder joint is extracted [29].

3.4 hand

The previously mentioned hands have been developed to offer the best possible dextrous
manipulation capabilities [74, 117], leading to highly complicated designs with many
DoF and up to 20 actuators. However, the scope of this work was to design an anthro-
pomimetic robot arm as a platform for tendon-driven control development. Therefore,
only some key features were realized for the hand. These were (1) to be able to actively
open and close the hand and (2) apply a power grip utilizing flexible elements to auto-
matically adapt to different objects. Finally, the hand should be (3) as light as possible
and (4) easily producible without the need for complex assembly steps.

The bones were inspired from the human hand and replicate each of the phalanges, in-
cluding the metacarpus (see Fig. 3.5b). By fully exploiting the technology of 3d printing
it was possible to produce the hand only from two parts and include printed channels for
tendons and wires. This was realized by developing solid state hinge joints (see Fig. 3.5a).
In this type of joint, the two movable parts are only connected by a thin film (0.3mm)
of material. The thickness together with the choice of Polyamid 2200 (PA-2200) as a con-
structive material makes this thin film bendable and also durable enough to withstand
the forces when objects are grabbed. Special care had to be taken to apply the printed
layers in the pane of the film. If they were applied perpendicular to the film, the material
would break. Due to the simplified grasping requirements, it was possible to reduce the
number of actuators to two, one for closing and one for opening the hand. For this pur-
pose two DC motors were mounted on the forearm, actuating two tendons. In the base of
the hand these split into five separate elastic elements, so that each finger is able to adapt
to different objects. From there two tendons run down each finger, actuating each of the
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Fig. 3.6: A motor nucleus is a cluster of motor neurons in the human spinal cord (or brain stem). It
is responsible for muscle control and is directly connected to the related receptors (adapted
from [56]).

metacarpophalangeal and the two interphalangeal joints at the same time (see Fig. 3.5b).
To execute a power grip it had to be ensured that the joints close in the proper order from
proximal to distal. Otherwise the object would not be enclosed by the fingers. This can
be either realized by different thicknesses of the joint film, or by different lever arms of
the tendons towards the center of rotation of the joint. It was chosen to do the latter (see
Fig. 3.5a).

Even when only a power grip is applied, sensing the grip force is crucial. The force
sensor utilized for the arm muscles could be easily adapted to the smaller finger muscle
actuators. However, the grip force itself can be measured directly at the finger tips, by
integrating Force Sensitive Resistors (FSRs) in strategic places on the hand (see Fig. 3.5b).
To maximize the FSR sensitivity and improve the friction between the finger tip and the
grabbed object, the thin material of the sensor itself was embedded between two layers
of rubber material.

3.5 control architecture

A control architecture was developed and implemented in all the robots of the ECCE
family, as well as the Anthrob. It realizes a biologically inspired hierarchy, by splitting
the tasks into voluntary high-level behaviors and involuntary low-level control. Special
attention was given to scalability, as robots with up to 50 artificial muscles should have
been possible to control.
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Fig. 3.7: Control Architecture. In a centralized control architecture (a) like it is used for Kotaro [84] all
control is run on a single controller. The control architecture proposed here (b) distributes fast
local control loops into the robot’s limbs, while communication with the central controller is
accomplished via a CAN bus system.

Typically, robot control is done using a centralized control scheme, where all sensors
and actuators are connected to a single controller. The control algorithm that is being
executed on this central controller fetches the sensor values and calculates the actuation
for all joints in a single step, which delivers the highest flexibility when the number of
DoF is limited. With the number of muscles this approach becomes increasingly complex.
In the human body on the other hand, motor control is organized in a hierarchy. While
most of the low-level control takes place in the spinal cord and brain stem, voluntary
motor control commands are issued by the fore brain. Typically a muscle is controlled
directly by a set of motor neurons in the spinal cord that form a motor nucleus [56]. The
fore brain can issue commands to the motor nuclei through descending pathways (see
Fig. 3.6). The existence of the motor nuclei shows that in the human body the control
is highly distributed, where fast low level control is conducted as close to the muscles
as possible and the higher levels of (voluntary) movement control communicate with
the muscles through the distributed units (motor nuclei). Voluntary reaction times range
from 60ms to 120ms and can get as low as 40ms for reflexes [56], which shows that
latencies in the human body are actually much higher than in today’s robots where con-
trol algorithms run at frequencies of 1 kHz to 2 kHz or higher. Still a human is capable of
achieving high-speed motions through FFW control, by exploiting the intrinsic dynamics
of the body and nervous system.

A robust control architecture was designed, which reduces the complexity of the con-
trol task. One way to do this was to stay close to the human archetype and distribute
processing units (motor nuclei) around the robot’s body to be as close to the sensors and
actuators as possible. Each of the boards is connected to a central controller (fore brain)
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via a communication bus and therefore only a single bus link plus electric power needs
to be routed to the boards. This reduces the cabling, since power and information can be
distributed in a tree-like manner. In [84], Mizuuchi et al. proposed a control architecture
which was implemented for the robots at the Jouhou System Kougaku Laboratory of the
University of Tokyo (JSK). Here, sensor data and motor commands are transferred via
the Universal Serial Bus (USB) to distributed nodes. In this setup, however, there is no
processing in the distributed nodes. The control algorithm itself is still centralized.

In contrast, the architecture developed here was designed to run fast local control
loops, like force, current or position control on the distributed nodes. Additionally sensor
preprocessing or fusion, like filtering can be implemented. The required bandwidth for
communication could be estimated by assuming the transfer of three sensor values (at
16 bit) and one motor control command (at 16 bit) per actuator at a high-level control
frequency of 200Hz. Additionally an extra 4 bit for the control type was reserved. A limit
of 50 muscles was assumed to estimate the following upper bound for the bandwidth
BDW.

BDW = 50 · ((4 bit+ 16 bit) + 3 · 16 bit) · 200Hz
= 680 kbit/s (3.1)

This relatively low bandwidth allows for utilization of the simpler CAN bus instead of
faster buses like USB, for instance. This comes with the advantage that CAN is only a two
wire serial bus and unlike USB no hubs are required, facilitating the task of wiring. For
the purpose of distributing the control nodes, custom electronics were developed. Instead
of controlling just one, size constraints led to the decision of allowing for the control of
two actuators per Electronic Control Unit (ECU). Each of the developed ECUs features
a STMicroelectronics STM32F microcontroller, incorporating a 72 MHz ARM Cortex-M3

processor, several Analog-to-Digital (AD) converters and an integrated CAN interface,
as well as power electronics for two motors. The motors are controlled by Pulse-Width
Modulation (PWM), using two full H-Bridges. Direct current feedback is given by an
integrated hall-effect-based current measurement unit in the motor loop.

To achieve a high level of robustness, the firmware was developed to implement a Finite
State Machine (FSM) which can be easily controlled from the central processing unit
(see Fig. B.1), using a custom communication protocol. This protocol was based on raw
CAN and defines messages needed to initiate transitions of the FSM. Several messages
require a reply from the distributed node to be able to determine communication or
controller failure. At the same time, a heartbeat is broadcasted to all nodes, allowing for
safe shutdown, in case of communication failure. Whenever a node detects an error it
transits into a failure state and stops replying to messages (fail-silent behavior [108]). As
each processing unit handles the control of two muscles, the FSM is instantiated twice on
each ECU. In the On state the low-level control law is executed at the fixed frequency of
1 kHz.





4
M O D E L I N G M U S C U L O S K E L E TA L R O B O T S

In order to develop controllers for any system, the first step is to find a model that
explains the behavior of a system over time for given inputs. By modeling we mean to
capture the necessary aspects of the system dynamics in a set of differential equations.
Kinematics describes the part of dynamics which studies the motion of particles and
rigid bodies without taking the forces which cause motion into account. Purely kinematic
models are therefore models which describe the geometry of the motions. Apart from the
kinematics, the field of dynamics includes the kinetics which cover how the motion of
bodies is caused by applied forces [79]. In robotics, a model is either purely kinematic,
only covering the geometry of the motions, or it is a full dynamic model which includes
both the kinematics and the kinetics.

When models are obtained, it is possible to define them in several different ways, de-
pending on the choice of system states. In the last years, research in robotic control has
focussed on flexible joint robots. It will be shown in the following that the models used
for these controllers share several properties with musculoskeletal robots that make it
possible to also adopt some of the control concepts. For flexible joint robots, two separate
system models can be found in the literature. The first one is based on the joint torque
and is written as follows [5].

H(q)q̈+C(q, q̇)q̇+ τG(q) = τ+DK−1τ̇+ τext (4.1)

JT · θ̈+ τ+DK−1τ̇ = τact − τf (4.2)

τ = K(θ− q) (4.3)

Here, Eq. 4.1 expresses the relation of the joint coordinates and the joint torques at the
presence of external torques τext that act on the robot, e. g. by interaction with the envi-
ronment. Eq. 4.2 expresses the actuator dynamics with the possibility to introduce joint
and actuator friction as an additional term τf, while τact denotes the actuator output
torque. Finally, the third expression Eq. 4.3 relates the two previous equations. K and D
are positive definite diagonal matrices, denoting the joint stiffness and damping coeffi-
cients, respectively. Hence the model is subdivided into a model for the stiff robot links,
the actuator dynamics, and a link between the two.

The second system model is solely based on the positional coordinates of the joints q
and the actuator positions θ. The following more compact representation can be obtained

43
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by substituting the joint torque τ, and its first order derivative, by Eq. 4.3. Often, the joint
damping D is neglected in these cases [95].

H(q)q̈+C(q, q̇)q̇+ τG(q) = K(θ− q) +D(θ̇− q̇) + τext (4.4)

JT · θ̈+K(θ− q) +D(θ̇− q̇) = τact − τf (4.5)

Even though this latter model is mathematically equivalent and more compact than the
first, it can be seen that Eq. 4.1 - 4.3 can be subdivided in three subsystems. In the fol-
lowing, these are used as a starting point for dividing the dynamics of musculoskeletal
robots. In line with this subdivision, three submodels are found. Starting from (1) a model
of the skeletal dynamics (see Section 4.1), to (2) a model of the muscle dynamics (see Sec-
tion 4.2), and finally (3) a link between the two, i. e. the muscle kinematics (see Section 4.3),
is obtained. Subsequently the full system dynamics, assembled from the three submodels,
will be presented in Section 4.4.

4.1 skeletal dynamics

4.1.1 Kinematics

The kinematic description developed in the following is applicable to any robot that can
be expressed as a kinematic chain, comprising stiff links and interconnecting joints (see
Fig. 4.1). The kinematics of such a robot yield the pose (i. e. the positional coordinates),
but also the velocity and all higher order derivatives [119], of each of the robot links with
respect to the joint coordinates and its derivatives. For the links this implies that there is
no bending, leaving the link transformation matrix TL between two joints to be constant.
The movement of the joints is fully constrained to a defined set of DoF, making the joint
transformation matrices TJ a function of the respective joint coordinates. For each joint the
joint coordinates contain the position of the unconstrained modes. In case of a revolute
joint this is simply the angular position and for a prismatic joint, the linear displacement.
We write the full vector of joint coordinates q as a vector containing all joint positions in
defined order.

q =


q1

q2
...

qn

 (4.6)

In this work the transform of the ith joint frame fJi and the moving joint frame fJ ′i is
defined as 0Ti and 0Ti ′ , respectively. We usually distinguish between forward and inverse
kinematics of a robot. The first expresses simply the end-effector position and orientation
in the base frame, subject to the joint coordinates q (see Fig. 4.1).



4.1 skeletal dynamics 45

f0

Body 1

TL1

Joint 1
Joint 2

Body 2

TL2

Body 3

TL3
TJ1

TJ2

feff

fJ1
f ′J1

f ′J2fJ2

Fig. 4.1: Robot Kinematics. The definitions include transforms for each link and joint between the base
frame f0 and the end-effector frame feff.

0Teff(q) =
∏
J,L

T(q) (4.7)

Another possibility to map the operational space to the joint space, is to use instantaneous
kinematics. It states a linear relationship between the rates of changes of the operational
pose and the joint positions at a certain joint configuration, By differentiating 0Teff(q) with
respect to these joint angles we obtain a Jacobian matrix which is commonly referred to as
the “joint Jacobian” or simply “Jacobian” and yields the forward instantaneous kinematics

ẋ = J(q) · q̇ (4.8)

for the time derivatives of the joint coordinates q and the operational space coordinates x.
In cases where J(q) is square, or in other words the number of operational DoF is equal
to the joint DoF, it is possible to directly invert J(q) to gain the inverse instantaneous
kinematics, given the Jacobian is not singular.

The joint Jacobian offers a dual relationship. It relates motion in the joint space with
motion in the operational space (see Eq. 4.8), but due to its geometric properties it also
gives a mapping from the operational space forces F to the joint torques τ. The latter
relationship can be obtained, utilizing the principle of virtual work [35]. We state equality
of the instantaneous amount of work, applied in both spaces.

FT · ∂x = τT · ∂q (4.9)

Expanding by 1
∂t and inserting Eq. 4.8 we get

FT · J(q) · q̇ = τT · q̇ (4.10)
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which solving for τ, finally yields the relation between joint torques and end-effector
forces.

τ = JT (q) · F (4.11)

The joint Jacobian is a purely geometric property, relating both joint space to operational
space velocities, as well as operational space forces to joint torques.

4.1.2 Dynamics

The kinematic descriptions that can relate the joint movements, expressed in joint coordi-
nates, with the movements of the robot links, neither capture the effect of forces that act
externally on the robot (contact forces), nor can they express the joint torques necessary
to generate certain movements. Rigid body dynamics describe a relationship between the
forces and the motion coordinates. For robotics, the mapping of actuation forces and re-
sulting joint acceleration for a given state of the robot, is of interest, as it allows both for
simulation, as well as control of robots. Generally, a distinction between inverse and for-
ward dynamics is made. While the first computes the necessary joint actuation forces for
a given trajectory, the latter determines the joint acceleration for given actuation forces.
Forward dynamics are mostly used in simulation of robots, whereas the inverse dynam-
ics are utilized in robotic control laws to e. g. linearize the dynamics (see Section 2.2.1
and [119]).

For conventional robots the inverse dynamics relate the joint torques τ with the joint
accelerations q̈, for a state of the robot, given by q, q̇. It can be expressed in the so called
canonical form,

τ = H(q)q̈+C(q, q̇)q̇+ τG(q) (4.12)

while H(q), the mass matrix, is an n× n symmetric, positive definite matrix, expressing
the robot inertia, C(q, q̇) is a n× n matrix, which accounts for Coriolis and centrifugal
effects, and τG(q) is the vector of gravity terms. The equation of motion can be extended
to include additional dynamic effects like friction or external forces.

It can be shown that Ḣ(q) − 2C(q, q̇) is skew-symmetric such that

zT (Ḣ(q) − 2C(q, q̇))z = 0 (4.13)

for any n× 1 vector z. For control it is important to note that both ||C(q, q̇)|| as well as
||τG(q)|| have an upper bound, which in the first case is a function of q̇ [119].

Even though muscles exhibit significant compliance, the skeleton of musculoskeletal
robots can, in most cases, be assumed to be rigid links between the joints. This assumption
will hold for the operational range of the robots, as the links have been designed to show
little strain under the loads considered. In any case, the compliance of the muscles is
higher by a manifold and therefore deformation of the links will be neglected throughout
this work.
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Hence a model of the skeletal dynamics can be built upon the canonical form of the
inverse dynamics in Eq. 4.12. The equation of motion holds for all joint types, however
it is generally used for single DoF joints. Like the human body, musculoskeletal robots
make use of revolute, as well as spherical joints. While the positional joint coordinate of
a revolute joint is simply the angle, the three dimensional rotation of a spherical joint can
be expressed in several different ways. Due to its lack of singularities, the unit quaternion
description of rotation was chosen to describe the rotation of all spherical joints (see also
Section A.2). This comes with two challenges, which are (1) the fact that unit quaternions
have a higher dimensionality than the number of DoF and (2) that joint velocities and
accelerations cannot be expressed as the derivatives of the positional coordinates directly.
Both are addressed by replacing the positional joint coordinate vector q by α, containing
the quaternion representation of all spherical joints, as well as the angular representation
of all revolute joints, leading to a modified joint space dynamic equation.

τ = H(α)q̈+C(α, q̇) + τG(α) (4.14)

Therefore, α exhibits a higher dimensionality than q and a relationship between the
derivative of α and the rotational velocities q̇ needs to be obtained. At this point it has
to be defined, whether joint velocities and accelerations of spherical joints are to be ex-
pressed in the fixed coordinate frame of the joint fJi, i. e. the coordinate frame of the link
closer to the base, or in the moving coordinate frame f ′Ji (see Fig. 4.1). In robots with only
revolute and prismatic joints, as is the case in most common robots, this is not necessary,
as the velocities are equal in both frames. While both definitions are valid, they have to be
consistent throughout the model. Hence, for Eq. 4.14 to be valid, the joint torques τ have
to be defined in the same coordinate frames as the velocities and respective accelerations.
In this work these quantities are expressed in the moving coordinate frame. Therefore,
henceforth q̇, q̈ and τ denote the joint velocities, acceleration and torques, where the
respective ith entry is expressed in f ′Ji.

The derivative of a quaternion Q̇ as a function of the corresponding rotational velocities
~ω ′ in the moving coordinate frame f ′Ji is stated by the matrix U(Qi) (see Section A.2).
Therefore, a matrix A(α) can be defined, as a diagonal matrix,

A(α) = diag(Ãi) Ãi =

1 if joint i = revolute
1
2U(Q)T if joint i = spherical

i = {1, . . . ,N} (4.15)

while Ãi is defined by the joint type and N is the number of joints. Therefore, A denotes
the relation between the derivative of the positional coordinate vector α̇ and the joint
velocities q̇

α̇ = A(α) · q̇ (4.16)

Obviously, the definition of A(α) can be easily extended to cover any other joint type,
however, throughout this work, only revolute and spherical joints are considered. Due to
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the fact that the mapping U(Qi) is orthogonal (see Section A.2), the inverse of A(α) can
be defined as follows.

q̇ = A(α)−1 · α̇ = diag(ÃTi ) · α̇ = AT (α) · α̇ (4.17)

An equation of motion of the skeleton in the canonical form (Eq. 4.14) can be computed,
using the Newton-Euler Algorithm. This well known rigid body dynamics algorithm al-
lows for efficient computation of the inverse dynamics. Extensions towards using quater-
nions as positional coordinates can be included into any implementation of the Newton-
Euler Algorithm by modifying xjcalc and pcalc to use quaternions as input and produce
the spatial transforms XJ and Φi, respectively. A detailed description of the algorithm is
given in Section A.4.

Implementations of the Newton-Euler Algorithm fall into two categories which pro-
duce either (1) closed-form solutions by symbolic computation, or (2) numeric online
evaluation at an operation point, specified by the system state α, q̇. Since the complexity
of the algorithm is O(n) (see Section A.4), the computational cost of online evaluation
is manageable. As an additional advantage, the description of the input model for nu-
meric online evaluation of the Newton-Euler algorithm can be stated in a highly generic
manner. The Robotics Library1 implements this solution and is used throughout this work
for computations that involve the skeletal dynamics. The dynamics algorithm takes an
Extensible Markup Language (XML) description of the robot that covers the kinematic
chain from base to end-effector by stating joint types and transformations in between
the joints. At the same time dynamic properties are assigned to the links of the robot
by stating the center of mass, the inertia tensor, as well as the mass for each body (see
Listing B.1). This data can be extracted from the CAD models of the robot.

4.2 muscle dynamics

For control purposes it is inevitable to have a dynamic model of the actuator. The mus-
cle dynamics obtained in this section are based on the standard model for brushed DC
motors [135]. Next to brushed DC motors, the usage of brushless DC motors has grown
more common in the last years. Even though the methods provided throughout this work,
were developed for the example of brushed DC motors, an extension to brushless motors
is straightforward. The brushed DC motor model can be subdivided into the electrical
part and the mechanical part of the motor and the mechanical model of the gearbox. First,
the electrical part, can be obtained by applying Kirchhoff’s loop rule to the armature loop
(see Fig. 4.2),

vA = RAiA + LA
diA
dt

+ vemf (4.18)

1 The Robotics Library (RL) by Markus Rickert covers platform independent implementations of available
robotics algorithms for forward and inverse kinematics and dynamics, as well as path planning and collision
detection [109]. In this work version 0.6 was utilized with extensions for spherical joints to compute the
inverse dynamics.
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Fig. 4.2: Actuator model. It comprises a model of the electrical and the mechanical part of the brushed
DC motor, as well as a model for the gearbox.

while vA is the armature voltage, RA and LA are the resistance and inductance, respec-
tively, iA is the current and vemf is the back Electro-Magnetic Force (EMF). In robotics,
most commonly, motors with permanent field magnets are used. For this type of motor,
the flux Φ is assumed to be constant and the EMF constant cemf equal to the torque
constant cτ. Therefore, the electrodynamics can be modeled by a single linear motor con-
stant cM

vemf = cemfΦ ·ωM = cM ·ωM (4.19)

τA = cτΦ · iA = cM · iA (4.20)

with τA as the anchor torque and ωM as the rotational velocity of the motor. This lin-
ear model is true in the case of good quality motors that are used within specification,
however, at very high currents Eq. 4.20 does not hold due to saturation effects in the
metal parts. If motors are in these operation ranges, a different model has to be found. In
this work, it is assumed that motors are used within specification, where Eq. 4.20 holds.
Finally, the generated torque τA is driving the motor inertia JM and the output torque of
the motor τM.

τA = JMω̇M + τM (4.21)

While there is a standardized model for brushed DC motors [135], gearboxes are modeled
in different ways depending on the accuracy that needs to be achieved. The most basic
model includes only the gearbox ratio rG which relates the output torque and velocity
to their respective inputs. Ignoring friction is an oversimplification, as even good quality
gearboxes have maximum efficiencies between 40% and 85%, depending on the number
of stages. Therefore, a model of the friction is necessary. However, detailed modeling of
the gearbox friction losses can lead to highly complicated models [100]. There are even
models that consider backlash and hence add hysteresis, however in the following, the
models are kept as simple as possible. The degree of efficiency is another form of de-
scribing a torque dependent friction component, which can be explained by the Coulomb
friction (see Section A.5) between the teeth of the gears, increasing with the transmit-



50 modeling musculoskeletal robots
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f

l

f

Fig. 4.3: Definition of muscle coordinates. The actuator position θ is linked to the muscle length l
through the expansion of the elastic element ∆x which is determined by the muscle force f and
the stress-strain relationship of the elastic material.

ted load. The frictional loss is further increased by a viscous friction component, hence
providing the following model for the gearbox velocity and torque relationship

θ̇ =
1

rG
ωM (4.22)

τact = rG · (τM − JGω̇M) − µcfn − µv ·ωM (4.23)

with θ̇ as the actuator velocity and τact as the actuator torque, which is equal to the load
torque (see Fig. 4.2). Hence θ is the actuator position (see Fig. 4.3). If the assumption is
made that the normal force on the teeth of the gears fn is linear in the transmitted load,
a torque dependent friction factor cF can be defined for the gearbox, simplifying Eq. 4.23.

τact = rG · cF · (τM − JGω̇M) − µv ·ωM (4.24)

The models of the two actuator components can be combined into one state space equa-
tion describing the dynamics of the actuator,

d

dt

[
iA

θ̇

]
=

[
−RALA −cMrGLA
cM
rGJT

− µv
cFrGJT

]
·

[
iA

θ̇

]
+

 1
LA

0

0 − 1
cFr

2
GJT

 · [vA
τact

]
(4.25)

while JT = JM + JG. This model is linear, as long as the efficiency is modeled linearly.
However, the torque dependent friction component changes sign when the drive train
switches from the motor driving the load to the load driving the motor. This happens
frequently when accelerating and decelerating and can be modeled as follows,

cF =

cFF if iA ·ω > 0

1
cFF

if iA ·ω < 0
(4.26)

while cFF is the torque dependent friction factor of the gearbox in forward mode. This
frictional behavior of the model is obviously non-linear, but it can be easily used in
simulation, and even be extended to model stick-slip behavior [140].

The muscles of the musculoskeletal robots, considered in this work, consist of an elec-
tromechanical DC motor and gearbox, a tendon made from kite line and an elastic el-
ement (see Fig. 4.3). The muscle dynamics can be obtained by extending the actuator
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model by a spindle that winds up the tendon and the elastic element. The spindle is re-
sponsible for transferring the rotational movement and torque of the motor into a linear
movement and force. In cases where the tendon is wound up on itself in an uncontrolled
manner, models for the spindle can become highly complex. This effect can only be mod-
eled if constructive measures are taken to control the tendon winding. For the robots
used in this work, the maximum tendon length that is wound up is small enough for this
effect to be negligible. A simple model can be expressed as follows,

x ′ = RS · θ (4.27)

τact = RS · f (4.28)

where RS denotes the spindle radius, f the muscle force and x ′ the linear displacement of
the tendon (see Fig. 4.3). Neglecting any damping that might be present, the most general
model of the elastic element is described by the stress-strain relationship of the material
used.

f = g(∆x) with ∆x = x ′ − x (4.29)

Introducing Eq. 4.27 and replacing the linear coordinate x by the muscle length l and
an initial length l0 which is the length of the muscle at θ = 0 and zero expansion, the
following expression is obtained.

f = g(RSθ+ l− l0) (4.30)

In order to model the full system, it is necessary to express the change in force with
respect to the other system states. For this purpose the time derivative of the force is
found.

ḟ =
∂g

∂∆x
· (RSθ̇+ l̇) (4.31)

In cases, where the flexible element can be assumed to have a linear stress-strain relation-
ship, this expression can be simplified,

ḟ = K · (RSθ̇+ l̇) (4.32)

where K is the diagonal matrix of spring constants. By taking the motor current, the
motor velocity and the muscle force as system states, a full state space model for the
linear muscle dynamics can be found for a single muscle.

d

dt

iAθ̇
f

 =


−RALA −cMrGLA

0

cM
rGJT

− µv
cFrGJT

− RS
cFr

2
GJT

0 K · RS 0

 ·
iAθ̇
f



+


1
LA

0

0 0

0 K

 ·
[
vA

l̇

]
(4.33)
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With some restriction, this model can even be used for finding a controller, when the
elastic element is non-linear, by linearizing non-linear stress-strain relationship around
an operating point.

K(∆x) =
∂g

∂∆x
(∆x) (4.34)

A measure that is often taken to simplify the system model, is to neglect the effects of the
motor inductance LA. This removes the current as an additional state which depending
on the control frequency is often not directly controllable. In this case, the non-linear
dynamics can be calculated to be.

ḟ =
∂g

∂∆x
(Rsθ̇+ l̇)

θ̈ =

(
−

µv

rGcFJT
−
c2M
RAJT

)
θ̇−

1

r2GcFJT
Rsf+

cM
RAJT rG

vA (4.35)

Hence, two different models were found that cover the muscle dynamics. First, a lin-
earized model of the full state space system was developed. The non-linear dynamics
were shown for the reduced system states by neglecting the effects of the motor induc-
tance.

The models stated in this section were developed for single actuators. In the following,
the effects of multiple muscles on the skeleton is considered. Therefore, the actuator
states are redefined to be vectors denoting the states of all actuators, i. e. θ, τact, f and
l are in Rm, where m is the number of muscles, and denote the actuator positions, the
actuator torques, the muscle forces, and the muscle lengths respectively. The dynamics of
a single muscle remain unchanged by this redefinition and are evaluated separately for
each muscle.

4.3 muscle kinematics

When we talk about muscle kinematics, we mean a geometric model of the muscle rout-
ing. The goal is to find a description of how the muscles act upon the skeleton, defining
the interaction of the muscle and the skeletal dynamics. In flexible joint robots, Eq. 4.3
takes this role by relating the angular position of the actuator and the joint angles with
the joint torque. This can be applied for tendon-driven robots with the N configuration,
as the tendons apply torques in both directions and the tendon can be modeled with a
given stiffness. However, starting from the N+ 1 configuration, a different route has to be
taken, since there is no one-to-one mapping of tendon forces to joint torques. Here, the
muscle forces have to be expressed in the joint space.
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Fig. 4.4: The muscle kinematics are determined by the routing of the tendons. The joint torque can be
computed from the three dimensional muscle force vector ~f and the point of actuation of the
muscle ~r. Three exemplary cases are shown, (a) a uni-articular muscle on a revolute joint, (b) a
muscle acting on spherical joint, and (c) a bi-articular muscle spanning two revolute joints.

4.3.1 Muscle and Joint Space Mappings

For robots with point to point tendon routing and fixed lever arms, the mapping between
the vector of muscle forces f and the joint torques τ can be expressed as

τ =M · f =


m1,1 m1,2 . . . m1,m

m2,1 m2,2 . . . m2,m
...

...
. . .

...

mn,1 mn,2 . . . mn,m

 · f (4.36)

while M denotes the n×m matrix of lever arms, whereas mk,j represents the lever arm
of muscle j on the kth component of the torque vector. If a muscle does not affect a joint,
the respective lever arm evaluates to zero.

In cases where muscles do not collide with the skeleton (see also Fig. 4.5), they can be
modeled as direct lines between the anchor points (see Fig. 4.4a) and the torque applied
on a single joint by a muscle is expressed in three dimensional space by the general
force-torque relationship [78]

~τ = ~r× ~f (4.37)

where ~τ denotes the three-dimensional torque vector. While Eq. 4.37 can be evaluated
for arbitrary coordinate frames, the respective elements of the joint torque vector τi are
formulated in the moving joint frame f ′Ji in this work. Assuming that ~τ is expressed
in the base frame f0, the scalar joint torque of a revolute joint is defined as the scalar
product of the three-dimensional torque vector and the unit vector along the joint axis
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collision
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Fig. 4.5: Muscle Collisions. In the presence of spherical joints, tendon routing becomes difficult as it is
not possible to apply pulleys. Therefore, collisions between muscles and the skeletal structure,
depending on the pose, are bound to take place. A spherical joint with a single muscle is shown
for (a) the colliding and (b) the non-colliding case.

ei. As spherical joints are free to rotate in all three axis, this constraint is not necessary.
However, the torque due to the muscle force has to be transformed into the coordinate
frame of the joint.

τi,j =
0~eTi · 0~τi,j = 0~eTi · (0~ri,j × 0~fj) if joint i = revolute (4.38)

τi,j =
i ′R0 · 0~τi,j = i ′R0 · (0~ri,j × 0~fj) if joint i = spherical (4.39)

For multi-articular muscles, the muscle force f acts upon each of the affected joints, fol-
lowing the same rules (see Fig. 4.4c).

Eq. 4.38 and Eq. 4.39 can be rewritten to express the lever arms of the muscles.

τi,j =

[
0~eTi ·

(
0~ri,j ×

0~fj
fj

)]
· fj = mk,j · fj if joint i = revolute (4.40)

τi,j =

[
i ′R0 ·

(
0~ri,j ×

0~fj
fj

)]
· fj =

mk+0,j

mk+1,j

mk+2,j

 · fj if joint i = spherical (4.41)

However, the lever arms now depend on the joint configuration. Therefore, the matrix of
lever arms becomes a function of the joint angles q.

τ =M(q) · f (4.42)

The lever arm approach is feasible for tendon-driven robots, even in the presence of more
complex joint types and bi-articular muscles. It has been used e.g. to describe the muscle
kinematics in the BioBiped [107]. However, in musculoskeletal robots, the assumption of



4.3 muscle kinematics 55

q1

q2

q3

q4

q6

q5

x1

x5

x2

x4

x3

l7

l2

l6

l4

l5

l3

l1

l8

l9

Joint space: RnMuscle space: Rm Op. Space: R6

fop : q 7→ xfmus : q 7→ l

Fig. 4.6: Relating Joint, Operational and Muscle Space. Joint angles q can be mapped onto operational
space positions x, defined by the mapping fop, as well as the muscle lengths l, defined by the
mapping fmus.

straight-line muscles does not hold, due to collisions between muscles and the skeletal
structure and even collisions in between muscles (see Fig. 4.5). In this case, a different
route has to be taken.

From Section 4.1.1 we know that there is a duality in the instantaneous kinematics,
describing the relationship between operational space force and joint torques. The joint
space is defined as the space of possible joint angles q which is in Rn, with n as the
number of skeletal DoF. There exists a mapping fop from joint angles to operational
space coordinates which is in R6, considering three positional and three rotational DoF
(see Fig. 4.6).

fop : Rn → R6 q 7→ x(q) (4.43)

This mapping is neither injective nor surjective. A similar mapping fmus exists for mapping
the joint angles q into the muscle space which is in Rm, with m being the number of
muscles. Therefore, fmus can be defined as follows.

fmus : Rn → Rm q 7→ l(q) (4.44)

In the absence of friction, the muscle length is the length of the shortest path between
the two muscle anchor points which does not collide with any other part of the robot.
It is affected by the coordinates of the joints that are spanned by the respective muscles.
Note that this description can be extended towards muscles with multiple anchor points
by adding the lengths of the segments between the anchor points. In this case fmus is
injective for m > n, but not surjective. Therefore, neither fmus nor fop is invertible, but
due to the fact that fmus is injective it is possible to observe the joint angles through
measurements of l. Muscles that span the same joint are dependent on each other. By
capturing these dependencies in constraints on the muscle lengths, the muscle space can
be constrained to valid vectors of l, rendering fmus to be surjective as well.
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Note that fmus is always differentiable in the case of straight line muscles. In contrast,
muscles that wrap around skeletal structures, might be affected by hysteresis effects due
to friction. This sliding between tendon and skeleton, renders the mapping from joint to
muscle space to be not unique. Even worse, muscles might flip about protruding struc-
tures and the mapping becomes not differentiable. Therefore, care has to be taken that the
path of the tendons is clearly defined at all times when the robot is designed. Through-
out this work, differentiability and uniqueness of fmus are assumed to be ensured by the
robot design.

Differentiating fop with respect to the joint angles, the relative kinematics or joint Jaco-
bian is obtained (see Section 4.1.1). Similarly, the muscle Jacobian L(q) can be obtained
by differentiating fmus with respect to the joint angles [149]. It gives a relation between
the time derivative of the muscle lengths l and the joint velocities q̇ for a given pose.

L(q) =
∂l

∂q
(4.45)

∂l

∂t
= L(q) · q̇ (4.46)

Similar to the joint Jacobian (see Section 4.1.1), the principle of virtual work can be ap-
plied [22], stating equality of the instantaneous amount of work applied in both spaces.
The instantaneous work performed on the system is equal to the muscle force times the
linear coordinate of the kite line. This work is split into the work performed in the joint
space plus the work performed on the elastic elements (see Fig. 4.3).

fT · ∂x ′ = τT · ∂q+ fT (∂x ′ − ∂x) (4.47)

The instantaneous change in length can be obtained from Eq. 4.30,

l = lo − RSθ+K
−1f = l0 − x (4.48)

∂l = −∂x (4.49)

leading to.

−fT · ∂l = τT · ∂q (4.50)

Expanding by 1
∂t , and inserting Eq. 4.46 we obtain

−fT · L(q) · ∂q
∂t

= τT · ∂q
∂t

(4.51)

which can be simplified to yield the following relation between muscle forces and joint
torques.

τ = −LT (q) · f (4.52)

This dual description, for the force to torque and the joint velocity to muscle velocity
relationship is extremely useful. It has been utilized in the simulation of biomechanical
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structures to solve the problem of obtaining the muscle lever arms [22]. By finding the
mapping fmus and drawing the partial derivative, this problem can be solved in an elegant
way. Therefore, from Eq. 4.42 and Eq. 4.52 it can be concluded that the muscle Jacobian
describes the matrix of lever arms as follows.

−LT (q) =M(q) (4.53)

A general solution for f can be formulated, utilizing the pseudo inverse L+T of the muscle
Jacobian transpose [2],

f = −LT+(q) · τ+ L0(q) · f0 f0 ∈ R(m−n) (4.54)

where f0 is an arbitrary vector and L0(q) denotes the m× (m− n) null-space matrix of
LT such that

−LT (q) · L0(q) = 0 (4.55)

While the formulation of the null-space is useful to account for the effects of co-contraction,
the general solution due to the pseudo inverse is in itself not usable for control, as it does
not consider the fact that muscle forces always have to be positive, i. e. muscles can only
pull not push.

In the presence of spherical joints, the pose of the robot cannot be represented by angles,
leading to the choice of utilizing quaternions in the pose vector α (see Section 4.1). In this
case the relation of the derivative of α and the joint velocities q̇ affects the calculation
of the muscle Jacobian. By defining Lα(α) as the partial derivative of the muscle lengths
with respect to the pose vector as follows, the muscle Jacobian L can be derived.

Lα(α) =
∂l

∂α
(4.56)

After solving Eq. 4.56 for ∂l and dividing by ∂t, the relation between the derivative of the
positional coordinate vector and the joint velocities A(α) from Eq. 4.16 can be introduced,
yielding

∂l

∂t
= Lα(α)

∂α

∂t
= Lα(α) ·A(α)

∂q

∂t
(4.57)

and the muscle Jacobian L(α) can be rewritten as follows.

L(α) =
∂l

∂q
= Lα(α) ·A(α) (4.58)

Hence a useful tool has been created to capture the muscle kinematics, which relates the
muscle with the joint space and can be applied even in the case of colliding muscles and
complex joints. The difficulty, however, lies in obtaining the mapping between the joint
and the muscle space fmus. If this mapping can be established and it is differentiable,
partial differentiation can be applied to gain the muscle Jacobian.
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4.3.2 Polynomial Regression Approximation

The muscle Jacobian can be obtained in different ways. One possibility is to find a geomet-
ric representation of the muscle lengths subject to the joint coordinates and subsequently
differentiating with respect to the joint angles. Finding this geometric representation is
straightforward for a single direct line muscle, as the muscle length l(q) can be expressed
as follows

l(q) = ||ax1 −
aTb(q) · bx2|| (4.59)

where ax1 is the position of the first anchor point in the coordinate frame of link a and
bx2 is the position of the second anchor point in the coordinate frame of link b. The
transformation matrix aTb gives the positional and rotational transform between the two
bones and is a function of the joint coordinates that are spanned by the muscle. In case of
a uni-articular muscle, this is simply the rotation of the joint. In case of a multi-articular
muscle, aTb has to combine the transform of all joints and rigid links in between the
muscle anchor points.

This method can be extended towards colliding muscles, if the shapes of the colliding
objects are clearly defined. However, for robots with many muscles and possibly also
more complex joints this task becomes extremely tedious. Therefore, another possibility
is proposed which is to numerically approximate the joint angle to muscle length map-
ping in Eq. 4.44 by drawing samples of muscle lengths and corresponding joint angles.
Subsequently a regression problem can be formulated to obtain the unavailable mapping.
Samples can be obtained by utilizing a force control algorithm to maintain a given ten-
sion and manually moving the joint, covering the work space several times. By recording
motor positions, joint angles and muscle forces, different means of numerical approxima-
tions can be used to obtain Eq. 4.44. If only samples within a certain force boundary are
taken into account, the expansion of the elastic element can be neglected. Therefore, there
is no need to measure the muscle expansion (or to utilize a model for the elastic element
to compute it from the force). In this case the muscle lengths l can be inferred from the
motor positions θ, utilizing the spindle radius RS.

l = l0 − RS · θ (4.60)

It is important to note that friction in the force transmission of the muscles, due to de-
flection mechanisms like pulleys or eyelets (see Chapter 3), can affect the quality of the
samples. In the case where the muscle force is measured in the motor unit, like it is the
case for the Anthrob, the force acting on the limbs is distorted by friction. Hence, the
force measurement deviates from the muscle force which is acting on the elastic element.
The friction losses in the transmission system depend mainly on the transmitted force, as
well as the direction of the movement. Therefore, the error due to the friction losses can
be reduced to a minimum by choosing the control force to be relatively small, leading to
friction losses to be very low, as well. Furthermore, the direction dependency is symmet-
ric around the operating point which can be addressed by drawing samples coming from
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all directions. Regression based on the minimum square error will place the approxima-
tion to be in the center between the different samples leading to a result that is close to
the actual value.

In the case where the relationship between joint angle and muscle lengths is one dimen-
sion, i. e. each muscle length depends only on a single DoF, the muscle length function
can be approximated, using polynomial regression. This is the case for all uni-articular
muscles that span only revolute joints. Hence, the fitting problem for each muscle can the
be formulated as

l1

l2

l3
...

lo


=



1 q1 q21 . . . qd1

1 q2 q22 . . . qd2

1 q3 q23 . . . qd3
...

...
...

. . .
...

1 qo q2o . . . qdo


·


a0

a1
...

ad

 (4.61)

where d is the degree of the polynomial, used for the approximation and o is the number
of samples (see Section 2.3.1). The muscle Jacobian entry for each muscle Li can subse-
quently be approximated as follows.

Li =


1

2 · q
...

d · qd−1


T

·


a1

a2
...

ad

 (4.62)

If only the muscle Jacobian and not the approximation of the muscle length is of interest,
it is not necessary to get a valid initial muscle length l0 as it vanishes during differentia-
tion.

As an example, the muscle Jacobian was approximated for the elbow joint of the An-
throb with the two uni-articular muscle, i. e. the Brachialis and the Triceps. For this pur-
pose, samples of joint angles and corresponding motor positions and forces were gathered
at a sampling frequency of 50Hz, while muscle force control was utilized to maintain a
minimum force of 1N. The operational range of the elbow was covered four times. After
removing all samples with a muscle force that was outside of a ±0.2N range, the num-
ber of samples was reduced to 1708. Good fits for the muscle lengths were achieved (see
Fig. 4.7) with only a 2nd order polynomial for the Triceps (coefficient of determination:
R2 = 0.99999) and a 3rd order polynomial for the Brachialis (R2 = 0.99991).

As a comparison, a geometric solution, utilizing the CAD design of the robot, was de-
termined under the assumption of straight line muscles. Here, Eq. 4.59 can be simplified
due to uni-articular muscles with a single revolute joint.

l(q) = ||ax1 − RZ(q) · bx2|| (4.63)
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Fig. 4.7: Approximation of the muscle kinematics for the Anthrob elbow joint. In (a) the muscle lengths of
both polynomial regression and the geometric solution are shown, and (b) depicts the resulting
muscle Jacobian.

with RZ being the rotation matrix around the rotation axis (z) of the elbow. Fig. 4.7a
depicts a comparison of the geometric solution and the approximation. This led to a good
representation for the muscle length of the Brachialis, even though the anchor points
cannot be uniquely determined due to the movement of the kite line inside the guiding
eyelets. The ceramic guidances allow for a movement of the attachment point inside the
plane of the eyelet which has a radius of 3.5mm. For the Triceps, however, the deviations
became significant. It can be seen that the Triceps cannot be modeled as a straight line
muscle, as it collides both with the lower as well as the upper arm, depending on the
posture.

Fig. 4.7b shows again a comparison between the geometric solution for the muscle Ja-
cobian and the polynomial fit. While deviations are comparably small for the Brachialis—
with respect to measurement accuracy and the fact that anchor point locations change
with the posture—the Triceps deviations are again significant. Interestingly, it can be
seen from the data that the Triceps could be modeled by assuming a constant muscle
Jacobian of ∼ 0.02m.

The presented results clearly show that muscle collisions excessively influence the mus-
cle kinematics. These effects can only be modeled from the collision shapes, available
from CAD data, if measures for guiding the tendons, e. g. pulleys, are introduced. How-
ever, when more complex assemblies like spherical joints or multi-articular muscles are
considered, this is not always possible.
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4.3.3 Neural Network Approximation

For cases where the muscle lengths depend on multiple DoF, the approach of polyno-
mial regression is not suited and different approximation methods should be used. One
possible method is the utilization of Artificial Neural Networks (ANNs) as a regressor
for the multi-dimensional mapping Eq. 4.44 (see Section 2.3.2). The approximation of the
muscle Jacobian through ANN has been extensively studied by Schmaler [114] for the
simulation of a musculoskeletal robot arm. As samples can be drawn from the full joint
space, the function approximator needs only to interpolate between samples, without the
need for extrapolation. Therefore, a Multilayer Perceptron (MLP) network with a single
hidden layer was chosen.

Similar to the approximation by polynomial regression, samples of joint angles and
corresponding muscle lengths are generated, prior to network training. Subsequently, the
ANN is presented offline with the samples, posing a supervised learning problem which
can be treated using the well-known back-propagation algorithm (see Section 2.3.2.2
and [137]). In general, the regression can be divided into subproblems, since not all
muscles are related to all joints. To create simpler learning subtasks and to relieve the
learning algorithm of having to identify the structure of the robot, muscles that span spe-
cific joints are represented by a network that takes only the corresponding joint angles as
inputs, while bi-articular muscles will depend on joint angles from multiple joints and
need to be represented by a separate network.

Subsequently the ANN approximation is differentiated with respect to the joint angles,
using the difference quotient to obtain the muscle Jacobian. In the scalar case this can be
written as follows,

L(q) =
fmus(q+ 0.5 ·∆) − fmus(q− 0.5 ·∆)

∆
(4.64)

where ∆ is the finite difference chosen for the approximation. For multi-dimensional pose
vectors α, the difference quotient can be easily extended,

Lα(α)ij =
fmus,i(α+ 0.5 ·∆ · ej) − fmus,i(α− 0.5 ·∆ · ej)

∆
(4.65)

while fmus,i is the ith entry of the muscle length approximation and ej denotes the unit
vector of the dimensionality of α for the jth pose vector entry.

In [114] the model of a musculoskeletal arm was simulated within CALIPER, a generic
simulation platform based on the open source physics engine Bullet [18]. This platform
was specifically developed for the simulation of musculoskeletal robots [141]. The sim-
ulation facilitated the extraction of samples, as it gave the possibility to drive the joints
directly into arbitrary positions and extract the corresponding muscle lengths. It was
hence possible to gather samples from the complete operational range of the arm. Fur-
thermore ground-truth data for the muscle Jacobian could be generated by driving the
joints to a given pose and subsequently extract the gradient of the muscle lengths at that
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Table 4.1: ANN Approximation for a Simulated Musculoskeletal Arm. Both the normalized mean square
error, as well as the mean absolute error is given for the learned muscle length function and
the resulting muscle Jacobian. [114]

muscle neurons muscle length muscle Jacobian

nMSE error [m] nMSE error [m]

Biceps 20 3.76 · 10−5 1.57 · 10−4 2.44 · 10−1 3.33 · 10−3

Brachialis 1.41 · 10−5 5.96 · 10−5 7.90 · 10−1 1.06 · 10−4

Triceps 5 2.44 · 10−6 5.26 · 10−5 8.46 · 10−1 1.06 · 10−4

Ant. Deltoid 9.30 · 10−5 1.73 · 10−4 6.18 · 10−1 3.63 · 10−3

Infra 5.07 · 10−5 6.18 · 10−5 5.05 · 10−1 4.40 · 10−3

Lat. Deltoid 9.03 · 10−5 1.51 · 10−4 5.72 · 10−1 3.76 · 10−3

Pectoralis 5.75 · 10−5 1.08 · 10−4 5.39 · 10−1 4.53 · 10−3

Post. Deltoid 30 1.02 · 10−4 1.31 · 10−4 5.26 · 10−1 3.84 · 10−3

Supra 7.96 · 10−5 6.76 · 10−5 4.84 · 10−1 3.65 · 10−3

Teres Major 5.44 · 10−5 1.07 · 10−4 4.83 · 10−1 3.99 · 10−3

Teres Minor 3.13 · 10−5 5.30 · 10−5 5.01 · 10−1 3.95 · 10−3

Average 5.57 · 10−5 1.02 · 10−4 5.55 · 10−1 3.21 · 10−3

position, by again driving the joint according to Eq. 4.65. This way it was possible to
evaluate different ANN configurations against the muscle Jacobian that was extracted
directly from the simulation. The simulation model used here is qualitatively equal to the
Anthrob, containing a spherical shoulder joint and a revolute elbow joint. Actuation was
realized by eleven muscles of which one was bi-articular. However, it has to be noted that
dimensions and parameters of the simulation model were different from the Anthrob.

Altogether a total of 103 055 samples were generated. The ANNs were structured, such
that the one bi-articular muscle in the robot was represented by a separate neural network,
taking the quaternion of the shoulder joint and the angle of the elbow as an input. The
muscles on the elbow joint, i. e. the Triceps and Brachialis, were incorporated in a second
network. Finally, the remainder of the muscles that only affect the shoulder were covered
by a third network. The network sizes were determined experimentally and were chosen
as shown in Table 4.1.

While the average error in the length estimation is as low as 0.102mm, the average error
in the muscle Jacobian is already 3.21mm (see Table 4.1). This is still within reasonable
bounds for the application considered here. When this method is applied to learning the
muscle Jacobian for a physical robot, sensor noise and measurement errors can increase
the error in the muscle Jacobian. Hence, special attention has to be paid to the validation
error, since larger errors can degrade performance of control laws that are based on the
muscle Jacobian.
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Table 4.2: ANN Approximation for the Muscle Lengths in the Anthrob. For comparison with Table 4.1,
the mean validation error is given, together with the MSE and the RMSE.

muscle neurons samples error [m] MSE [m2] RMSE [m]

Biceps 20 76 255 2.16 · 10−4 8.14 · 10−8 2.85 · 10−4

Brachialis 1.90 · 10−4 6.59 · 10−8 2.57 · 10−4

Triceps 5 1708 9.96 · 10−5 2.38 · 10−8 1.54 · 10−4

Ant. Deltoid 2.96 · 10−4 1.70 · 10−7 4.12 · 10−4

Infra 2.59 · 10−4 1.55 · 10−7 3.94 · 10−4

Lat. Deltoid 2.99 · 10−4 1.60 · 10−7 4.00 · 10−4

Pectoralis 1.86 · 10−4 8.02 · 10−8 2.83 · 10−4

Post. Deltoid 30 42 208 2.56 · 10−4 1.05 · 10−7 3.24 · 10−4

Supra 2.24 · 10−4 8.34 · 10−8 2.89 · 10−4

Teres Major 2.16 · 10−4 7.46 · 10−8 2.73 · 10−4

Teres Minor 2.89 · 10−4 1.54 · 10−7 3.92 · 10−4

Average 2.30 · 10−4 1.05 · 10−7 3.15 · 10−4

The method was also evaluated on the spherical shoulder joint of the Anthrob and
the eight muscles spanning it. Using the same method as for the elbow joint, samples
of corresponding joint angles, motor positions, and forces were generated by setting the
muscle force control to maintain a minimum force of 2N and sampling at a frequency
of 50Hz. The difficulty here was to cover the full operational space of the robot. The
threshold for removing samples was in this case set to ±1N which led to a total of 42 208
samples which were split into a training set of 33 767 samples and a validation set of
8441 samples and used to train a neural network with 30 hidden neurons. The average
validation RMSE was determined to be 0.346mm (see Table 4.2) which, considering the
measurement errors and the comparably high force threshold, shows that the approxi-
mated muscle Jacobian is of sufficient accuracy. In contrast to the data, gathered from the
simulation (see Table 4.1), no ground truth data was available for the muscle Jacobian
and therefore no error measure could be computed directly. However, it can be seen that
the mean validation errors for the muscle lengths are in the same order of magnitude as
the mean error in simulation. It was shown in [114] that additive white noise had no mea-
surable effect on the quality of the learning. Therefore, the good validation error leads
to the conclusion that the learning of the muscle length mapping was successful and the
extracted muscle Jacobian can be used in controlling the shoulder joint of the Anthrob.
Similarly, the muscle Jacobian was obtained for the muscles of the elbow joint and the
bi-articular Biceps (see Table 4.2).

In Fig. 4.8 the learned muscle Jacobian is shown for two muscles, the Lateral Deltoid
and the Pectoralis, giving examples for the muscle kinematics of the Anthrob. It can be
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seen that muscle lever arms change heavily with the joint angle, which also shows how
muscles take on different roles, depending on the joint angle. E. g. the lever arm of the
Pectoralis around the X-Axis changes by a factor of three, as the shoulder moves around
the Y-Axis (see Fig. 4.8d).

4.4 musculoskeletal robot model

To obtain a model for the full robot from the submodels developed in the previous three
Sections, the force to torque relationship in Eq. 4.52 provided by the muscle Jacobian can
be introduced into the equation of motion for the skeleton Eq. 4.14.

H(q)q̈+C(q, q̇)q̇+ τG(q) = −L(q)T · f+ τext (4.66)

Subsequently, either the linear state space model in Eq. 4.33 or the non-linear relationship
in Eq. 4.35 can be used to describe the muscle dynamics.

From the system at hand, several properties can be extracted. The fact that the mapping
fmus is injective makes the observation of the joint angles from measurements of the mus-
cle lengths possible. From neural science we know that the human sensory motor system
is equipped with muscle length and muscle tension sensors, i. e. the golgi tendon organs
and the muscle spindles, respectively. It is believed that these are mainly used in motor
control, while from the joint angle sensors, only poor quality signals can be obtained [56].
Therefore, by learning the mapping between joint and muscle space, it is possible to ac-
count for the missing joint angle sensors. However, for this purpose absolute and reliable
muscle length measurements need to be available. By construction, this is not possible
in the robot used in this work. The Anthrob features motor position and force sensors,
which can only be used to approximate the muscle lengths if a highly accurate model
of the elastic element is available. Due to visco-elastic effects this is not the case for the
Nitrile Butein Rubber (NBR) rings, used here. This fact is compensated by the utiliza-
tion of joint angle sensors, instead. These are also necessary to initially approximate the
muscle to joint space mapping. In future robots, however, it would be possible to only
obtain this mapping once, using e. g. a motion capture system. Subsequently the muscle
kinematics can be used to compute joint angles from muscle lengths, hence rendering
external sensing facilities or joint angle sensors unnecessary.

In joint actuated robots, the number of DoF is equal to the number of actuators, usually.
This is generally not the case in musculoskeletal robots. Therefore, a distinction between
the number of skeletal DoF n and the number of actuators m is made. Strictly speaking,
the full number of DoF is therefore n+m, as the actuators and the joints are decoupled
by the elastic element. Therefore, the class of musculoskeletal robots belongs to the class
of underactuated systems. This means that not all DoF of the system can be controlled
independently. However, if we constrain ourselves to the skeletal DoF, these robots can
be controllable. A system is called tendon controllable if it is possible to obtain a valid force
vector for any given vector of joint torques. For a force vector to be valid it has to be all
positive, as tendons can only push, not pull. In other words, for any τ ∈ Rn, there exists
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Fig. 4.8: Muscle Jacobian for the Anthrob Shoulder Joint. The ANN approximation is evaluated for two
muscles, the Lateral Deltoid and the Pectoralis for three shoulder angle sweeps. One around
each of the axis, while the Z-Axis zero position is at 0.7 rad.
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f ∈ Rm>0 that satisfies Eq. 4.52. Therefore, L(α) has to satisfy the following two conditions
for the full joint space [2]:

1. rank(LT ) = n

2. The null-space matrix L0 has an all positive column

While the first condition is trivial to obtain, the second one allows for obtaining an all
positive force vector by choosing f0, such that f ∈ Rm>0 (see Eq. 4.54 and [64])

The additional control inputs, due to the higher number of actuators than the skeletal
DoF, can be used to control the co-contraction of muscles. Generally, co-contraction is
not necessary to achieve a certain movement. In this case, the internal forces should be
reduced to a minimum. However, in cases where co-contraction is wanted, the null-space
can be utilized by choosing a vector f0 according to a task that is orthogonal to the
movement of the joint.



5
F E E D B A C K L I N E A R I Z AT I O N

The method of feedback linearization utilizes the non-linear model of a system to cancel
all non-linear elements of the system dynamics (see Section 2.2.1). If the model describes
all aspects of the system dynamics and the model parameters are perfectly known, a lin-
ear controller can be applied to stabilize the closed loop. For stiff robots this leads to the
method of computed torque control [119]. Similarly, feedback linearization was used to
develop controllers for the simulation of biomechanical structures, as well as for tendon-
driven robots, leading to the technique called computed muscle control [130, 131]. Here
a low-level muscle controller was utilized to first stabilize the muscle dynamics which
was subsequently used by the high-level computed muscle controller. These previously pre-
sented control schemes assume perfect low-level control with respect to reference track-
ing. While this might be a valid assumption for some robots and respective controllers,
the design of the muscle greatly influences the dynamics. In the following sections, dif-
ferent implementations of this family of control schemes are developed, discussing the
drawbacks. To enable a comparison, several low-level controllers are developed (see Sec-
tion 5.1). Subsequently, the method of computed muscle control is used to formulate three
different control laws for joint space control.

In robot control we differentiate between (1) a regulation problem, where fixed coor-
dinates are specified and the controller has the goal to bring and keep the robot to this
joint configuration and (2) a trajectory tracking problem, where the robot is controlled
to follow a trajectory, specified by positions, velocities and accelerations [119]. First, the
different control laws are expressed as regulation problems in Section 5.2 and are subse-
quently extended towards trajectory tracking in Section 5.3.

5.1 low-level control

Due to the fact that the actuator dynamics for each of the muscles can be separated from
each other, it is an obvious choice to find a low-level controller for each of the muscles
that operates independently. This method has been used for flexible joint robots to con-
trol the joint torque [5], but also for tendon-driven robots. The independent control of
the tendon forces has been proposed by Salisbury and Craig [113]. This approach has the
advantage that low-level controllers can be implemented independently on distributed
Electronic Control Units (ECUs), where they can possibly run at higher frequencies than
the central controller. In contrast, Abdallah et. al. [1] formulate a control law based on a
low-level actuator position controller. The advantage of the latter one is that the computa-
tion of the stiffness of the elasticity can be handled by the central controller, simplifying

67
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Fig. 5.1: Actuator Position Control. The (a) phase diagram for the actuator dynamics of the Anthrob
shoulder muscles and for a PD control law is shown next to the (b) block diagram of a PD
position controller with disturbance compensation.

the low-level control law. The first possibility, on the other hand, yields a better response
to disturbances in the muscle forces, due to a possibly high control frequency of the
low-level controller. Therefore, both a force and an actuator position controller are refor-
mulated in the following sections.

5.1.1 Actuator Position Control

Controlling the position of an actuator based on a brushed DC motor, is a well known
task. Standard techniques range from P controllers to a cascade of a current control loop
and an outer PD motor position controller. Best results are obtained by realization of a
fast underlying current control law [68]. The time constant for the motor current, can be
identified as follows.

Tcurrent =
LA
RA

(5.1)

Depending on the time constant of the motor coil (see Section 4.2), control frequencies of
5 kHz or larger have to be realized.

There are cases, however, where these high control frequencies are not realizable with
the available hardware. In these cases a PD controller which works directly on the actua-
tor position (see Fig. 5.1b) can be used. Note that the closed loop dynamics are difficult
to stabilize with an integrator in the control law. This becomes obvious when looking at
the simplified motor dynamics

vA = RAiA +
cM
rG
θ̇ (5.2)

θ̈ =
cM
rGJT

iA −
RS

cFr
2
GJT

f (5.3)
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of the Anthrob. The muscle length was kept constant throughout the experiment, by fixating
the far end of the muscle.

that are obtained by taking the actuator dynamics without considering the effects of
friction (see Section 4.2). A transfer function in the frequency domain for the actuator
position can be obtained by setting the muscle force to zero.

θ

vA
=

cM
rGJTRA

s2 + cMrG
RA
· s

(5.4)

The phase diagram of this transfer function can be seen in Fig. 5.1a. It is obvious that
an additional integrator in the controller will only enable a stabilization left of the phase
drop, rendering the controller to be extremely slow. Therefore, an integrator is omitted.
Instead a FFW term is introduced to reduce the steady state error (see Fig. 5.1b). This
term can be computed by determining the steady state control input for a given force.

FFW = vA(0) =
RARS
cMcFrG

f (5.5)

The resulting controller, as depicted in Fig. 5.1b, can be implemented without difficulties
for the ECUs of the Anthrob with a control frequency of 1 kHz. While the choice of PD
parameters is the main influence to the dynamics of the closed loop system, additional
limitations are usually given by an output saturation (e. g. ±12V in the case of the An-
throb). A step response for a typical muscle in the Anthrob is shown in Fig. 5.2. The rise
time (10% to 90%) for the step response can be computed to be 0.31 s. Possibly, faster
rise times are realizable by fine tuning the control parameters, however, the experiment
shows the order of magnitude for a typical musculoskeletal robot muscle, which is mainly
determined by the elastic element.
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Fig. 5.3: Muscle Force Control. A comparison of a (a) PD force controller with a FFW term and a (b)
state-space force controller k with a pre-filter V is shown for the linear system {A,b, cT ,g} of
the muscle model. The step response for a step from (c) 5N to 10N and (d) 5N to 80N shows
the better performance of the state-space control scheme.

5.1.2 Force Control

Methods for muscle force control that have been previously proposed generally rely on
a P or PD controller (see Fig. 5.3 and [50, 113]). This relatively simple control law, can be
applied easily, as control parameters can be found by methods from linear control theory
like direct design by root locus, utilizing the Nyquist stability criterion [28] or even by
simple trial and error. Similar to the previously developed actuator position control a
linear FFW term can be added. Due to the fact that the same effect is compensated, it
computes exactly as stated in Eq. 5.5.

However, considering that the full state vector can be measured by the sensors available
(see Section 3.5), it is also possible to develop a full state space controller. Reformulation
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of the muscle dynamics model from Eq. 4.33 leads to a state space model of the following
form,

d

dt

iAθ̇
f

 =


−RALA −cMrGLA

0

cM
rGJT

− µv
cFrGJT

− RS
cFr

2
GJT

0 K · RS 0

 ·
iAθ̇
f



+


1
LA

0

0

 · vA +

00
K

 · l̇ (5.6)

where the voltage vA is taken as the control input and l̇, the change in muscle length
due to the movement of the skeleton, is handled as a disturbance. Therefore, Eq. 5.6 is
rewritten, neglecting the disturbance.

ẋ = A · x+ b · vA (5.7)

The advantage of such a control scheme is that the system dynamics can be fully taken
into account and a controller can be developed by the method of closed loop pole shaping.
The closed loop dynamics of the state space controller can be obtained by introducing the
control law kT into the system dynamics (see Fig. 5.3b).

ẋ =
[
A− I3 · bkT

]
· x (5.8)

Solving this linear system of Ordinary Differential Equations (ODEs) leads to an exponen-
tial function with three poles. The method of shaping the closed loop system dynamics
by placing the poles and subsequently computing the control gains kT is known as Ack-
ermann’s formula [28]. In order for the closed loop system to be stable, the complex poles
have to be all in the left half plane of the complex s-plane. Good control performance can
be achieved by placing two poles to form a complex conjugate pair, exhibiting the desired
damping behavior. By choosing the damping ratio ζ, a complex pole pair is computed as
follows [28],

p1/2 = −ζ ·ωn ±ωn ·
√
ζ2 − 1 (5.9)

whereas ωn defines how far left in the plane, the poles should lie, and therefore how fast
the controller will converge. For the force controller the state vector is three dimensional
and the third pole is chosen to be purely real and left of the complex pole pair.

This method can be applied in the continuous time domain, but also directly in the
discrete time domain, taking the sampling time into account at design time. For this
purpose, the state space muscle model is transferred into the discrete time domain, where
the discrete time state space model is defined as follows.

x[k+ 1] = Adx[k] + bd · vA (5.10)
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The discrete parameters are defined with respect to the sample time T . There exist several
methods of transferring continuous time models into discrete time models, starting from
integration to zero-pole matching, and finally zero-order hold. The latter assumes that the
continuous signal at the sampling instance is held until the next instance. This behavior
is equivalent to what a discrete controller observes. For the zero-order hold method, Ad
and bd can be expressed as follows [28].

Ad = eA·T (5.11)

bd = A−1 · (Ad − I3) · b (5.12)

The method of pole shaping can be applied equally to the continuous and the discrete
time model. First, the continuous poles p are chosen, as stated by Eq. 5.9, and subse-
quently transferred into the discrete time domain to obtain pd.

pd = ep·T (5.13)

Subsequently, Ackermann’s law can be applied in the discrete time domain, to obtain
the digital control gains kTd. As a counterpart to the FFW term, a pre-filter V can be
introduced for compensating the steady state error. The continuous time closed loop
dynamics are rewritten to include the pre-filter (see Fig. 5.3b).

ẋ =
[
A− I3 · bkT

]
· x + bV · fref (5.14)

By setting the control error to zero as time goes to infinity, the pre-filter V is computed
as follows [28].[

Mx

Mu

]
=

[
A b

cT 0

]−1 [
0

I

]
(5.15)

V =Mu + k ·Mx (5.16)

The standard control method of a PD controller with a FFW term was compared against
the state space controller on a typical muscle of the Anthrob, performing a step up and
step down from 2N to 10N and back and a second step to 80N (see Fig. 5.3c and
Fig. 5.3d). It can be seen that the state-space controller performs slightly better in tracking
the reference than the PD controller. For this reason the state-space controller is utilized
in the following for force control.

5.2 regulation

The well known method of computed torque control, utilizes the canonical form of the
robot dynamics to linearize the system, by compensating the non-linear dynamics (see
Section 2.2.1). Therefore, a torque is computed that according to the joint space system
dynamics in Eq. 4.14 results in a given joint acceleration for the current system states,
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defined by the pose vector and the joint velocities. In case of a perfect model, this method
will cancel the system dynamics and the closed loop system will show the behavior
defined by the linear control law. For regulation, a suitable linear control law is e. g. a
PID controller, giving asymptotic stability and reducing the steady state offset, due to
model uncertainties.

v = q̈ref = P ·∆q+D ·∆q̇+ I ·
i= t

∆t∑
i=0

∆qi (5.17)

Depending on the application, a PD control law could also be sufficient. Obtaining ∆q for
revolute or linear joints is as simple as subtracting the two vectors q and qref. However,
for quaternions Q and Qref, the corresponding ∆Q is not the difference, but the rotation
between the two, which is defined as follows (see also Section A.2).

∆Q = Qref ∗Q−1 =

[
ηrefη+~εTref~ε

η~εref − ηref~ε− S(~εref)~ε

]
(5.18)

The zero rotation in quaternion notation is defined as ∆Q = [±1 0 0 0]T . Therefore
an error function ∆q is chosen as follows [120] which is zero if and only if the rotation is
zero

∆q = η~εref − ηref~ε− S(~εref)~ε (5.19)

where S(·) represents the skew-symmetric matrix as stated in Eq. A.22. Therefore, the re-
sulting ∆q for a spherical joint is a three dimensional vector which points in the direction
of the reference angle and is proportional to the offset. Convergence of the quaternion
error dynamics can be proven by choosing a Lyapunov function candidate,

V = (ηref − η)
2 + [~εref −~ε]T [~εref −~ε] (5.20)

which is zero if ∆Q is equal to [1 0 0 0]T and positive otherwise. The following closed
loop dynamics, based on a P control law, are assumed for illustration.

~ω ′ = P ·∆q (5.21)

The relationship for mapping quaternion derivatives to rotational velocities are developed
in Section A.2. Differentiating Eq. 5.20 and introducing the closed loop dynamics, as
well as the relationship for mapping quaternion derivatives to rotational velocities (see
Eq. A.37) leads to the following Lyapunov function derivative,

V̇ = −2 · (ηref − η)η̇+ 2 · [~εref −~ε]T (−~̇ε)

= [~εηref − η~εref − S(~ε)~εref]
TP∆q

= −∆qTP∆q (5.22)
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which is negative for positive definite proportional gains P unless ∆q is zero. The duality
of this rotation representation presents a problem in quaternion control. There exist unsta-
ble equilibrium points, e. g. Qref = [1 0 0 0]T and Q = [−1 0 0 0]T , both denoting
the zero rotation. In this configuration the Lyapunov function V > 0 and V̇ = 0. There
are several approaches which solve this so called problem of unwinding for underwater
or aerial vehicles [27, 77]. Practically the simplest solution is to constrain the valid quater-
nions, such that only half of the four dimensional unit sphere is used (see Section A.2).
This can be easily realized on construction of the quaternion from the measurement of
the angle and the reference quaternion from the reference angles, hence avoiding the
unstable equilibria.

It can be seen that similar convergence proofs exist for other closed loop dynamics.
Hence, the error in the joint position can be stated for the general case of a kinematic
chain with revolute and spherical joints as follows.

∆q =


∆q1

...

∆qN

 ∆qi =

qiref − qi if joint i = revolute

ηi~εiref − ηiref~εi − S(~εiref)~εi if joint i = spherical
(5.23)

In the following, three control schemes are shown. The simplest, i. e. computed mo-
tor velocity, which neglects the system dynamics, utilizes solely the muscle kinemat-
ics, and operates on a low-level motor position control. Subsequently, Computed Force
Control (CFC) and computed motor position control are developed which both use the
full dynamic model of the skeleton and the muscle kinematics, while they operate on a
low-level force and motor position control, respectively.

5.2.1 Computed Motor Velocity Control

For non-compliant robots, controllers are still formulated independently for each joint
in some cases, rendering the overall control scheme to be only dependent on the robot
kinematics. Transferring this to tendon-driven robots, leads to a controller which con-
trols each actuator position, based on the joint movement. The definition of the muscle
Jacobian (see Eq. 4.46) allows for computation of an actuator velocity for a given joint
velocity if the spring expansion is neglected. Rewriting Eq. 4.30 and differentiating leads
to a relationship of the change in muscle lengths and the actuator velocity θ̇

l̇ = θ̇ · r+ ḟ ·K (5.24)

which can be introduced into Eq. 4.46.

L(α) · q̇ = θ̇ · RS + ḟ ·K (5.25)

The low-level actuator position controller can be utilized to control each actuator, by
integrating the actuator velocity. Here it is assumed that the position controller is fast
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enough to reach the reference position by the time the next reference is calculated by the
computed motor velocity controller for a control frequency T .

θ̇ · T = θref − θ (5.26)

This leads to the following control law, where the term ḟ ·K is neglected.

θref = θ̇ · T + θ =
1

r
L(α) · q̇ · T + θ (5.27)

Obviously this suffers from several drawbacks. By neglecting the system dynamics it is
impossible to account for the change in the spring expansion. In some robots this might
be sufficient, however, in the case of a robotic arm these effects cannot be neglected.
Furthermore, possible errors in the muscle Jacobian can lead to either slackening of the
antagonistic muscles, or to a co-contraction, both of which are unwanted, unless being
directly controllable.

5.2.2 Computed Force Control

If the dynamic effects of the robot are to be taken into account, a different route has to
be taken. Here, computed torque control is extended to compute muscle forces from the
dynamic model, hence accounting for the modeled dynamic effects. Solving the equa-
tion of motion for musculoskeletal robots (see Eq. 4.66) for the muscle forces f is under-
determined, as there are more muscles than DoF in the joints. This allows for adding ad-
ditional constraints when solving for the muscle forces, by formulating an optimization
problem [22], where different objective functions can be used. The most common possibil-
ity here, is to minimize the internal forces by minimizing the Euclidean norm [2, 22, 131].
However, it is also possible to e. g. optimize for energy consumption. There are two con-
straints. First, the forces are to apply a certain reference joint torque, and second, the
muscle forces have a lower bound. By minimizing the muscle forces, using these two
constraints, it is guaranteed that (1) the resulting forces lead to the desired behavior and
(2) the internal forces of the system are kept at a minimum.

min
fref

||fref||
2 (5.28)

subject to

−LT (α) · fref = τref

fref > fmin

This well known optimization problem has the general form of a quadratic program,

min
x

aTx+
1

2
xTGx (5.29)

subject to

Cex− ce = 0
Cix− ci > 0
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q̈refPD
qref

q,q̇

τrefComputed
τ Control

Muscle
Jacobian

Quadratic
program

Force
Control
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ControlvA

x

fref

q

Fig. 5.4: CFC Block Diagram. A layout of the feedback linearization controller is shown. A reference
acceleration is computed from a linear control law. Subsequently, the equation of motion is uti-
lized to compute a reference torque, and finally a reference force is obtained from the quadratic
optimization procedure.

while equality and inequality constraints are expressed by the sets {Ce, ce} and {Ci, ci},
respectively. The solution to a quadratic program can be found by a large variety of opti-
mization procedures, e. g. Wolfe [144] or Dantzig [20] which are extensions to the simplex
method for linear programs. Here, better performance in the sense of computational time
can be achieved by the method of Goldfarb and Idnani [34]. It uses the unconstrained min-
imum of the objective function as a starting point, subsequently adding the constraints.

In this case, where the Euclidean norm of the muscle forces is minimized, G evaluates
to diag(12), which is positive definite. Therefore, the optimization problem is convex, lead-
ing to the fact that no local minima exist and convergence of the optimization procedure
is guaranteed. Therefore, the implementation of the Goldfarb and Idnani method, used
throughout this work for solving the optimization problem, finds a solution in reasonable
time. This method has the advantage that, compared to gradient descent methods, the
number of iterations is constant and does not depend on the input data.

The method of CFC can be seen as applying computed torque control to obtain joint
torques and subsequently computing a vector of muscle forces. This latter step utilizes
the optimization and the muscle Jacobian, which fully linearizes the system dynamics.
Hence the linear system can be stabilized by a PD controller (see Fig. 5.4). The control
input fref satisfies the following equation

H [P ·∆q+D ·∆q̇] +Cq̇+ τG = −LT · fref (5.30)

which, assuming perfect system models, leads to the linearized closed loop behavior.

P ·∆q+D ·∆q̇ = q̈ (5.31)

The transfer function of the closed loop for a single joint Tf(s) can be expressed in the
frequency domain for the complex frequency s

Tf(s) =
pi + di · s

pi + di · s+ s2
(5.32)
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where pi and di denote the ith entry in the diagonal gain matrices P = diag(pi) and
D = diag(di), respectively. Stability for this type of system can be proven using methods
from linear system theory [28]. Therefore the controller shows global asymptotic stability,
assuming (1) perfect system models, (2) quasicontinuous control and (3) perfect low-level
force control.

5.2.3 Computed Actuator Position Control

By extending the method of computed velocity control to account for the dynamic effects,
a third possible controller can be found. Here, the knowledge of the spring stiffness K
is used to compute a vector of motor positions to apply a certain force from the current
motor position θ and the current force f as follows.

θref = θ+ (RSK)
−1(fref − f) (5.33)

The reference force fref is obtained by the CFC method, hence extending it towards uti-
lizing a low-level actuator position control instead of the force control. This approach
has been proposed by Abdallah et al. [1] for a tendon-driven hand and is an extension
to the method of computing motor positions for flexible joint robots from a reference
torque (see Eq. 4.5). The behavior that is obtained by such a control scheme resembles the
Equilibrium Point Hypothesis (EPH) [25] such that the arm is drawn to the equilibrium
point that is defined by the reference positions. The equilibrium point is in this case deter-
mined by the dynamic model of the robot, the system state and the reference acceleration.
Especially when concerned with slow sensor updates or when movements are performed
in a FFW manner it is possible that a position based high-level control law shows a better
performance than a force based high-level control law.

By utilizing the methods developed in Section 5.2.1, it is possible to compensate for
the movement of the joint in a FFW manner, by adding an additional term that adds the
change in muscle length in the subsequent control cycle.

θref = θ+ (RSK)
−1(fref − f) + RS · Lq̇ · T (5.34)

Similar to CFC, the fact that (1) quasicontinuous control, (2) perfect system models and
(3) perfect motor position control is assumed, leads to full compensation of the non-
linear dynamics. Therefore, the stability of the proposed controller can be proven for the
linearized system, equally to the case of computed force control.

5.3 trajectory tracking

Instead of formulating a regulation controller, often trajectory tracking controllers are
proposed [119]. When, instead of a single position, a full trajectory is given, the perfor-
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mance of the controller is often considered to be better. Hence, a PD trajectory tracking
controller is defined for the linearized system [119],

v = q̈ref +D(q̇ref − q̇) + P ·∆q (5.35)

leading to the following error dynamics

ë+D · ė+ P · e = 0 (5.36)

with e = ∆q, for which stability can be again proven by linear system theory.
Obviously this controller can be implemented for both the computed force, as well as

the computed motor position approach, where Eq. 5.35 is applied to either one of the
linearized systems to compute either a reference force or a reference actuator position.
The fact that the error e converges to zero, proves that also the quaternion difference
∆Q of all spherical joints, converges to [1 0 0 0]T , denoting the zero rotation (see
Eq. 5.22).

The trajectory control approach can even be used when the control problem at hand
is actually a regulation problem. This can be addressed by transforming the regulation
problem into a trajectory control problem, hence computing a trajectory from the current
state to the reference state.

q̈ref = P ·∆q+D ·∆q̇ (5.37)

q̇ref = q̇+∆t · q̈ref (5.38)

qref = q+∆t · q̇ref (5.39)

To evaluate the trajectory tracking control laws against the regulation controllers, a step
function was executed for the Anthrob elbow joint. Here, the two effective muscles, the
Brachialis and the Triceps, were utilized with the two available low-level control laws,
(1) for the computed force control law and (2) for the computed motor position control
law (see Fig. 5.5). Both trajectory tracking controllers perform equally for this experiment
and low tracking errors could be achieved. In contrast, the regulation controller with the
computed motor position approach performed poorly. This is due to the fact that results
depend heavily on the model of the elastic element which was assumed to be a linear
spring. However, the Nitrile Butein Rubber (NBR) rings used for the Anthrob muscles
exhibit visco-elastic properties. Hence, the computed motor position approach cannot
be easily applied for a regulation controller. In any case smoother movements could be
achieved by the trajectory tracking controllers.
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Fig. 5.5: Feedback Linearization Control Comparison. (a) Computed Force Control (regulation), (b) Com-
puted Motor Position Control (regulation) (c) Computed Force Control (trajectory), (d) Com-
puted Motor Position Control (trajectory). A minimum force fmin of 4N is maintained.





6
B A C K S T E P P I N G

Amongst others, the methods described in the previous chapter share a drawback that
prevents them from successfully controlling more complex musculoskeletal robots. The
proof of stability relies on the assumption of perfect tracking capabilities of the low-
level controllers. The reason is that both for the trajectory tracking controllers, as well
as for the simpler regulation controllers, the dynamics of the low-level force or actuator
position control are neglected. However, this assumption is only valid for control systems,
where the dynamics of the low-level controller are one order of magnitude faster than the
dynamics of the outer loop. From Fig. 5.2 and Fig. 5.3d it can be seen that this is clearly
not the case, here. Rise times in the area of several hundred milliseconds are by far
longer than the control period of the dynamics of the high-level controllers. Therefore,
the assumptions made for the proof of stability do not hold.

This does not mean that the feedback linearization controllers with underlying tendon
force controllers do not deliver reasonable performance in some applications, because
clearly they do [1, 50]. First, the high rise times of the force control presented in Sec-
tion 5.1.2 are caused by the comparably soft materials used for the flexibility in the mus-
cles. The stiffer the muscles are, the faster the rise times, as the actuators do not have to
wind up as much tendon. Most of the hands, for which this approach has been developed,
were not equipped with additional elastic elements. The flexibility was solely due to the
material of the tendon which is stiffer by several orders of magnitude [2]. Therefore, for
this type of robot, the feedback linearization controllers perform well. If dealing with
more compliant muscles, the problem is particularly apparent, when multi-joint assem-
blies are considered on which several muscles act in variable directions. For the one joint
systems that have been shown in Chapter 5, the movement of the joint will always be in
the demanded direction. Therefore, even if muscles pull less than previously calculated
by the high-level controller the goal position will eventually be reached. When there are
multiple joints, or even a single spherical joint, this is not the case.

In contrast to the control methods developed in the previous chapter, Palli et al. pro-
posed a feedback linearization controller that linearizes the full state of the robot includ-
ing the muscle kinematics and the actuator dynamics [98, 99]. This type of controller does
not rely on a low-level controller and therefore does not exhibit the drawback, mentioned
before. However, it was designed for the specific structure of antagonistically actuated
revolute joints and cannot be directly applied to the more complicated structure of mus-
culoskeletal robots. Furthermore, the design lacks the possibility of distributing parts of
the control, complicating practical implementations in larger setups.

81
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Apart from feedback linearization, there are several techniques that have been used
before in robotics to derive non-linear controllers. For flexible-joint robots, the technique
of passivity based control has been utilized extensively [5, 17, 97]. The core idea of pas-
sivity based control is that a passive system does not gain energy and can therefore be
stabilized by any controller that induces damping. For non-passive systems, a controller
can be found that converts it into a passive system [60]. However, the method does not
give a systematic approach on how to obtain a controller [3].

In contrast, the method of backstepping offers a systematic approach to obtain a sta-
ble non-linear controller. If the system model can be reformulated to form a system of
Ordinary Differential Equations (ODEs) of the following form, this method can be ap-
plied [60].

ẋ0 = f0(x0) + g0(x0)x1

ẋ1 = f1(x0, x1) + g1(x0, x1)x2
ẋ2 = f2(x0, x1, x2) + g2(x0, x1, x2)x3

...

ẋk−1 = fk−1(x0, x1, . . . , xk−1) + gk−1(x0, x1, . . . , xk−1)xk
ẋk = fk(x0, x1, . . . , xk) + gk(x0, x1, . . . , xk)u (6.1)

Such a system is called a strict-feedback system, as the non-linearities fi and gi depend
only on x0, x1, . . . , xi whereas gi has to be invertible for 0 6 i 6 k, over the domain of
interest. Furthermore, it is important to note that the ith ODE has to be linear in xi+1.

If this is the case, a recursive procedure can be applied to find a controller for the
complete system. This procedure starts by finding a stabilizing controller for the first
subsystem, taking x1 as the virtual control input. Subsequently this controller is stepped
back through each of the ODEs, finally producing a controller for the full system. For
simplicity, the case of integrator backstepping is considered which can be applied to less
general systems of the following form,

ẋ0 = f(x0) + g(x0)x1

ẋ1 = u (6.2)

where the system state is made up of x0 ∈ Rn and x1 ∈ R. If we can find a controller
φ(x0) that stabilizes the first system equation such that the origin of

ẋ0 = f(x0) + g(x0)φ(x0) (6.3)

is asymptotically stable, and there is a Lyapunov function V1(x0) which is smooth and
positive definite, such that

∂V1
∂x0

[f(x0) + g(x0)φ(x0)] 6 −W(x0), ∀x0 ∈ D (6.4)
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∫u x0∫
f(·)

g(x0)
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g(x0)

(d)

Fig. 6.1: Integrator Backstepping (adapted from [60]). The (a) inner system can be stabilized by (b) a
control law φ, which is (c) stepped back through the integrator until (d) the final control law
is found.

where W(x0) is positive definite and D is some domain of interest. Then a controller for
the system input u can be found by backstepping. By adding and subtracting, Eq. 6.2 can
be reformulated.

ẋ0 = [f(x0) + g(x0)φ(x0)] + g(x0)[x1 −φ(x0)]

ẋ1 = u (6.5)

Based on this, a change of coordinates is defined

z1 = x1 −φ(x0) (6.6)

resulting in the following system,

ẋ0 = [f(x0) + g(x0)φ(x0)] + g(x0)z1

ż1 = u− φ̇ (6.7)

for which another change of coordinates can be defined.

z2 = u− φ̇ (6.8)

Starting from V1 a Lyapunov function candidate for the full system is found

V2(x0, x1) = V1(x0) +
1

2
z21 (6.9)

which can be differentiated.

V̇2 =
∂V1
∂x0

[f(x0) + g(x0)φ(x0)] +
∂V0
∂x0

g(x0)z1 + z1z2

6 −W(x0) +
∂V1
∂x0

g(x0)z1 + z1z2 (6.10)
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Therefore, a controller for the full system can be found by choosing,

z2 = −
∂V1
∂x0

g(x0) −Λz1, Λ > 0 (6.11)

leading to the final Lyapunov function derivative

V̇2 6 −W(x0) −Λz
2
1 (6.12)

which proves asymptotic stability at the origin (x0 = 0, z1 = 0). The feedback control law
for u can be written as follows, by replacing z2 in Eq. 6.8.

u = φ̇−
∂V1
∂x0

g(x0) −Λ[x1 −φ(x0)] (6.13)

The method of integrator backstepping can be applied to a wider class of systems, namely
the class of strict-feedback systems (see Eq. 6.1). In this case, the recursive procedure starts
again, with the first subsystem

ẋ0 = f0(x0) + g0(x0)x1 (6.14)

and controller φ1 with respective Lyapunov function V1 is found for the virtual control
input x1. Subsequently the method of backstepping is applied recursively to the ith sub-
systems with 1 < i 6 k+ 1. In contrast to the case of integrator backstepping, where the
second system consists solely of an integrator, here, the controller needs to be stepped
back through a more complex system equation (see Eq. 6.1), leading, to the following
virtual control law for the ith step.

φi = g
−1
i−1

[
φ̇i−1 −

(
∂Vi−1
∂xi−2

gi−2

)T
−Λi(xi−1 −φi−1) − fi−1

]
(6.15)

It can be seen that this controller additionally compensates for the functions gi−1 and
fi−1 which were not existent in the simpler case. A respective Lyapunov function can be
stated as follows.

Vi = Vi−1 +
1

2
z2i−1 (6.16)

Hence, this method describes a systematic way of finding controllers for a class of non-
linear systems. In theory it can be applied up to an arbitrary depth, however, there is
the drawback that each controller contains the time derivative of the previous controller
(see Eq. 6.15). In [60], this is addressed by differentiating the control law φi−1 analyti-
cally. However, subsequent differentiations can lead to extremely complex control laws,
already after the second or third recursion step. Therefore, methods have to be explored
to address this so called explosion of complexity.
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The non-linear model developed in Chapter 4 can be rewritten to exhibit the necessary
structure to apply backstepping.

H(α)q̈+C(α, q̇)q̇+ τG(α) = −LT (α)x1

ẋ1 =
∂g

∂∆x
[L(α)q̇+ RSx2] x1 = f

ẋ2 =

[
−

µv

rGcFJT
−
c2M
RAJT

]
x2 −

1

r2GcFJT
RSx1 +

cM
RAJT rG

vA x2 = θ̇ (6.17)

Here, the first system equation represents the skeletal dynamics and the muscle kine-
matics and is made up of the pose vector α and the joint velocity q̇. It takes the muscle
force f as a virtual input which is renamed to x1. The second ODE represents the muscle
dynamics and depends again on the pose vector and the joint velocity, but takes x2 as
a virtual input which is the actuator velocity θ̇. Finally, the last system equation, repre-
senting the actuator dynamics, depends on x1 and x2 and takes the motor voltage vA
as an input. Therefore, the system fulfills the condition of being a strict-feedback system.
Furthermore, we have shown that the muscle Jacobian L(α) is invertible by applying the
quadratic program (see Eq. 5.28). RS is a constant and even in the presence of elastic ele-
ments with non-linear stress-strain relationship, ∂g

∂∆x will not evaluate to zero, similar to
the constant cM

RAJTrG
. Hence, the system dynamics fulfill the requirements for backstepping

to be applicable.
For flexible joint robots, the control law is either stated based on the joint torque or

the actuator position. An example for the first one has been shown by Albu-Schäffer and
Hirzinger [4] and for the second by Slotine and Li [121]. It is possible to rewrite the
system model in Eq. 6.17 to use the actuator position as a state.

H(α)q̈+C(α, q̇)q̇+ τG(α) = −LT (α) · g(RS · θ+ l(α) − l0) (6.18)

In this formulation, it is quite obvious that the first subsystem is not necessarily linear in
the actuator position θ, due to the non-linear spring. Therefore, the method of backstepping
is only applicable to such a system if the assumption of linear stress-strain relationship
is made,

H(α)q̈+C(α, q̇)q̇+ τG(α) − LT (α)KRS [l(α) − l0] = −LT (α)KRS · θ (6.19)

where K denotes the spring stiffness. The more general solution is therefore, to use the
approach of employing the muscle force as a system state.

Oh and Lee [95] designed a non-linear controller for trajectory tracking of flexible joint
robots, based on the method of backstepping. Several extensions were necessary for the
application to the field of musculoskeletal robots which are introduced in the following
section. Subsequently, the extension of Dynamic Surface Control (DSC) is applied to solve
the problem of explosion of complexity which arises due to the appearance of consecutive
differentiation of the controllers.
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6.1 basic backstepping

In the following three sections, controllers for the cascading subsystems are developed, it-
eratively. Starting with the skeletal dynamics, where an initial controller and correspond-
ing Lyapunov function is chosen. Based on this, controllers for the subsystems of the
muscle dynamics, and finally the actuator dynamics are obtained.

6.1.1 Skeletal Dynamics

The first step is to choose a controller for the first subsystem in Eq. 6.17 which takes the
muscle force as an input. For flexible joint robots a trajectory tracking controller has been
proposed by Albu-Schäffer and Hirzinger [4],

τref =H [q̈d −Λ1(q̇− q̇d)] +C [q̇d −Λ1(q− qd)]

+ τG −Kd [q̇− q̇d +Λ1(q− qd)] (6.20)

where Kd and Λ1 are positive definite matrices, denoting control gains. Utilizing the
muscle Jacobian and an optimization based on the techniques developed in Section 5.2.2,
this controller can be directly applied for musculoskeletal robots,

φ1 = −LT+ {H [q̈d +Λ1(q̇d − q̇)] +C [q̇d +Λ1∆q]

+τG −Kd · r} (6.21)

while LT+ denotes a pseudo inverse of the muscle Jacobian and ∆q the angle error based
on Eq. 5.23 which describes the angle offset in the presence of single DoF joints as well as
spherical joints. Note that ∆q defines the difference between the reference angle qd and q.
Hence the sign before ∆q switched in Eq. 6.21. To ensure all positive muscle forces, first
the reference torque τref is computed, and subsequently the quadratic program, defined
in Eq. 5.28 is executed to obtain the reference force vector φ1. The tracking error r is
defined as follows.

r = q̇− q̇d −Λ1∆q

Hence, by proving convergence of r to zero, both the error for the reference joint velocity,
as well as the error in the joint position ∆q is proven to converge to zero. By utilizing
the definition of the quaternion error function Eq. 5.23 it has already been shown that all
joint angles, both for revolute, as well as spherical joints, converge to the zero rotation
(see Eq. 5.22).

The definition of the first change of coordinates shows z1 as the difference between the
reference force φ1 and the force. Therefore it is a measure of the error of the underlying
force control.

z1 = x1 −φ1 (6.22)
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Stability of the given control law can be proven, assuming perfect system models. Hence,
the closed loop dynamics evaluate to

Hṙ+Cr+Kdr = −LTz1 (6.23)

for which a Lyapunov function candidate is chosen.

V1 =
1

2
rTHr (6.24)

Due to the property of the inertia Matrix being positive definite (see Section 4.1.2), it can
be seen that V(r) > 0 for any r 6= 0. Its derivative satisfies the following equation.

V̇1 =
1

2
rT Ḣr+ rTHṙ

=
1

2
rT Ḣr+ rT

[
−Cr−Kdr− L

Tz1
]

=
1

2
rT
[
Ḣ− 2C

]
r− rTKdr− r

TLTz1 (6.25)

It can be shown that [Ḣ− 2C] is skew symmetric (see Eq. 4.13) and the derivative finally
evaluates to the following relationship.

V̇1 = −rTKdr− r
TLTz1 (6.26)

It can be seen that the Lyapunov function derivative contains a term that depends on the
error of the force control z1 and the tracking error r. This term is therefore a function
of the error of the low-level muscle force controller. In the subsequent iterative steps,
suitable compensation for this term is introduced. It is obvious that, provided a low-level
controller drives the error z1 to zero, the derivative of the Lyapunov function is negative
definite for positive definite control gains Kd. Hence, the state of r is equally driven to
zero by the chosen controller.

6.1.2 Muscle Dynamics

The muscle dynamics consist of a model of the change in muscle length, due to the
movement of the joints, and a model of the elastic element. Here, the partial derivative
∂g
∂∆x can be seen as the current spring stiffness Kwhich can be either written as a function
of the spring deflection ∆x or as function of the force.

K(x1) =
∂g

∂∆x
(6.27)

Therefore, the second system equation from Eq. 6.17 can be rewritten, leading to the form
presented in Eq. 6.1,

ẋ1 = K(x1) · L(α)q̇+K(x1) · RSx2
= f1(α, q̇, x1) + g1(x1)x2 (6.28)
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which can be introduced into the differentiated definition of z1 (see Eq. 6.22).

ż1 = ẋ1 − φ̇1 = f1 + g1x2 − φ̇1 (6.29)

Similar to the first change of coordinates, the definition of z2 is an error function for the
next low-level controller which controls the actuator velocity.

z2 = x2 −φ2 (6.30)

According to the method of backstepping, the controller φi contains a term that depends
on the previous Lyapunov function Vi−1 which is applied to the Lyapunov function for
the skeletal dynamics in Eq. 6.24 as follows.

∂V1
∂x0

g0 = −rTH ·H−1LT = −(Lr)T (6.31)

Hence a control law for the muscle dynamics is obtained (see also Eq. 6.15).

φ2 = g
−1
1

[
φ̇1 + Lr−Λ2z1 − f1

]
(6.32)

The closed loop dynamics can be evaluated by introducing this control law into Eq. 6.29,
by means of the second change of coordinate from Eq. 6.30.

ż1 = f1 + g1[z2 +φ2] − φ̇1

= g1z2 −Λ2z1 + Lr (6.33)

Similarly, the recursive procedure, provides a Lyapunov function candidate.

V2 = V1 +
1

2
zT1z1 (6.34)

Finally, the closed loop dynamics from Eq. 6.33 are introduced into the Lyapunov function
derivative.

V̇2 = V̇1 + z
T
1 ż1

= −rTKdr− z
T
1Λ2z1 + z

T
1g1z2 (6.35)

Similar to V̇1, the Lyapunov function derivative in Eq. 6.35 contains a mixed term with
the error function for the next controller level z2. However, the term depending on z1 was
eliminated by the compensation term in the muscle dynamics controller, as expected. The
Lyapunov function derivative is negative definite, provided the error term z2 is driven to
zero, proving convergence to zero both for the state of r, and the state of z1.
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6.1.3 Actuator Dynamics

Rewriting the third system equation from Eq. 6.17, leads to the equation for the actuator
dynamics. With the voltage vA, as an input, a controller for the actuator velocity x2 is to
be found for the following system.

ẋ2 =

[
−

µv

rGcFJT
−
c2M
RAJT

]
x2 −

1

r2GcFJT
RSx1 +

cM
RAJT rG

vA

= f2(x1, x2) + g2vA (6.36)

Eq. 6.36 denotes the scalar case for a single actuator. Due to the fact that at the level of
the actuator dynamics there is no cross-dependence between the muscles, this controller
can be developed for the scalar case and instantiated for each of the muscles individ-
ually. Similar to the previous step, this equation of motion can be introduced into the
differentiated definition of z2 (see Eq. 6.30)

ż2 = ẋ2 − φ̇2 = f2 + g2vA − φ̇2 (6.37)

for which a controller can be found.

φ3 = g
−1
2

[
φ̇2 − g1z1 −Λ3z2 − f2

]
(6.38)

The closed loop dynamics are obtained by replacing the input voltage in Eq. 6.36 by this
control law.

ż2 = f2 + φ̇2 − f2 −Λ3z2 − g1z1 − φ̇2

= −Λ3z2 − g1z1 (6.39)

Again, a Lyapunov function candidate is provided

V3 = V2 +
1

2
zT2z2 (6.40)

which can be differentiated and merged with the closed loop dynamics from Eq. 6.39.

V̇3 = V̇2 + z
T
2 ż2

= −rTKdr− z
T
1Λ2z1 + z

T
1g2z2 − z

T
2Λ3z2 − z2g

T
2z1

= −rTKdr− z
T
1Λ2z1 − z2Λ3z2 (6.41)

Finally a Lyapunov function derivative without mixed terms is obtained. The controller
for the last step of the procedure, compensates for the term z1g1z2 which was still present
in V̇2, hence eliminating it in V̇3.
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6.1.4 Controller Discussion

The previous three sections have produced three control laws for the three subsystems.
While the first one is similar to trajectory tracking controllers for flexible joint roots,
with the extension of the muscle Jacobian, the latter two define a novel force controller
with a compensation for muscle length changes, due to the changes in the joint angles.
Furthermore, the muscle force controller is able to handle non-linear elastic elements.

φ1 = −LT+(α) {H(α) [q̈d +Λ1(q̇d − q̇)] +C(α, q̇) [q̇d +Λ1∆q]

+τG(α) −Kd [q̇− q̇d −Λ1∆q]}

φ2 = g
−1
1 (f)

{
φ̇1 + L(α) [q̇− q̇d −Λ1∆q] −Λ2 [f−φ1] − f1(α, q̇, f)

}

φ3 = g
−1
2

{
φ̇2 − g1(f) [f−φ1] −Λ3

[
θ̇−φ2

]
− f2(f, θ̇)

}

Stability of the proposed controller can be easily proven through Lyapunov’s stability
theorem, where the Lyapunov function candidate is given as follows.

V = V3 =
1

2
rTHr+

1

2
zT1z1 +

1

2
zT2z2 (6.42)

By differentiation, the Lyapunov function derivative is obtained

V̇ = V̇bs = V̇3 = −rTKdr− z
T
1Λ2z1 − z2Λ3z2 (6.43)

which is negative definite, provided that Kd, Λ1 and Λ2 are chosen to be positive definite
matrices. These three controller gain matrices are usually diagonal matrices with positive
elements, where Kd ∈ Rn×n and Λ1,Λ2 ∈ Rm×m. Therefore, it can be concluded that the
developed controller is asymptotically stable under the assumption of quasicontinuous
control and perfect system models.

The controller can be distributed such that the muscle force controller, consisting of
φ2 and φ3, is implemented on the distributed Electronic Control Units (ECUs) (see Sec-
tion 3.5) and φ1 is implemented on the central controller. This is possible, since only the
high-level controller needs to take cross-dependencies between the muscles into account.
On the lower levels, the controllers are independent of each other. Therefore, only the
result of φ1 and a FFW part is needed for computing φ2. This FFW part is defined as
follows and needs to be evaluated centrally for each of the muscles and communicated
to the low-level controllers via the bus system.

FFW = L(α)r− f1(α, q̇, f) (6.44)
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Fig. 6.2: Simulation Model. It consists of a base and a movable link that is connected via a spherical
joint. The system is actuated by five muscles with equal parameters. A (a) rendering of the full
model is shown, as well as (b) a top view, and (c) a close-up of the muscle attachment points.

This provides a similar structure, as for the feedback linearization controllers, where low-
level controllers can run at a much higher frequency than the central controller.

An evaluation of this control scheme was performed, utilizing the simulation of a
spherical joint that is spanned by five muscles (see Fig. 6.2c). The muscles were attached
asymmetrically such that muscles (1) and (2) are positioned excentrically, to allow for
rotational movements (see Fig. 6.2b). The simulation model was implemented in MAT-
LAB/Simulink, utilizing the full dynamic model of muscles with linear springs (see Sec-
tion 4.2) and of the movable link. The muscle kinematics were simulated by means of
computing muscle lever arms for given joint angles, assuming straight line muscles (see
Section 4.3). For results to be as realistic as possible, muscle attachment points were cho-
sen to resemble the order of magnitude for the lever arms as in the Anthrob (see Chap-
ter 3). A friction model for the joint friction, as well as friction due to the tendon routing
was introduced. While the first was implemented by the extended Stribeck model, the
latter was kept more simple by assuming Coulomb friction which depends only on the
transmitted force (see Section A.5). Friction parameters were initially chosen such that
friction losses were negligible, but were increased for later experiments to evaluate the
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robustness of the developed controllers. For a full display of the model parameters, refer
to Table B.3.

For the implementation in simulation, there are two possibilities for handling the con-
troller derivatives φ̇1/2. Either, the controllers are differentiated analytically or numerical
differentiation is performed at runtime. While the first leads to the explosion of com-
plexity problem (see Section 6.1), the latter led to numerical instabilities. Hence, the two
controller derivatives were set to zero, to numerically stabilize the system. This backstep-
ping controller was implemented with the control frequencies that are possible to achieve
with the control architecture proposed in Section 3.5, resulting in 200Hz for the execution
of φ1 and 1 kHz for the low-level control, comprising φ2 and φ3. This control law eval-
uation was performed by applying a reference trajectory, leading to a movement of the
spherical joint of 45◦ around a fixed axis in the X-Y plane. This axis was chosen to apply
asymmetric loads to the muscles, by rotating the X-Axis around Z, by 30◦ (see Fig. 6.2b).
The resulting movement was performed twice in a row, while the resulting trajectory and
the tracking errors were recorded for all three levels of the control law.

The performance of the distributed low-level control laws can be observed in Fig. 6.3.
The muscles (1), (2) and (5) were responsible for lifting the link, hence resulting in positive
motor velocities during the step up and negative motor velocities during the step down.
Slight deviation between force reference and the system output e. g. for muscle (5) is
apparent throughout the trajectory. The Root Mean Square Error (RMSE) for this muscle
can be given as 0.29N. It becomes clear that omitting the controller derivatives from the
implementation led to chattering of the force reference, as well as the motor velocity
reference. The position error for the spherical joint is given by ∆q (see Eq. 5.23). A mean
angle error over the full trajectory can be given as 0.0047 rad, where the angle error is
the Euclidean norm ||∆q||, such that it denotes the absolute deviation of the angle in any
direction.

From the simulated results it can be seen that the backstepping method leads to a sta-
bilizing controller that can be used to control a robot with spherical joints. However, the
necessary simplifications led to relatively poor low-level control results even for perfect
system models. In the following section, the problem of the explosion of complexity is
addressed.
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6.2 dynamic surface control

To improve the performance of the previous controller without having to deal with the
problem of the explosion of complexity, the technique of Dynamic Surface Control (DSC)
can be utilized. It is an extension to backstepping that adds a set of first order low-pass
filters in between each of the steps of the individual controllers. This technique has been
developed by Swaroop et al. [125] to solve the previously mentioned problem, enabling
practical controller implementation which was complicated by the first order differenti-
ation in backstepping. Furthermore, it has been shown that controllers developed with
the technique of DSC feature guaranteed tracking errors that are confined to a ball of
adjustable radius, i. e. it shows Uniformly Ultimately Bounded (UUB) stability. In the fol-
lowing, this technique is applied to the problem of musculoskeletal control, based on the
controller developed in the previous section.

Each of the first order filters is introduced to filter the signal of the controller output.
Therefore, each of the filters is defined such that

µiṡi + si = φi i = {1, . . . ,k} (6.45)

whereas µi is the filter constant, si is an additional coordinate, denoting the output of the
filter, and k is the depth of the strict-feedback system (see Eq. 6.1). Therefore, the previously
defined coordinates zi are redefined,

zi = xi − si (6.46)

utilizing the filtered si, instead of φi. The now filtered derivative of the controller ṡi, can
be replaced by the following term,

ṡi =
φi − si
µi

(6.47)

stabilizing the numerical performance of the online derivative. Note, that low-pass fil-
tering the controller signals decreases the reaction times, while improving numerical
stability. Therefore, choosing the time constants µi poses a trade-off between speed and
stability.

6.2.1 Application to the Control Problem

Two first order filters are applied, one between each of the controllers previously derived
(see Fig. 6.5). While the control law for the skeletal dynamics in Eq. 6.21 is left unchanged,
the first filter is introduced by substituting the filter dynamics (see Eq. 6.45) into the
definition of s1 in Eq. 6.46

x1 = z1 + s1 = z1 +φ1 − µ1ṡ1 (6.48)
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Fig. 6.5: Block Diagram of Dynamic Surface Control. The controller consists of three levels, starting
with the controller for the skeletal dynamics, comprising the trajectory controller and the muscle
Jacobian. The other two levels are the muscle force and the actuator velocity controllers. The
filters are added to obtain filtered values of controllers wherever the controller derivatives φ̇i
are needed.

which affects the closed loop dynamics. An additional term for the state of the filter is
added.

Hṙ+Cr+Kdr = −LT [z1 − µ1ṡ1] (6.49)

The controller for the muscle dynamics from Eq. 6.32 is found by replacing the problem-
atic derivative φ̇1 with the filtered ṡ1,

φ2 = g
−1
1 [ṡ1 + Lr−Λ2z1 − f1] (6.50)

while the closed loop dynamics for the muscle can be obtained by adding the filter to the
muscle dynamics in Eq. 6.28.

ż1 = f1 + g1 [z2 +φ2 − µ2ṡ2] − ṡ1

= g1z2 − g1µ2ṡ2 −Λ2z1 + Lr (6.51)

Finally, the controller for the actuator dynamics can be stated by the same method,

φ3 = g
−1
2 [ṡ2 − g1z1 −Λ3z2 − f2] (6.52)

leading to the following closed loop system, by substitution into the actuator dynamics
in Eq. 6.36.

ż2 = −g1z1 −Λ3z2 (6.53)

The application of DSC changes little in the matter of the controller definition, apart from
replacing each controller φi with the filter output si. However, the dynamics are changed
on each level, by adding the extra state of the filter which affects the proof of stability.



6.2 dynamic surface control 97

6.2.2 Stability Proof

Due to the inclusion of the filter terms, the closed loop system dynamics, as well as the
proof of stability are of increased complexity. The Lyapunov function candidate needs
to be extended by an additional term per filter which describes the error due to the
filter [87, 125]. It can be defined as

ei = si −φi (6.54)

which can be directly substituted into the derivative of si (see Eq. 6.47) as follows.

ṡi =
φi − si
µi

= −
ei
µi

(6.55)

By differentiation, the derivative of the filter error ėi is obtained,

ėi = ṡi − φ̇i = −
ei
µi

+ ξi(. . .) (6.56)

where ξi is a bounded continuous function [125, 136, 147] of the system states, their
derivatives, the controllers, and the reference trajectory. As the controller is only operated
within certain bounds, there is an upper bound to ėi. A Lyapunov function candidate is
chosen [87],

V =
1

2
rTHr+

1

2
zT1z1 +

1

2
zT2z2 +

ke

2
eT1e1 +

ke

2
eT2e2 (6.57)

where ke is a design parameter. Recalling the Lyapunov function from Section 6.1, the
derivative of V can be obtained by differentiation and introduction of the closed loop
dynamics from Eq. 6.49, Eq. 6.51 and Eq. 6.53. Apart from the filter error terms, two
additional terms depending on the filter derivatives ṡi come into play and can be replaced
by Eq. 6.55. Furthermore, Eq. 6.56 is introduced for ė1 and ė2.

V̇ =− rTKdr− z
T
1Λ2z1 − z

T
2Λ3z2

+ rTLTµ1ṡ1 − z
T
1g1µ2ṡ2

+ kee
T
1 ė1 + kee

T
2 ė2

=− rTKdr− z
T
1Λ2z1 − z

T
2Λ3z2

− rTLTe1 + z
T
1g1e2

−
ke

µ1
eT1e1 −

ke

µ2
eT2e2 + kee

T
1ξ1(. . .) + kee

T
2ξ2(. . .)

=+ V̇bs + V̇dsc (6.58)

For simplicity we define V̇dsc as follows,

V̇dsc =− rTLTe1 + z
T
1g1e2

−
ke

µ1
eT1e1 −

ke

µ2
eT2e2 + kee

T
1ξ1(. . .) + kee

T
2ξ2(. . .)
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which is the part of V̇ which differs from the Lyapunov function derivative V̇bs in Eq. 6.43.
At this point Young’s inequality [10, 148] is used to state an upper bound for V̇dsc. It is
defined as,

ab 6
a2

2c
+
cb2

2
(6.59)

whereas the positive constant c can be redefined as 2cj (with j = {1, . . . , 4}) to be applied
four times to V̇dsc, leading to the following inequality.

V̇dsc 6+
rT r

4c1
+ c1e

T
1LL

Te1 +
zT1z1

4c2
+ c2e

T
2g
T
1g1e2

−
ke

µ1
eT1e1 −

ke

µ2
eT2e2

+
eT1e1

4c3
+ c3k

2
eξ
T
1 (. . .)ξ1(. . .) +

eT2e2

4c4
+ c4k

2
eξ
T
2 (. . .)ξ2(. . .) (6.60)

From the definition of ξi(. . .) (see Eq. 6.56) it can be seen that |ξi(. . .)| has an upper bound
that is defined as Mi [87]. For simplicity, c3/4 are chosen to be 1

4 . Therefore V̇ satisfies
the following inequality,

V̇ 6− rT
[
Kd − In

1

4c1

]
r− zT1

[
Λ2 − Im

1

4c2

]
z1 − z

T
2Λ3z2

− eT1

[
Im
ke

µ1
− c1LL

T − Im

]
e1 − e

T
2

[
Im
ke

µ2
− c2g

T
1g1 − Im

]
e2

+
1

4
k2eM

T
1M1 +

1

4
k2eM

T
2M2 (6.61)

where c1/2 and ke can be chosen arbitrarily in R>0. According to Lyapunov’s stabil-
ity theorem there exist gains such that UUB stability of the closed loop system can be
guaranteed [87]. This is true if the gains meet the following inequalities.

Imµ1 6 ke · (c1LLT + Im)−1 (6.62)

Imµ2 6 ke · (c2gT1g1 + Im)−1 (6.63)

Kd > In
1

4c1
(6.64)

Λ2 > Im
1

4c2
(6.65)

Λ3 > 0 (6.66)

For very small µi the design parameter ke can be chosen to be as small as necessary, with-
out violating Lyapunov’s stability theorem, hence making the last two terms of Eq. 6.61

arbitrarily small. However, this impairs at the same time the numeric stability, as ṡi be-
comes sensitive to changes (see Eq. 6.47). Ultimately, as µi → 0, this obviously leads to
the case of basic backstepping. In practice, a trade-off between numeric stability and a low
tracking error has to be found.
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6.2.3 Controller Discussion

The control laws, developed by the method of DSC are structured similarly to the basic
backstepping controller. However, numeric stability due to the differentiation can be greatly
improved by finding suitable filter parameters µi. The separate implementation of a high-
level controller and distributed muscle force controllers can be continued, while filters are
implemented as a part of the low-level control running at higher frequencies (see Fig. 6.5).

φ1 = −LT+(α) {H(α) [q̈d +Λ1(q̇d − q̇)] +C(α, q̇) [q̇d +Λ1∆q]

+τG(α) −Kd [q̇− q̇d −Λ1∆q]}

φ2 = g
−1
1 (f)

{
φ1 − s1
µ1

+ L(α) [q̇− q̇d −Λ1∆q] −Λ2 [f− s1] − f1(q, q̇, f)
}

φ3 = g
−1
2

{
φ2 − s2
µ2

− g1(f) [f− s1] −Λ3
[
θ̇− s2

]
− f2(f, θ̇)

}

An evaluation via simulation of the proposed controller was performed with the same
setup as for the basic backstepping controller, featuring a spherical joint and five muscles
(see Section 6.1.4). Due to the utilization of the filtered controller derivatives φ̇1/2, the
oscillations in the low-level controllers could be removed for all five muscles, compared
to the basic backstepping (see Fig. 6.6). The high-level trajectory tracking performance has
improved slightly as well, leading to a mean angle error of 0.0039 rad (see Fig. 6.7).

This section showed impressive results for the control performance of the DSC con-
trol law in simulation. In physical robots, however, there are uncertainties in the model
parameters as well as unmodeled dynamics. All experiments in this chapter were per-
formed under the assumption of perfectly known system models, as well as negligible
friction. These issues are treated in the following chapter.
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7
A D A P T I V E C O N T R O L

To prove stability of the previously developed controllers, perfectly known system dy-
namics were assumed. However, due to measurement errors and unmodeled effects this
assumption generally does not hold. When this is the case, one of two tools can be used
to overcome the problem. Either, the method of robust control or adaptive control is used.
The first treats model uncertainties or disturbances at design time so that controllers per-
form robustly as long as these uncertainties are within well defined bounds. The latter
uses online adaptation techniques to change control parameters so that after convergence
of the adaptive terms, the controller behaves as specified. Which of the two techniques is
to be used, depends on the problem. In general it can be said that robustified controllers
have faster reaction times on parameter changes, as long as these changes are within the
specified bounds. Obviously these bounds have to be known at design time. Adaptive
controllers on the other hand can deal with a larger range of parameter deviations and
as soon as the adaptation has converged, these controllers are faster [12].

For the problem at hand, the model parameters are comparably well known. However,
all previously developed controllers have some unmodeled dynamics, namely friction.
Especially, for a spherical joint, where dynamics between the DoF are closely coupled,
this can highly degrade performance. Furthermore, due to the dry sliding of the ball on
the surface of the socket, these joints exhibit a considerable amount of friction and the
lack of high frequency sensory feedback impairs the quality of results for identification
procedures. Therefore, the application of adaptive control techniques was chosen to solve
the problem of friction compensation.

Adaptive control has been used widely in the field of flexible joint robot control [14, 91,
122, 132]. The problem that was solved was the adaptation of the model parameters, by
exploiting the fact that the system dynamics can be represented by a regressor matrix Y
and a vector of parameters Θ [119].

H(q)q̈+C(q, q̇)q̇+ τG(q) = Y(q, q̇, q̈)Θ (7.1)

Such a model is called Linear in the Parameters (LP) and can be used in adaptive control,
by defining an update law, based on the tracking error. According to Lyapunov’s stability
theorem, boundedness and even convergence of the model parameters can be proven.

Instead of using a parametric model, it is also possible to use Artificial Neural Networks
(ANNs) as a regression model. This can be achieved by choosing the neural network
topology so that it can approximate the behavior of the model. The network weights con-
stitute the model parameters. For this purpose Radial Basis Function Networks (RBFNs)
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are well suited, as they are linear in the weights (see Section 2.3.3). For instance, this tech-
nique has been used in the control of a planar two-link manipulator where the RBFN was
used to approximate the system dynamics [30]. A similar technique was used to control
a relatively simple tendon-driven mechanism [63], where, however, the muscle Jacobian
was not part of the adaptation.

Adaptive control based on RBFNs for robots is quite problematic in terms of scalability,
however. In the case of an n DoF robot, the ANN would have a total of 3 ·n input signals
(q, q̇, q̈ each ∈ Rn). Due to the interdependence of all signals, each neuron would then
have to consider all inputs, without the possibility of clustering. It is easy to see that the
number of neurons, necessary to cover the dynamics, may scale exponentially with n.
Therefore, this technique is not suited to learn the full robot dynamics of more complex
robots.

Musculosekeletal robots like the Anthrob have been built using accurate manufacturing
techniques and the system dynamics can therefore be captured quite accurately from
the CAD data. What remains problematic is the identification of useful friction models.
Two friction components are relevant for control. These are (1) the friction in the joints
and (2) the friction in the muscles due to the routing of the tendons. Therefore friction
compensators for the two friction terms are integrated into the Dynamic Surface Control
(DSC) controller (see Section 6.2). In the following, first the joint friction, and secondly
the muscle friction is evaluated, followed by the development of an adaptive controller.

7.1 joint friction

The method of adaptive control has been applied to adapt both to deviations in the
dynamic model, as well as a joint friction model for the DLR medical robots with elastic
joints [70]. The parametric model chosen for the joint friction compensation consists of
Coulomb, load dependent and viscous friction (see Section A.5),

τF = (τc + µl|τact|) · sgn(θ̇) + µv · θ̇ = Yf(θ̇, τact)Θf (7.2)

where τact is the actuator torque. The model parameters consist of τc which is the static
Coulomb friction in the joint torque transmission, µl the friction coefficient due to the
transmitted load and µv the viscous friction coefficient. It can be seen that this model is
LP in these parameters which are combined into Θf.

Another possibility is again to utilize an RBFN as a friction compensator [31, 33, 40, 87].
Here, instead of learning the dynamics in Eq. 7.1, a friction term similar to Eq. 7.2 was
learned. The cross-dependence of the friction terms can be neglected, similar to Eq. 7.2.
Therefore, there need to be n neural networks with two input signals each, i. e. the system
scales linearly. Furthermore, it has been shown by Ge et al. [33], by direct comparison,
that adaptive friction compensators based on RBFNs converge better than the ones based
on parametric models.

In the case of a musculoskeletal robot, the definition of the driving load in the joints is
more complex, as part of the force is transmitted by the muscles. Hence this dependency
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Fig. 7.1: Measuring Tendon Friction. The effect of the friction loss due to the tendon routing mechanism
depends on the position of the force sensor. In (a) the force sensor is situated on the driving end,
leading to a force measurement that is distorted by friction. In (b) the force sensor is located
at the load end, where the force measured is the one actually applied to the attachment point.

is omitted from Eq. 7.2. This leaves us with a model that is solely dependent on the joint
velocity q̇. The system dynamics equation (see Eq. 6.17) can be redefined to include a
joint friction term τF(q̇) as follows.

H(α)q̈+C(α, q̇)q̇+ τG(α) + τF(q̇) = −LT (α)x1 (7.3)

7.2 muscle friction

Next to the friction in the joints, musculoskeletal robots can exhibit noteworthy friction
effects within the transmission system of the tendons. E. g. the ceramic eyelets, used in
the Anthrob, deflect the tendons up to 90◦, hence causing significant friction losses (see
Fig. 7.1). The effects on the control performance depend largely on the position of the
muscle force sensor. Generally, there are two schemes, either the force is measured on the
driving end (see Fig. 7.1a) or on the load end (see Fig. 7.1b). In the latter case, the force
measured is the one actually applied. Here, the low-level force control can deal with the
friction with little effort. It is noted, however, that in the case of multi-articular muscles
this scheme is not always applicable. The first case features a more compact design which
leads to reduced cabling complexity. However, the high-level control has to deal with the
tendon friction without being able to effectively measure it. This can be demonstrated
by the simulation model used to evaluate the DSC controller (see Section 6.2). Fig. 7.2
depicts the trajectory tracking performance of DSC for the simulation model previously
used, with friction parameters increased to match the characteristics that are found in
actual systems and force measurement at the driving end. It can be seen that the joint
angle follows the reference very poorly. The mean angle error is severely impaired by
friction and amounts to 0.246 rad. The friction model necessary to capture all effects
would include a Stribeck model, but also the angle at which the eyelet deflects the tendon.
Therefore, a model of the following shape could be used.
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fF =fc + (fs − fc) · e−|v(q̇)/vs|
δs
+ fv · v(q̇) (7.4)

fc = µc · fn(q, f)

fs = µs · fn(q, f)

Even though a model of this shape would possibly capture all effects of the tendon
friction, the high number of parameters and input signals leaves the adaptation process
with a high dimensional search space. This can impede convergence. Instead, one can
analyze the effect of each of the input signals on the friction losses, eliminating the ones
that have little effect or where the relation is too complex to capture. The largest effect
on the tendon friction comes from the transmitted force itself. Furthermore, the angle at
which the tendon is deflected depends on all joint angles that the muscle spans which
highly increases the number of input signals. For the reason of exponential growth this
parameter is omitted. Similarly the dependence on the joint velocity is eliminated and
the system dynamics can be extended by a muscle friction term fF(x1) (with x1 = f).

H(α)q̈+C(α, q̇)q̇+ τG(α) = −LT (α)[x1 − fF(x1)] (7.5)

7.3 adaptive neural network friction compensation

To find a controller that compensates both the joint, as well as the muscle friction, the
system model is rewritten, utilizing Eq. 7.3 and 7.5.

H(α)q̈+C(α, q̇)q̇+ τG(α) + τF(q̇) − LT (α)fF(x1) = −LT (α)x1 (7.6)

Without loss of generality it can be assumed that τF(q̇) and fF(x1) are bounded function,
such that.

|τF(q̇)| < τF ∀q̇ ∈ {−q̇min, q̇max} (7.7)

|fF(x1)| < fF ∀x1 ∈ {0, fmax} (7.8)

Similar to the gravity compensation term τG, the two friction terms can be integrated
into the controller,

φ1 = −LT+(α) {H(α)(q̈d +Λ1(q̇d − q̇)) +C(α, q̇)(q̇d +Λ1∆q)

+τG(α) −Kdr+ τ̂F(q̇)}+ f̂F(x1) (7.9)

where τ̂F and f̂F denote estimations of the unknown functions. Due to the fact that all
necessary friction components are compensated at this level, the other two levels of con-
trol remain unchanged (see Section 6.2). The unknown functions can be approximated by
a vector of RBFNs (see Section 2.3.3), where ΦJFj and ΦMFj denote the vector of Radial
Basis Functions (RBFs) for the approximation of τFj and fFj respectively,

Φijk = exp−
(xij − cik)

T · (xij − cik)
σ2ik

i = {JF,MF}, j = {1 . . . o},k = {1 . . . l} (7.10)
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where l denotes the number of neurons and o the number of RBFNs per friction com-
pensator which is n for the joint friction and m for the muscle friction. This vector is
pre-multiplied with the l× 1 vector of weights Θ̂ij (see Section 2.3.3).

τ̂Fj = Θ̂
T
JFjΦJFj (7.11)

f̂Fj = Θ̂
T
MFjΦMFj (7.12)

An adaptation rule for the weights can be found, utilizing the tracking error r and the
method of gradient decent [33].

˙̂Θij = −Γij ·Φij · rij i = {JF,MF}, j = {1 . . . o} (7.13)

where Γij is the respective learning factor and ri is defined as follows.

rJF = r (7.14)

rMF = −L · r (7.15)

Adaptation rules have been chosen to exhibit convergence of the model parameters ac-
cording to Lyapunov’s stability theorem, which will be proven in the following section.

7.3.1 Stability Proof

The control law in Eq. 7.9 can be rewritten such that,

φ1 = −LT+ {H [q̈d +Λ1(q̇d − q̇)] +C [q̇d +Λ1∆q]

+τG + τF −Kdr− τ̃F}

+ fF − f̃F (7.16)

where τ̃F and f̃F represent the respective estimation errors.

τ̃F = τF − τ̂F (7.17)

f̃F = fF − f̂F (7.18)

This leads to the closed loop behavior for the skeletal dynamics which, next to the terms
from the DSC law, additionally includes the estimation errors.

Hṙ1 +Cr+Kdr+ τ̃F − L
T f̃F = −LT [z1 − µ1ṡ1] (7.19)

It has been shown that an ANN of the given form can approximate any continuous
function, given that the number of neurons is sufficient and the parameters of the RBFs
are appropriate [104], up to a bounded error εJF ∈ Rn and εMF ∈ Rm, respectively.
Therefore, each friction term can be written as

Fij = Θ
T
ijΦij + εij i = {JF,MF}, j = {1 . . . o} (7.20)
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where Fi denotes the joint friction and the muscle friction, respectively and |εi| 6 εi. In
the following, it is assumed that the parameters of the neural network have been chosen
accordingly. Therefore Θ̃ij can be defined to denote the error in the weights as follows.

F̃ij = Θ
T
ijΦij + εij − Θ̂

T
ijΦij = (ΘTij − Θ̂

T
ij)Φij + εij = Θ̃

T
ijΦij + εij (7.21)

A Lyapunov function candidate is found by extending the previous one. Two terms are
added for each of the errors in the weights

V =+
1

2
rTHr+

1

2
zT1z1 +

1

2
zT2z2 +

ke

2
eT1e1 +

ke

2
eT2e2

+
1

2

n∑
j=1

Θ̃TJFjΓ
−1
JFjΘ̃JFj +

1

2

m∑
j=1

Θ̃TMFjΓ
−1
MFjΘ̃MFj (7.22)

The derivative of the Lyapunov function can be stated as follows.

V̇ =− rTKdr− z
T
1Λ2z1 − z

T
2Λ3z2

+ rTLTµ1ṡ1 − z
T
1g2µ2ṡ2 + kee

T
1 ė1 + kee

T
2 ė2

− rT τ̃F + r
TLT f̃F +

n∑
j=1

Θ̃TJFjΓ
−1
JFj

˙̃ΘJFj +
m∑
j=1

Θ̃TMFjΓ
−1
MFj

˙̃ΘMFj

=+ V̇bs + V̇dsc + V̇ad (7.23)

Both V̇bs and V̇dsc have been dealt with in the previous chapter (see Section 6.1 and
Section 6.2, respectively). Therefore only V̇ad is evaluated here. Assuming that the RBFNs
can fully approximate the friction terms up to the bounded error εi, leaves the weights
Θij to be constant. Hence, we note that Θ̇ij is zero and state the following.

˙̃Θij = Θ̇ij − ˙̂Θij = − ˙̂Θij (7.24)

Introducing this and the learning rule from Eq. 7.13, V̇ad can be rewritten. Subsequently,
Eq. 7.21 is inserted.

V̇ad = −rT τ̃F + r
TLT f̃F +

n∑
j=1

Θ̃TJFjΓ
−1
JFj

˙̃ΘJFj +
m∑
j=1

Θ̃TMFjΓ
−1
MFj

˙̃ΘMFj

= −rT τ̃F + r
TLT f̃F +

n∑
j=1

Θ̃TJFjΦJFjrj −

m∑
j=1

Θ̃TMFjΦMFj(Lr)j

= −rT τ̃F + r
TLT f̃F +

n∑
j=1

τ̃Fjrj −

m∑
j=1

f̃Fj(Lr)j − ε
T
JFr+ ε

T
MFLr

6 εTJF|r|+ ε
T
MF|Lr| (7.25)

Hence, the Lyapunov function derivative can be written as follows.

V̇ 6 V̇bs + V̇dsc + ε
T
JF|r|+ ε

T
MF|Lr| (7.26)
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Even though Uniformly Ultimately Bounded (UUB) stability is hereby shown for the
adaptive controller, the proof of stability does not place a bound on the adaptive param-
eters. Due to the fact that there is a non-linear error εi which cannot be approximated by
the ANN, the network weights Θ̂i may grow indefinitely [48]. The proposed solution is
to limit the gradient in some way, e. g. by introducing the so called σ-Modification into
the learning rule [32],

˙̂Θij = −Γij ·Φij · rTij − σi · Θ̂ij (7.27)

which can be seen as a damping term for the network weights, where σi is the positive
damping constant. This modification of the parameter update rule leads to a change in
the Lyapunov function derivative. Again we only need to consider the part of V̇ which
was introduced by the adaptive terms (see Eq. 7.25).

V̇ad =− rT τ̃F + r
TLT f̃F +

n∑
j=1

Θ̃TJFjΓ
−1
JFj

˙̃ΘJFj +
m∑
j=1

Θ̃TMFjΓ
−1
MFj

˙̃ΘMFj

=− rT τ̃F + r
TLT f̃F +

n∑
j=1

Θ̃TJFjΦJFjrj −

m∑
j=1

Θ̃TMFjΦMFj(Lr)j

+

n∑
j=1

Θ̃TJFjΓ
−1
JFjσJFΘ̂JFj +

m∑
j=1

Θ̃TMFjΓ
−1
MFjσMFΘ̂MFj

=− εTJFr+ ε
T
MFLr

+

n∑
j=1

Θ̃TJFjΓ
−1
JFjσJF

[
ΘJFj − Θ̃JFj

]
+

m∑
j=1

Θ̃TMFjΓ
−1
MFjσMF

[
ΘMFj − Θ̃MFj

]
(7.28)

Finally, by employing Young’s inequality (see Eq. 6.59), an upper bound can be placed
on V̇ ,

V̇ 6+ V̇bs + V̇dsc + ε
T
JF|r|+ ε

T
MF|Lr|

−

n∑
j=1

Θ̃TJFjΓ
−1
JFjσJFΘ̃JFj −

m∑
j=1

Θ̃TMFjΓ
−1
MFjσMFΘ̃MFj

+
1

4c5

n∑
j=1

Θ̃TJFjΘ̃JFj +
1

4c6

m∑
j=1

Θ̃TMFjΘ̃MFj

+ c5

n∑
j=1

ΘTJFjσ
2
JFΓ

−2
JFjΘJFj + c6

m∑
j=1

ΘTMFjσ
2
MFΓ

−2
MFjΘMFj (7.29)

where c5/6 can be chosen arbitrarily. Due to the fact that the DSC controller has been
shown to be UUB, and both r and Lr are bounded, the same is proven for the adaptive
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control law, according to Lyapunov’s stability theorem, for the control gains given in
Section 6.2.2.

Another possibility for placing a bound on the network weights Θ̂ij is to turn off the
learning when a certain maximum value has been reached [40].

˙̂Θij =

0 if |F̂ij| > Fijmax and sgn(−Γij ·Φij · rij) = −sgn(F̂ij)

−Γij ·Φij · rij otherwise
(7.30)

In the following, a third possibility was chosen, which is to to use the σ-Modification
only when the approximated function is outside of physically consistent bounds [32].

˙̂Θij =


−Γij ·Φij · rTi − σi · Θ̂ij if F̂ij < Fijmin

−Γij ·Φij · rTi if Fijmin 6 F̂ij 6 Fijmax

−Γij ·Φij · rTi − σi · Θ̂ij if F̂ij > Fijmax

(7.31)

This has the advantage that weights are free to adapt to changes in the friction terms, as
long as they are within a physically consistent range. Outside of this range, the weights
are damped by the σ-modification. Stability for this learning rule can be easily proven by
a combination of the two Lyapunov function derivatives in Eq. 7.25 and Eq. 7.29, while
the former is employed for weights inside the bounds given by Fimin and Fimax and the
latter outside.

7.3.2 Controller Discussion

The integration of adaptive friction compensation terms changes only the high-level con-
trol law. Therefore, the low-level controllers can still be easily implemented on distributed
nodes without additional performance concerns, as the neural network approximation is
only performed on the central control unit.

While for the joint friction symmetric bounds τFmin and τFmax were chosen, the muscle
friction compensation utilizes Eq. 7.31 to ensure muscle frictions that are always positive
which is physically consistent. Here, the difficulty lies in the fact that trajectory errors
are in Rn, while the muscle friction is Rm. Therefore, the learning has a null-space
where adaptation cannot be controlled by the trajectory tracking error r. However, this
is the only error measure available, since the muscle force at the load side is generally
not measurable (see Fig. 7.1). Therefore, the null-space muscle friction is set to zero, to
avoid co-contraction, by pre-multiplying the RBFN output by the muscle Jacobian and
subsequently utilizing the optimization procedure to obtain the reference forces.
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Φ1 = −LT+(α) {H(α) [q̈d +Λ1(q̇d − q̇)] +C(α, q̇) [q̇d +Λ1∆q]

+ τG(α) −Kd [q̇− q̇d −Λ1∆q]

+τ̂F − L
T f̂F
}

Φ2 = g
−1
1 (f)

{
Φ1 − s1
µ1

+ L(α) [q̇− q̇d −Λ1∆q] −Λ2 [f− s1] − f1(q, q̇, f)
}

Φ3 = g
−1
2

{
Φ2 − s2
µ2

− g1(f) [f− s1] −Λ3
[
θ̇− s2

]
− f2(f, θ̇)

}

To reduce the complexity of the learning task it was further assumed that there is no
cross coupling between the friction terms. This led to the fact that each element of a
friction vector could be adapted independently. Therefore, instead of having n inputs
to the joint friction and m to the muscle friction RBFN, there were n and m neural
networks with one input, each, for the muscle and joint friction adaptation, respectively.
It is obvious that this simplification majorly reduces the parameter as well as the learning
space for the RBFNs. Similar to other ANNs it is useful to normalize the inputs to the
neural networks q̇, and f to±1. This is especially helpful for network parameterization, as
centers of the RBFs can be chosen to match the normalized input and are not dependent
on range of the actual input signals.

For the resulting adaptive control law, simulation results were obtained, similarly to
the previous basic backstepping and DSC controllers. To demonstrate the adaptive com-
pensators, friction parameters in the Stribeck model for the joint friction and the Coulomb
model for the muscle friction were increased by a factor of 10. Parameters for the RBFN
compensators were chosen to match the functions, leading to 11 neurons with equidistant
RBF centers for the muscle friction and 15 neurons with centers spaced logarithmically
for higher density around zero. The latter allows for capturing the non-linear behavior of
the Stribeck model which is not present in the Coulomb model. It can be seen that trajec-
tory tracking errors, even in the presence of the higher friction losses, are highly reduced.
Furthermore, the tracking performance increases from the first to the second step, due to
the learning. The mean angle error amounts to 0.011 rad and 0.009 rad, respectively.

A comparison of the mean angle errors was performed for all developed backstepping
controllers. This evaluation shows the performance of the previously developed con-
trollers for the low friction case (see Fig. 7.4a), followed by the high friction case, where
the muscle force was measured at the driving end (see also Fig. 7.1). The tracking error, in
the latter case, was not significantly increased by the higher friction parameters, since the
low-level controller was able to compensate for parts of the muscle friction (see Fig. 7.4b).



7.3 adaptive neural network friction compensation 113

0.00

0.20

0.40

0.60

0.80

1.00

A
ng

le
[
]

-0.20

0.00

0.20

∆
q̇

[r
ad
/s
]

-0.05

0.00

0.05

0.10

∆
q

[r
ad
]

0.00

0.05

0.10

0.15

0 5 10 15 20 25 30

||
∆
q
||
[r
ad
]

Time [s]

ε1 (X-Axis)
ε2 (Y-Axis)
ε3 (Z-Axis)
η
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shown for the quaternion of the spherical joint (top), followed by the error in velocity ∆q̇, the
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Fig. 7.4: Adaptive Controller Comparison. Joint velocity errors ||∆q̇|| and joint angle errors ||∆q|| are
depicted, both for mean and maximum values. For reference, (a) shows the low friction experi-
ments from Chapter 6 for the backstepping (BS) and the DSC control law, while (b) shows the
DSC control law for high joint and muscle friction, using the force measurement at the driving
end. Finally, in (c) experiments with high joint and muscle friction and force measurement at
the load end are depicted for the DSC controller and the adaptive (Ad.) controllers with only
joint (JF), only muscle (MF) and finally both friction compensation terms. The behavior of the
adaptive terms over time is depicted by showing two consecutive executions of the trajectory.

However, when forces were measured at the load end (see Fig. 7.4c), the performance
degraded massively for the DSC controller, which was improved by the introduction of
joint or muscle friction compensation It can be seen that if solely muscle friction com-
pensation was used, the learning was actually diverging from one step to the next, which
was due to the fact that the muscle friction compensator was trying to learn both frictions
at the same time. The application of both friction compensators performed best, while a
learning from the first to the second step was visible, leading to the conclusion that the
learning was converging.



8
R E S U LT S

The results presented in this chapter give evidence of the trajectory tracking performance
of the controllers developed in Chapter 5, Chapter 6 and Chapter 7. A comparison be-
tween the different techniques is presented, utilizing the trajectory tracking error as a
benchmark. As a physical platform, the musculoskeletal robot arm Anthrob (see Chap-
ter 3) was chosen, performing a stepwise evaluation. First, the spherical shoulder joint
with the eight muscles of the rotator cuff was considered, subsequently moving on to
the full arm, including the elbow joint and the bi-articular Biceps. Hence results were
obtained for spherical joint control with colliding muscles, as well as for controlling sys-
tems with bi-articular muscles. Joint angles were measured by an analog potentiometer
in the elbow joint and a stereo camera system with infrared markers on the fixed scapula
and the humerus to obtain the state of the spherical shoulder joint. Even though this
motion capture system features comparably low latencies of 4.3ms in average [139], the
frame rate was limited to 60 fps which complicated the numerical differentiation of the
joint angle to obtain the joint velocities. For this purpose a high-gain observer [60] was
utilized to improve the quality of both the angular position measurements, as well as the
angular velocities.

A high-gain observer utilizes a non-linear system model to estimate all system states,
based on system inputs and measurements of the system output. For musculoskeletal
robots the non-linear system model has been derived in Chapter 4, such that the relation-
ship between system inputs and outputs is well known. The system states α and q̇ are
redefined to x1 and x2, respectively, forming the system model for the high-gain observer
as follows (see also Eq. 4.16),

ẋ1 = A(x1)x2

ẋ2 = γ(x1, x2, f) (8.1)

where γ denotes the full system dynamics. As the camera system measures the angular
position, the measurement y is equal to α and the high-gain observer can be defined as
follows to serve as an estimator for α and q̇ [60],

ˆ̇x1 = A1(x̂1) [x̂2 + h1 ·∆q]
ˆ̇x2 = γ0(x1, x2, f) + h2 ·∆q (8.2)

where x̂1/2 denote estimates of the respective system states and γ0 the nominal system
model. Here, the angle error ∆q according to Eq. 5.23 is utilized with the positive definite
gains h1 and h2 to estimate the system states. Since the controller utilizes a model of
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Fig. 8.1: High-Gain Observer for Shoulder Joint. The angle is shown (top), both for the motion capture
data, as well as the filtered angle (dashed), along with the estimated velocity (bottom).

the system dynamics to compensate for any non-linearities, the result of γ0 is essentially
equal to the reference acceleration.

Estimates for the shoulder joint state can be seen in Fig. 8.1. Although, joint angles
could only be measured at a frequency of 60Hz, useful estimates of the angular veloc-
ity were obtained from the high-gain observer. The joint angle measurement itself was
improved by the filter as well.

8.1 spherical joint control

The developed controllers were evaluated for the control of the spherical shoulder joint
with dismounted forearm. A reference trajectory was obtained by choosing three poses,
subsequently utilizing Eq. 5.39 to interpolate. The resulting trajectory was therefore de-
scribed by reference accelerations, velocities and angles. The three different poses (see
Fig. 8.2) are (1) the resting position, which presents the shoulder adduction, (2) an ab-
duction (extended to the side) of 0.9 rad (∼ 51.6◦), and (3) an anteversion (drawn to the
front) of 0.67 rad (∼ 38.4◦). The zero position formed a pose where the elbow axis was
rotated inwards by 45◦, similar to the relaxed position of a human arm . This trajectory
was chosen, as it presents substantial coverage of the arm’s movement capabilities. It
was executed in several experiments by the control laws obtained by the techniques of
Computed Force Control (CFC) and Dynamic Surface Control (DSC) and finally the dif-
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(a) (b) (c)

Fig. 8.2: Anthrob Trajectory. The trajectory is generated by interpolation between three poses, which are
(a) the shoulder adduction, (b) the shoulder abduction and (c) the shoulder anteversion. For
the full Anthrob the elbow joint performs a flexion between the shoulder abduction and the
adduction.

ferent combinations of adaptive controllers. A compilation of the control parameters can
be found in Table B.6.

8.1.1 Computed Force Control

The first controller that was evaluated was the CFC control law developed in Chapter 5. It
was utilized as a trajectory tracking controller to be comparable to the controllers based
on the backstepping method. Even though this control law performed well for simpler
systems with revolute joints (see Section 5.3 and [23, 58, 72, 113]), it can be seen that
the closely coupled dynamics of several muscles spanning a more complex joint, led
to oscillations in the angle during transitions between poses (see Fig. 8.4 on page 120).
These oscillations were visible during the transition from the abduction to the anteversion
(∼ 5 s to 7 s) and from the anteversion to the adduction (∼ 10 s to 12 s). It is obvious that
this is a consequence of neglecting the low-level control dynamics. The different response
times of the different muscles, led to movements orthogonal to the reference trajectory,
consequence of which were the apparent oscillations in the angle. Furthermore, trajectory
tracking could only be achieved with large errors, even for the three steady states (at 5, 10
and 15 s) The largest steady state error was apparent for the abduction and can be stated
as 0.29 rad (∼ 16.8◦), while the mean trajectory tracking error over the whole trajectory
was 0.24 rad (∼ 13.8◦). For a full account of the tracking errors for the whole set of
experiments refer to Table B.7.

8.1.2 Dynamic Surface Control

Both steady state as well as overall tracking errors were reduced by the novel DSC control
law, where the oscillations could be fully eliminated (see Fig. 8.5 on page 121). This was
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due to the systematic approach of obtaining a set of control laws for the complete system
dynamics, without neglecting low-level dynamics. Steady state errors for the abduction
and the adduction were largely reduced (by approximately a factor of 2.5). The largest
steady state offset was apparent for the anteversion, which was slightly larger than for
the CFC control law.

The main difficulty in the design of the actuation for a spherical joint lies in anticipat-
ing the exact movement capabilities beforehand. Due to the fact that muscle lever arms
change with the pose, there may be poses which can only be reached by large efforts of
individual muscles. In these poses there are simply no muscles which can effectively pull
the arm in the desired direction. Obviously this flaw could be addressed by changes in the
design of the actuation system, but in the case of the Anthrob, placement of the muscle
insertion point was inspired by anatomic considerations. Therefore, it can be concluded
that limitations in the movement capabilities were a result of the design simplifications. It
is clear that the anteversion of a human arm is not a pure glenohumeral movement but is
to a large degree facilitated by a rotational movement of the scapula. The immobilization
of the scapula in the current robot design hence explains larger steady state offsets for
the anteversion. Even though it is possible to reduce the errors in this pose, e. g. by larger
gains or by the adaptive techniques discussed in this work, comparably large errors will
persist due to the chosen actuator placement.
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8.1.3 Adaptive Control

Due to the effects of friction, both in the joint, as well as in the tendon routing mech-
anism, the utilization of adaptive friction compensation terms can improve the control
performance (see Chapter 7). The effects of the two developed adaptive terms was eval-
uated by performing three experiments, starting with (1) the joint friction compensation
(see Fig. 8.6 on page 122), to (2) the muscle friction compensation (see Fig. 8.7 on page 123)
and finally going to (3) the combination of both (see Fig. 8.8 on page 124). The overall
tracking error was reduced for any of the three experiments, while the combination of
both friction compensators performed best. Here, the steady state offset for the abduction
could be reduced to 0.07 rad (∼ 4.1◦). The highest steady state error remains for the antev-
ersion which amounts to 0.12 rad (∼ 6.8◦). A comparison, displaying the tracking errors
for the different control laws, is shown in Fig. 8.3. It can be seen that both maximum as
well as mean tracking errors could be highly reduced by utilizing DSC and even further
by the adaptive friction terms. By executing the trajectory several times, convergence of
the adaptive terms was shown. For any of the adaptive control experiments, the mean
absolute trajectory tracking error was reduced for the second iteration.
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Fig. 8.3: Controller Comparison for Anthrob Shoulder Joint. Mean and maximum absolute joint angle
errors are shown for different controllers: (1) CFC, (2) DSC, and combinations (3-5) of the
adaptive terms for joint friction (JF) and muscle friction (MF). Behavior of adaptive terms is
depicted by showing errors of two consecutive executions.
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Fig. 8.4: CFC for Anthrob Shoulder Joint. The reference trajectory (dashed) and the system output is
shown for the quaternion of the spherical joint (top), followed by the error in position ∆q
(center) and the absolute angle error (bottom).
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Fig. 8.5: DSC for Anthrob Shoulder Joint. The reference trajectory (dashed) and the system output
is shown for the quaternion of the spherical joint (top), followed by the error in position ∆q
(center) and the absolute angle error (bottom).
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Fig. 8.6: Joint Friction Compensation for Anthrob Shoulder Joint. The reference trajectory (dashed) and
the system output is shown for the quaternion of the spherical joint (top), followed by the error
in position ∆q (center) and the absolute angle error (bottom).
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Fig. 8.7: Muscle Friction Compensation for Anthrob Shoulder Joint. The reference trajectory (dashed)
and the system output is shown for the quaternion of the spherical joint (top), followed by the
error in position ∆q (center) and the absolute angle error (bottom).
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Fig. 8.8: Joint & Muscle Friction Compensation for Anthrob Shoulder Joint. The reference trajectory
(dashed) and the system output is shown for the quaternion of the spherical joint (top), followed
by the error in position ∆q (center) and the absolute angle error (bottom).
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8.2 anthrob control

Both the DSC, as well as the adaptive control laws were evaluated for the control of
the full Anthrob, including the elbow joint and the bi-articular Biceps. Here, the same
trajectory as for the shoulder was utilized, while an elbow flexion was executed during
the transition between the abduction and the anteversion (see Fig. 8.2). The resting pose
of the elbow was set to 0.2 rad (∼ 11.45◦) and the flexed pose to 0.5 π (90◦). The elbow
extension was performed during the shoulder adduction (see Fig. 8.10 on page 126). A full
account of the control parameters is given in Table B.8. It can be seen that good tracking
performance could be achieved for both joints, with similar performance as for the pure
shoulder control and negligible tracking and steady state errors for the elbow joint. A
comparison between the non-adaptive and the whole range of previously shown adaptive
controllers was performed, giving evidence that the adaptive friction compensation terms
were again capable of improving the control performance (see Fig. 8.9).

Even though, final control performance of the shoulder is comparable to the results
obtained for the shoulder alone, the inclusion of the bi-articular Biceps led to a very dif-
ferent muscle force distribution. During the anteversion, the Biceps was used heavily to
draw forward the upper arm, hence requiring the triceps to counteract the torque on
the elbow joint. This behavior shows that all muscles, including bi-articular ones, were
used to generate movements, which was only possible by utilizing the learned muscle
Jacobian in conjunction with the optimization procedure. The results of the quadratic op-
timization depend to a large degree on the objective function used. For this experiment,
the Euclidean norm of all muscle forces was utilized for the optimization. By choosing
different objective functions, other criteria could be integrated into the optimization pro-
cedure, leading to different force distributions.
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C O N C L U S I O N S

9.1 summary

Compared to existing tendon-driven robots, musculoskeletal robots feature several con-
trol challenges, due to which existing control techniques cannot be applied. In this work
a control framework was developed to address these issues, starting from a generalized
model for the class of musculoskeletal robots with electromagnetic actuators. This in-
cluded modeling spherical joints in the context of standard dynamic algorithms to cap-
ture the dynamics of the stiff skeleton. These skeletal dynamics were extended by a dy-
namic model of the muscles, comprising the electromagnetic DC motor, the gearbox, the
spindle, the tendon and the elastic element. Finally, the muscle kinematics which cover
the geometric relationship between the muscle and the joint space were derived. In the
presence of complex joints, multi-articular muscles and colliding muscle paths, analytic
models for the muscle kinematics were extremely complex to obtain. Therefore, approx-
imations based on Artificial Neural Networks (ANNs) were proposed, showing the nec-
essary steps to obtain a reliable representation of the muscle Jacobian. Parameterization
of this generic model therefore implies the specification of the skeletal kinematics and
dynamics which can be extracted from CAD data, as well as the muscle parameters. The
latter include the electrical and mechanical constants of the actuator and the gearbox,
the spindle radius, as well as the stress-strain relationship of the elastic element. Finally,
samples have to be gathered from the physical system to establish the muscle Jacobian
by utilization of ANNs. Note that changes in the dynamic parameters of e. g. a muscle
do not affect the geometric relationship of the muscle kinematics.

Previously, the method of feedback linearization in conjunction with independent low-
level muscle control laws was utilized both in the field of tendon-driven robot control, as
well as for biomechanical simulation models. The application of these techniques to mus-
culoskeletal robots allowed for direct comparison against the novel control law based on
Dynamic Surface Control (DSC), developed in this work. DSC, which is based on backstep-
ping, allowed for systematically obtaining a cascade of control laws without neglecting
the dynamics of the low-level controllers. This controller was further improved by utiliz-
ing adaptive neural network control for compensating friction, both in the joints, as well
as in the muscle routing mechanism. Altogether, a framework for musculoskeletal robots
was created, comprising several scalable control laws. The generic formulation of control
laws and system dynamics allow for application of the proposed methods to the full class
of musculoskeletal robots with electromagnetic actuation. A requirement is, however, the
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availability of the necessary proprioceptive sensors. These include joint angle, muscle
force and actuator position sensors.

Each of the developed controllers was evaluated on a musculoskeletal robot arm—the
Anthrob—which was specifically developed for this purpose. Previous musculoskeletal
robots showed impressive results for pure FFW control [46, 75, 88, 92, 107], however
several problems inhibited the development of suitable feedback control laws. These in-
cluded missing sensor modalities or unavailability of dynamic models due to hand man-
ufactured skeletons. Therefore, a modular actuation unit, including the necessary sensing
capabilities, was developed and integrated into the design. The anthropomorphic shapes
were created by exploiting modern 3d printing techniques. The latter enabled the utiliza-
tion of CAD models for obtaining the system dynamics. Furthermore, joint angle sensing
was included for both joint types. This required an external stereo tracking system for
the spherical joint which was developed by Wittmeier [139]. On the other hand, the An-
throb featured the necessary dynamic structures for evaluating musculoskeletal control
techniques, namely a bi-articular muscle, a spherical joint, as well as muscles colliding
with the skeleton.

Utilizing the Anthrob, it was shown that the conventional feedback linearization con-
trollers perform well for simple systems like a single revolute joint with antagonistic ac-
tuation. However, when more complex structures like spherical joints are considered, the
unmodeled dynamics of the low-level controllers lead to massively degraded trajectory
tracking performance. This was greatly improved by the DSC controller. Best performance
was achieved when both joint friction, as well as muscle friction compensators were uti-
lized in the adaptive neural network controller. Therefore, it was possible to control the
full Anthrob including the spherical shoulder, a revolute elbow joint and a bi-articular
muscle with improved trajectory tracking performance. Especially the integration of the
bi-articular Biceps produced interesting muscle tension distributions, where the involve-
ment of the Biceps can be governed by the chosen objective function for the quadratic
optimization.

9.2 future work

In the future, better trajectory tracking performance can be achieved by several possible
improvements in the robot design. These include higher control frequencies through in-
creased communication bandwidth, e. g. by utilizing the faster FlexRay bus instead of
CAN. Furthermore, the limited bandwidth of the shoulder angle sensing should be in-
creased to improve the rate of the joint angle measurements, as well as the quality of the
numerical differentiation to obtain the angular velocities. This can be achieved, either by
increasing the frame rate of the camera system, or by integrating other sensor modalities
for directly measuring the pose of the spherical joint. Another possibility is to estimate
the joint angles from the muscle lengths, similar to the receptors in the human sensory
motor systems. For this purpose the previously learned mapping between the joint and
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the muscle space can be utilized in conjunction with absolute actuator position measure-
ments and accurate models of the elastic elements. When reliable measurements of all
joint angles are available, the generic formulation of the models and the scalability of
the controllers will allow for the application of the developed control schemes to more
complex musculoskeletal setups.

It has been shown that there are correlations between neural activity in the motor cor-
tex and movements in the operational space [41]. A formulation of an operational space
control scheme within the developed framework would hence be beneficial to explain
human motor control. For this purpose, the method of optimizing muscle forces for a
given objective function should be extended to solve both for the muscle as well as the
joint redundancies in a single optimization step. In such a setup, the effects of different
objective functions on the quadratic optimization procedure can be investigated, compar-
ing the resulting trajectories to movements of the human body. Similarly, the null-space
in the muscle redundancies can be utilized for tasks orthogonal to the joint movements,
like joint or operational space impedance or pretensioning of muscles. The latter can
subsequently be exploited, e. g. in explosive movements like throwing or jumping.

Another point of interest for future research is the learning of the kinematic and dy-
namic model. Currently, learning is performed offline after sampling the system manually.
We know that humans are able to learn the kinematics of the muscles, as well as a dy-
namic model of the body, by random muscle activities, i. e. motor babbling [110]. Subse-
quently these models are refined by performing goal-oriented reaching movements. Simi-
larities between the Internal Dynamics Model Hypothesis (IDMH) and adaptive feedback
error learning have been shown by comparison [133]. For adaptive friction compensation
of both joint, as well as muscle friction, convergence could be shown in this work. These
are however not the only possibilities for introducing adaptive terms into the DSC control
law. Similar to the works of Kobayashi and Ozawa [63] or Le-Tien and Albu-Schäffer [70],
the dynamic model for the skeleton could be added to the adaptation process. Investi-
gating methods to subsequently learn a full model of the muscle kinematics, as well as
the skeletal dynamics, based on the framework developed in this work, presents an in-
teresting research task. Possibly this could lead a huge step towards the understanding
of human motor control. Furthermore, an automatic online learning scheme of the mus-
cle kinematics would also improve the applicability of the proposed control schemes to
larger musculoskeletal robots, where manual sampling of the full workspace poses a very
tedious task.
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F O U N D AT I O N S & M AT H E M AT I C A L B A C K G R O U N D

a.1 position and orientation

The theory of how position and orientation are described in three dimensional space can
be found in a variety of books, including the literature on robotics [19, 24, 119]. However,
the notations vary which is why a brief overview of the theory is given in this section.
Where possible, the notations of [119] are followed.

The transformation between a coordinate frame b and a can be described by a trans-
lational and a rotational component. The translational component is denoted by a 3× 1
vector.

a~pb =


apxb
ap
y
b

apzb

 (A.1)

Thus, a vector b~x in coordinate frame b is transformed into a by adding a~pb. The trans-
formation between a rotated frame b into a are defined by multiplication with a 3× 3
rotation matrix.

a~x = aRb · b~x (A.2)

For rotations around a single axes the rotation matrices can be given as follows.

RX(θ) =

1 0 0

0 cos θ − sin θ

0 sin θ cos θ

 (A.3)

RY(θ) =

 cos θ 0 sin θ

0 1 0

− sin θ 0 cos θ

 (A.4)

RZ(θ) =

cos θ − sin θ 0

sin θ cos θ 0

0 0 1

 (A.5)

The rotation between coordinate frame c and a is described by the rotation matrix aRc.

aRc =
aRb · bRc (A.6)
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Arbitrary rotations can be expressed by combining rotations around multiple axes. Com-
bining rotations about the three fixed axes of a reference frame, yields the so called fixed
angle representation which can be parametrized by a minimum set of three angles. An-
other solution is to apply three consecutive rotations around relative axis, leading to
another minimal representation, the so called Euler Angles. Commonly the rotations axis
are given together with the form of representation (e. g. XYZ Euler Angles, ZYZ Euler
angle, etc.).

The angle between two vectors b~x and b~y in coordinate frame b is not affected by the
transformation to a different coordinate frame a.

aRb
b~x · aRbb~y = b~x · b~y (A.7)

Therefore, it can be seen that rotation matrices are orthogonal, leading to the following
property.

(aRb)
T · aRb = I ⇒ (aRb)

−1 = (aRb)
T = bRa (A.8)

If coordinate frames are both translationally and rotationally displaced, it is helpful to be
able to express this transformation with a single operation. This can be represented by a
4× 4 transformation matrix

aTb =

[
aRb

a~pb

0 1

]
(A.9)

while the transformation of bx is executed as follows.[
a~x

1

]
= aTb ·

[
b~x

1

]
(A.10)

In contrast to pure rotation matrices, transformation matrices are not orthogonal. This is
due to the additional 1 in the last row. The inverse of a transformation can be given as
follows.

bTa = (aTb)
−1 =

[
(aRb)

T b~pa

0 1

]
=

[
bRa −bRa · a~pb
0 1

]
(A.11)

Transformations between coordinate frames can be used to express the pose, i. e. position
and orientation, of a rigid body in a reference frame. For this purpose a coordinate frame
is fixed to the rigid body and the transformation describes this frame in the reference
frame. Here, we are often not only interested in the position of the rigid body, but also in
higher order derivatives, e. g. the velocity. Both the linear velocity ~̇x as well as the angular
velocity ~ω is described as a 3× 1 vector.

~̇x = [ẋx ẋy ẋz]T (A.12)

~ω = [ωx ωy ωz]T (A.13)
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The linear velocity is simply the derivative of the positional displacement vector and can
be expressed either in the moving coordinate frame of the rigid body or in the fixed ref-
erence coordinate frame. A relation between any Euler or fixed angle representation and
the corresponding angular velocity can be derived by differentiating the three consecutive
rotation matrices.

a.2 quaternion algebra

Rotations are generally expressed by a 3 × 3 matrix, while only three parameters are
needed to describe the rotation around three axis. (see Section A.1). However, it can be
shown that any of the minimal representations come with the problem of a singularity
when the first and the last axis is aligned, the so called gimbal lock [119]. Furthermore, in-
terpolation between two Euler or fixed angles is never smooth and natural. In computer
simulations quaternions which are sometimes also called Euler parameters have been
used early on for the latter reason [118]. Here, rotation is parameterized by four instead
of three parameters. In control the quaternion representation poses several challenges.
First, the positional component (represented by quaternions) has a higher dimensional-
ity than its first and second derivatives, the velocity and the acceleration and therefore
conversion between the quaternion derivative and the rotational velocity has to be fre-
quently applied. Secondly, suitable error measures have to be defined, to capture the
dynamics of quaternions and lead to convergence of the closed loop control systems.
Despite these challenges, the preferred compact representation of orientation in 3 dimen-
sions are quaternions. They have been mostly used in controlling the orientation of aerial
or underwater vehicles [27] or of the end-effector of a robotic system [145]. A quaternion
is defined as

Q = η+ ε1i+ ε2j+ ε3k (A.14)

while η is generally referred to as the real part and the vector ~ε = [ε1, ε2, ε3]T describes
the imaginary part. i, j and k are operators that satisfy the following rules

i2 = j2 = k2 = ijk = −1, (A.15)

ij = k, jk = i,ki = j, (A.16)

ji = −k,kj = −i, ik = −j (A.17)

while the conjugate of Q is defined as

Q̃ = η− ε1i− ε2j− ε3k (A.18)

and its norm ||Q|| is given as follows.

||Q|| = Q̃ ◦Q = η2 − ε21 − ε
2
2 − ε

2
3 = Q ◦ Q̃ (A.19)
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Note that the multiplication between quaternions is generally not commutative. It can
be shown that the multiplication of two quaternions Q1 and Q2, can be expressed as a
matrix multiplication

Q1 ◦Q2 =

[
η1 −~εT1

~ε1 ηI3 + S(~ε1)

]
·

[
η2

~ε2

]
= Q

1
·

[
η2

~ε2

]
(A.20)

Q2 ◦Q1 =

[
η1 −~εT1

~ε1 ηI3 − S(~ε1)

]
·

[
η2

~ε2

]
= Q̃

1
·

[
η2

~ε2

]
(A.21)

with respective matrices for the conjugate of Q1 as QT
1

and Q̃T
1

[115], while the operator
S(·) denotes the skew-symmetric matrix that satisfies S(~x)~v = ~x×~v.

S(~x) =

 0 −xz xy

xz 0 −xx

−xy xx 0

 (A.22)

Parameterization of rotations utilizes unit quaternions, of which the norm is confined to
||Q|| = 1. This can be visualized as a unit sphere in four dimensional space where unit
quaternions are constraint to the surface of the sphere [118]. Any quaternion that is not
on the sphere does not only rotate a vector but changes also its length. By expressing
a vector b~x in quaternion notation it can be rotated by a unit quaternion Q, denoting
the rotation aRb. For this purpose, the real part is taken as η = 0, leading to bX =

0+ bxxi+
bxyj+

bxzk. The rotation is executed by pre- and postmultiplying Q and Q̃. A
relationship for the rotation matrix aRb is obtained by introducing Eq. A.20 and Eq. A.21.

aX = Q ◦ bX ◦ Q̃ (A.23)[
0

ax

]
= Q · Q̃T ·

[
0

b~x

]
=

[
1 0T

0 aRb

]
·

[
0

b~x

]
(A.24)

The resulting rotation matrix can be written as follows.

R(Q) =

1− 2(ε
2
2 + ε

2
3) 2(ε1ε2 − ηε3) 2(ε1ε3 − ηε2)

2(ε1ε2 − ηε3) 1− 2(ε21 + ε
2
3) 2(ε2ε3 − ηε1)

2(ε1ε3 − ηε2) 2(ε2ε3 − ηε1) 1− 2(ε21 + ε
2
2)

 (A.25)

While obviously increasing the dimensionality of the description, the issue of singularities
is eliminated. Furthermore, quaternions can be used for efficiently generating rotational
movements at constant speed around a constant rotation axis (e. g. SLERP [118]).

Similar to any other parameterization of a rotation (see Section A.1), differentiating a
quaternion does not directly yield the angular velocity vectorω. As a base for the angular
velocity either the rotated x’y’z’ coordinate frame or the fixed xyz coordinate frame can be
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chosen, resulting in ω ′ or ω, respectively. The relationships for the quaternion derivative
and the respective angular velocities can be derived, starting from the definition of the
quaternion rotation [115],

aX = Q ◦ bX ◦ Q̃ (A.26)
bX = Q̃ ◦ aX ◦Q (A.27)

whereas Eq. A.27 is introduced into the differentiation of Eq. A.26.

aẊ = Q̇ ◦ bX ◦ Q̃+Q ◦ bX ◦ ˙̃Q

= Q̇ ◦ Q̃ ◦ aX ◦Q ◦ Q̃+Q ◦ Q̃ ◦ aX ◦Q ◦ Q̇
= Q̇ ◦ Q̃ ◦ aX+ ◦aX ◦Q ◦ Q̇ (A.28)

The scalar part of Q̇ ◦ Q̃ and Q ◦ ˙̃Q is both zero, since Q is a unit quaternion and the
vector parts are opposite.

Q̇ ◦ Q̃ =

[
0

~w

]
(A.29)

Q ◦ ˙̃Q =

[
0

−~w

]
(A.30)

Utilizing this relationship, the quaternion differentiation can be simplified as follows.

aẊ =

[
0

~w

]
◦ aX+ aX ◦

[
0

−~w

]
=

[
−~wT · a~x
~w× a~x

]
+

[
a~xT · ~w
~w× a~x

]
(A.31)

=

[
0

2~w× a~x

]
(A.32)

aẋ = 2~w× a~x = ~ω× a~x (A.33)

Hence, ~ω = 2~w. The four relationships for mapping quaternion derivatives to rotational
velocities can be stated, utilizing Eq. A.20 and Eq. A.21.[

0

~ω

]
= 2 · Q̃T · Q̇ =2

[
η ~εT

−~ε η · I3 + S(~ε)

]
· Q̇ (A.34)

Q̇ =
1

2
· Q̃ ·

[
0

~ω

]
=
1

2

[
η −~εT

~ε η · I3 − S(~ε)

]
·

[
0

~ω

]
(A.35)[

0

~ω ′

]
= 2 ·QT Q̇ =2

[
η ~εT

−~ε η · I3 − S(~ε)

]
· Q̇ (A.36)

Q̇ =
1

2
·Q ·

[
0

~ω ′

]
=
1

2

[
η −~εT

~ε η · I3 + S(~ε)

]
·

[
0

~ω ′

]
(A.37)
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We can define G(Q) and U(Q) as follows

G(Q) =

−ε1 η −ε3 ε2

−ε2 ε3 η −ε1

−ε3 −ε2 ε1 η

 (A.38)

U(Q) =

−ε1 η ε3 −ε2

−ε2 −ε3 η ε1

−ε3 ε2 −ε1 η

 (A.39)

and state the relationships between the derivative of a quaternion Q̇ and the angular
velocities ω and ω ′, respectively.

ω = 2 ·G(Q) · Q̇ (A.40)

Q̇ =
1

2
·G(Q)T ·ω (A.41)

ω ′ = 2 ·U(Q) · Q̇ (A.42)

Q̇ =
1

2
·U(Q)T ·ω ′ (A.43)

By differentiating a unit quaternion, a four dimensional vector is generated that is tangen-
tial to the sphere of unit quaternions. Therefore, an integration step leads to a quaternion
that is not on the sphere and is therefore not a valid rotation. This problem can be solved
by normalization after each integration step.

Qk+1 =
Qk +

dQ
dt ∆t

||Qk +
dQ
dt ∆t||

(A.44)

In theory, normalization is of no concern when quaternion multiplication is performed,
as it can be easily proven that the multiplication of two unit quaternions leads again
to a unit quaternion. However, due to numerical instabilities especially around the zero
rotation, it might become necessary to normalize the result of a multiplication.

a.3 spatial vector algebra

There are several different notations for robot dynamics which include three dimensional
vectors or 4× 4 transformation matrices. Another elegant solution is the utilization of six
dimensional vectors that comprise both the angular, as well as the translational compo-
nents. These so called spatial vectors are subdivided in two groups, (1) the force related
vectors, e. g. force or momentum, and (2) motion vectors comprising velocity and accelera-
tion. This kind of description allows for the compact specification of dynamic algorithms.
In this section only a basic overview of the topic is presented, to state the definitions
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necessary for the subsequent descriptions of dynamic algorithms. For a broader defini-
tion, the reader is referred to the literature [24, 119]. In the following, spatial vectors are
denoted, utilizing underlined variable names, to avoid confusion. The dot product for
spatial vectors is only defined between motion and force vectors.

v · f =

[
~ω

~v

]
·

[
~τ

~f

]
= ~ω · ~τ+~v · ~f (A.45)

Similar to the definition of 4× 4 transformation matrices (see Section A.1), spatial vector
descriptions include a coordinate transform which is defined both for any motion vector
v and any force vector f between a coordinate frame a and b,

bv = bXa
av (A.46)

bf = bX−T
a
af (A.47)

where bXa is a 6× 6 dimensional matrix, which can be expressed using the rotation bRa,
as well as the translation bpa.

bXa =

[
bRa 0

S(bpa)
bRa

bRa

]
(A.48)

The operator S(·), denotes the skew-symmetric matrix (see Eq. A.22). The inverse of a
spatial transform is defined as follows.

bX−1
a = aXb =

[
aRb 0

−aRbS(
bpa)

aRb

]
(A.49)

Next to the dot product, there are two cross products defined, (1) between two motion
vectors and (2) between a motion vector and a force vector.

v1 × v2 =

[
ω1 ×ω2

v1 ×ω2 +ω1 × v2

]
(A.50)

v× f =

[
ω× τ+ v× f

ω× f

]
(A.51)

The missing link between the motion and the force in dynamics is the inertia which in
the spatial formulation comprises the mass m as well as the inertia J of a rigid body and
is defined with respect to a specific coordinate frame a

aJ =

[
bJ+mS(apb)S

T (apb) mS(apb)

mST (apb) mI3

]
(A.52)
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with a coordinate frame b located at the center of mass of the rigid body, in which the
inertia bJ is given. Il denotes the l× l identity matrix. Hence, we can utilize this definition
and state the equation of motion for a rigid body,

f = Ja + v× Jv (A.53)

whereas a denotes the spatial acceleration which is defined along the lines of the spatial
velocity.

a.4 recursive newton-euler algorithm

There exist several ways to obtain a dynamic model for robotic manipulators. One way is
to express the equation of motion of the robot (see also Eq. 4.12) in a closed form, where a
full analysis of the dynamic system, e. g. by the method of Lagrange [79], finally yields the
model. However, it is also possible to capture the system in a more natural description
and obtain the forward or inverse dynamics online for certain system states q, q̇. The
latter is not necessarily computationally more expensive, as there are algorithms to solve
this problem in O(n). The recursive Newton-Euler algorithm (see Listing A.1) computes
the inverse dynamics for a given robotic structure, utilizing spatial vector algebra for a
more compact description of the dynamics of motion (see Section A.3). In the given form,
the algorithm consists of two loops, one forward loop that is executed for each joint from
1 to the number of joints N (lines 7-25) and a second for the inverse loop traversing the
kinematic chain from the end-effector to the base. The algorithm can be subdivided into
four parts which can also be executed in separate loops if the state of the model is stored
appropriately. First, the model is updated with the current state, given by the pose q and
the joint velocity q̇. Based on the type of the joint, a spatial transform for the joint XJ(i)
is computed and used to compute the spatial transform from the previous joint to the
current joint iXp(i) utilizing the transform for the interconnecting link XL(i) (lines 10-11).
In case the current joint is not the one closest to the base, the transform from the current
joint to the base iX0 is updated (line 13). This step is only necessary when external forces
0fei are considered. Finally, the 6× ni matrix Φi is updated, denoting the free modes of
the current joint, for a joint with ni DoF (line 15). It relates the ni× 1 vector of the current
joint velocity q̇i with the spatial velocity of the joint movement, given in the joint frame.

vJ(i) = Φiq̇ (A.54)

Subsequently, the partial derivative Φ̊Ci (line 16) is updated which is defined as follows.

Φ̊i =
∂Φi
∂qi

q̇i (A.55)

However, for most known joint types, Φi is a constant matrix and therefore Φ̊i evaluates
to zero. Therefore, it is possible to omit this step for most robots.
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Listing A.1: Recursive Newton-Euler Algorithm in link coordinates for inverse dynamics [119]. The algo-
rithm can be subdivided into four parts, (1) setting the position dependent variables, (2)
traversing the kinematic structure in forward direction and passing the velocity, (3) travers-
ing the kinematic structure in forward dircection and passing the acceleration, and finally
(4) traversing the kinematic structure in inverse direction and passing the forces. On the last
pass, the joint torques τi are calculated from the spatial forces, acting on the joints.

1 inputs: q, q̇, q̈, model, 0fei
2 outputs: τ

3 model data: N, jtype(i), p(i), XL(i), Ji
4

5 v0 = 0

6 a0 = −ag
7 for i = 1 to N do

8

9 // setting position dependent variables

10 XJ(i) = xjcalc(jtype(i),qi))

11
iXp(i) = XJ(i) XL(i)

12 if p(i) 6= 0 then

13
iX0 = iXp(i)

p(i)X0
14 end

15 Φi = pcalc(jtype(i),qi)

16 Φ̊Ci = pdcalc(jtype(i),qi,q̇i)

17

18 // forward velocity

19 vi =
iXp(i)vp(i) +Φiq̇i // pass spatial velocity from previous joint

20

21 // forward acceleration

22 ζi = Φ̊Ci q̇i + vi ×Φiq̇i
23 ai =

iXp(i)ap(i) +Φiq̈i + ζi // pass spatial acceleration from previous joint

24 fi = Jiai + vi × Jivi −
iX−T0

0fei // calculate the spatial force at the joint

25 end

26

27 // inverse force

28 for i = N to 1 do

29 τi = Φ
T
i fi // compute joint torque from spatial force

30 if p(i) 6= 0 then

31 fp(i) = fp(i) +
iXT
p(i) fi // pass spatial force to previous joint

32 end

33 end �
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The second pass is responsible for updating the velocities which is done by traversing
the robot and subsequently applying the joint velocity q̇i (line 19). Third, the same is done
for the acceleration (line 22-23) and the spatial forces necessary for these accelerations
are computed (line 24). In the last pass which traverses the kinematic chain from the end-
effector to the base, joint torques are computed from the spatial forces (line 29). These
spatial forces are handed through from one joint to the next until the base is reached (line
31).

Thus, the recursive Newton-Euler algorithm provides an efficient method of computing
the inverse dynamics. The model can be stated in an intuitive description of joint types
and interconnecting links, comprising the kinematics, i. e. the transform from one joint
to the next (see Fig. 4.1), as well as the dynamic properties like mass and inertia. This
description can be used by the algorithm to compute joint torques for a given trajectory.

However, in some cases, the inertia matrix, Coriolis and centrifugal components and
gravitational terms are need explicitly. If this is the case, several passes through the re-
cursive Newton-Euler algorithm are required. The mass matrix H(q) can be computed by
first setting the joint velocities and the gravity vector to zero to eliminate Coriolis, cen-
trifugal and gravity effects. Subsequently, each column in the mass matrix is computed
by setting the corresponding joint acceleration to one. Therefore, one evaluation of the
recursive Newton-Euler algorithm is required for each joint. The vector of Coriolis and
centrifugal component C(q, q̇)q̇, can be obtained by setting gravity and acceleration to
zero, hence eliminating the gravity terms and the mass matrix. Similarly, the vector of
gravity terms is computed by setting joint velocities and accelerations to zero. If neces-
sary, each term of the equation of motion can thus be computed individually for a certain
pose, however, as multiple passes of the recursive Newton-Euler algorithm are required,
the complexity is increased for this approach. Since the complexity of the basic approach
is O(n) and it needs to be executed n times for the mass matrix H(q) and once for each
C(q, q̇)q̇ and τG(q), the overall complexity evaluates to O(n2 +n+n) = O(n2).

a.5 friction models

The field of tribology which deals with modeling the effects of friction between two
surfaces, has produced a wide range of models on how the friction force is affected by
lubrication, the normal force fn acting to press the two surfaces together, the relative
velocity between surfaces, etc. When dynamic models of robots are developed, character-
izing these effects is crucial. In the following, models for viscous and static friction as
well as stiction are described.

Viscous friction describes the effect where the friction force depends only on the veloc-
ity v between the two surfaces. This model is used to describe the effects of friction when
the surfaces are well lubricated and friction is mainly caused by hydrodynamic effects in
the lubricator with a constant viscous friction coefficient µv.

fv = µv · v (A.56)
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F

v

Coulomb
Viscous
Combined

(a) Classic Model
F

v

Stribeck

(b) Stribeck

F

v

Coulomb
Viscous
Combined
Stribeck

(c) Approximation

Fig. A.1: Friction Models. The force over velocity relationship is shown in comparison, for (a) the classic
model, consisting of Coulomb and viscous and stiction, (b) the more advanced model of Stribeck
and (c) an approximation that is numerically more stable for both the classic and the Stribeck
model.

The simplest model for dry friction is described by the Coulomb friction. Here the friction
force depends only on the normal force fn, and a constant Coulomb friction coefficient
µc.

fc = µc · fn · sgn(v) (A.57)

When both surfaces are at rest, the effect of stiction is observed. Then the friction force is
counter-acting the sum of all other forces

∑
f applied until these forces overcome stiction

and the surfaces break free [96].

fs =

−
∑
f if

∑
f < µs · fn

−µs · fn · sgn(
∑
f) if

∑
f > µs · fn

(A.58)

The three models of friction can be combined to form the classic model of friction (see
Fig. A.1a), however in numerical representations it needs to be decided when the velocity
is zero. In simulations this is usually solved by the Karnopp model [57] where a zero
velocity interval |v| < ε is used to make that decision. However, even though this leads
to good simulation results in most cases, this does not agree with real friction. A more
realistic behavior is obtained by the Stribeck model (see Fig. A.1b) [124].

fF = fc + (fs − fc) · e−|v/vs|
δs
+ µv · v (A.59)

It is observed that neither Eq. A.59 nor the combined models of standard friction are con-
tinuous at v = 0. In simulation or in control where a model might be used to compensate
for the effects of friction, this can quickly lead to instabilities. Therefore, an approxima-
tion around v = 0 can be utilized both for the Coulomb as well as the Stribeck friction
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model. In the first, the sigmoid function is utilized, while the parameter a can be used to
scale the transition through zero (see Fig. A.1c).

fF = µc · fn ·
(

2

1+ e−a·v
− 1

)
(A.60)

Note that stiction is neglected here. To address this, another approximation leads to the
extended Stribeck model which is obtained by adding a linear function for the transition
through zero (see Fig. A.1c), which is evaluated within a small range ±ε, similar to the
Karnopp model.

fF =

fsε · v if |v| < ε

fc + (fs − fc) · e−|v/vs|
δs
+ fv · v otherwise

(A.61)

Friction models of the given types can be added to e. g. the equation of motion (see
Eq. 4.12) by formulating a friction torque τF(q, q̇, τ).
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S U P P L E M E N TA RY D ATA

Table B.1: Anthrob Actuators. Properties of the brushed DC motor and gearbox combinations by Maxon
Motors are shown.

τnom speed gearb. gearb.

[mNm] [rpm] ratio eff.

Elbow A-max22 + GP22HP 6.8 5240 157:1 59%

Shoulder & Biceps RE-25 + GP22HP 26.2 8240 128:1 59%

Hand RE-16 + GP16A 2.37 8230 370:1 65%

Table B.2: Anthrob Muscle Parameters.

Name Joints NBR rings

l [mm] d [mm] quantity

Anterior Deltoid Shoulder 16.00 5.00 2

Lateral Deltoid Shoulder 15.00 5.00 2

Posterior Deltoid Shoulder 15.00 4.00 3

Pectoralis Shoulder 10.00 5.00 1

Teres Major Shoulder 12.00 4.00 3

Teres Minor Shoulder 10.69 3.80 3

Supra Shoulder 10.69 3.53 3

Infraspinatus Shoulder 10.69 3.80 3

Biceps Shoulder & Elbow 23.00 4.00 3

Brachialis Elbow 20.00 3.00 3

Triceps Elbow 13.00 4.00 1

where l is the inner diameter and d the cross section diameter of the NBR rings.
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state machine SAECUStateMachine

ECU off

Uninitialized Initialize

Off
entry / motorOff

On
do / ExecuteControl
entry / motorOn

Error
entry / motorOff

power on

MuscleInitMsg(first)

MuscleInitMsg(last)

Protocol error

MuscleInitMsg(first)

MuscleInitMsg(first)

MuscleInitMsg(first)

MuscleOnMsg

Protocol error

MuscleOffMsg

no HeartBeatMsg for > 200 ms

HeartBeatMsg

Protocol error

Hardware failure

MuscleInitMsg
(first+1 ... last-1)

Fig. B.1: ECU State Machine. A diagram of the state machine that is implemented on the distributed
ECUs for each of the muscles to form a fail-silent unit is shown.
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Table B.3: Simulation Model Parameters.

Skeletal Dynamics: Muscle Dynamics:

mass [kg] 1.00 RA [Ω] 0.516

length [m] 0.20 LA [H] 3.08 · 10−5

diameter [m] 0.02 cm [Nm/A] 11.5 · 10−3

JM [kg m2] 14.3 · 10−7

Jxx [kg m2] 3.37 · 10−3

Jyy [kg m2] 3.37 · 10−3 rG [ ] 128

Jzz [kg m2] 6.67 · 10−5 cF [ ] 0.59

µv [Nm/rad s] 1.5 · 10−5

Joint Friction: JG [kg m2] 0.4 · 10−7

low high

τv [Nm/s] 0.02 0.02 RS [m] 0.006

ε [ ] 1 · 10−5 1 · 10−5 K [N/m] 5000

τs [Nm] 0.01 0.05

τc [Nm] 0.008 0.04 Muscle Friction:

ωs [rad/s] 0.05 0.05 low high

µc [ ] 0.0 0.4

Muscle Kinematics: 1 2 3 4 5

1st Muscle Anchor1 ax1 [m]

0.030.01

0


 0.03−0.01

0


−0.030

0


 0

0.03

0


 0

−0.03

0



2nd Muscle Anchor1 bx2 [m]

 0

0.01

0.03


 0

−0.01

0.03


−0.010
0.03


 0

0.01

0.03


 0

−0.01

0.03



1 Muscle anchor points are defined in frames a and b, which are located in the spherical
shoulder joint, according to Fig. 6.2b. While a is fixed in the base, b moves with the
movable link.
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Table B.4: Simulative Control Parameters.

Trajectory Computation: Adaptive Joint Friction:

P I3 · 5 ΓJF -0.05

D I3 · 4 ΣJF 0.1

τFmin [Nm] -0.06

Control Period: τFmax [Nm] 0.06

High-level [s] 5 · 10−3

Low-Level [s] 1 · 10−3

Backstepping: Adaptive Muscle Friction:

Kd I3 · 2 ΓMF 80

Λ1 I3 · 15 ΣMF 0.1

Λ2 I5 · 15 fFmin [N] 0

Λ3 I5 · 150 fFmax [N] 15

DSC:

µ1 [s] 0.01

µ2 [s] 0.005

Table B.5: Comparison of Simulation Results.

fo
rc
e
se
ns
or

fr
ic
tio

n

1st run 2nd run

mean max mean max

∆q̇ ∆q ∆q̇ ∆q ∆q̇ ∆q ∆q̇ ∆q

[rad/s] [rad] [rad/s] [rad] [rad/s] [rad] [rad/s] [rad]

Backstepping
de lo

w 0.006 0.005 0.120 0.022 0.006 0.005 0.102 0.022

DSC 0.005 0.004 0.120 0.015 0.004 0.004 0.093 0.015

DSC le

hi
gh

0.008 0.014 0.273 0.030 0.009 0.015 0.274 0.030

DSC

de

0.021 0.069 0.335 0.130 0.022 0.069 0.335 0.130

Ad. JF 0.015 0.035 0.224 0.088 0.011 0.025 0.204 0.048

Ad. MF 0.015 0.028 0.245 0.061 0.020 0.035 0.233 0.073

Ad. (both) 0.008 0.011 0.172 0.037 0.007 0.009 0.172 0.026
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Table B.6: Anthrob Shoulder Control Parameters.

Trajectory Computation: CFC:

P I3 · 2 P 600

D I3 · 2.5 D 30

Control Period: Adaptive Joint Friction:

High-level [s] 5 · 10−3 ΓJF -0.005

Low-Level [s] 1 · 10−3 ΣJF 0.1

τFmin [Nm] -0.04

Backstepping: τFmax [Nm] 0.04

Kd I3 · 15
Λ1 I3 · 10 Adaptive Muscle Friction:

Λ2 I8 · 15 ΓMF 60

Λ3 I8 · 170 ΣMF 0.1

fFmin [N] 0

DSC: fFmax [N] 40

µ1 [s] 0.02

µ2 [s] 0.01 High-gain observer:

h1 120

h2 120

Table B.7: Comparison of Anthrob Shoulder Results.

1st run 2nd run

mean max mean max

∆q̇ ∆q ∆q̇ ∆q ∆q̇ ∆q ∆q̇ ∆q

[rad/s] [rad] [rad/s] [rad] [rad/s] [rad] [rad/s] [rad]

CFC 0.259 0.241 2.628 0.428 0.263 0.271 2.502 0.476

DSC 0.224 0.157 2.530 0.222 0.185 0.129 2.164 0.218

Ad. JF 0.211 0.148 2.168 0.213 0.187 0.117 2.382 0.198

Ad. MF 0.214 0.106 2.615 0.179 0.193 0.104 2.274 0.193

Ad. (both) 0.228 0.097 2.497 0.175 0.178 0.077 2.624 0.172
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Listing B.1: Anthrob Model. A description of the model is given in XML format, as used by the Robotics
Library (RL) by Markus Rickert. The kinematic relation between the joints (<revolute> and
<spherical>) is described by defining frames and the <fixed> transformations in between.
A frame can either be defined as a <frame> or a <body> with dynamic properties, i. e. a
center of mass, an inertia and a mass. [109]

1 <?xml version=" 1.0 " encoding="UTF−8"?>
2 <rlmdl xmlns:xsi=" http://www.w3. org/2001/XMLSchema−instance"
3 xsi:noNamespaceSchemaLocation="rlmdl .xsd">
4 <model>

5 <manufacturer>Awtec</manufacturer>

6 <name>AnthrobNoBiceps</name>

7 <world id="frame0">
8 <rotation>

9 <x>0</x>

10 <y>0</y>

11 <z>0</z>

12 </rotation>

13 <translation>

14 <x>0</x>

15 <y>0</y>

16 <z>0</z>

17 </translation>

18 <g>

19 <x>0</x>

20 <y>0</y>

21 <z>9.81</z>

22 </g>

23 </world>

24 <frame id="frameTurningPoint" />

25 <body id="upperArm">
26 <cm>

27 <x>-0.0003</x>

28 <y>0.0025</y>

29 <z>-0.1257</z>

30 </cm>

31 <i>

32 <xx>2.53e-03</xx>

33 <yy>2.50e-03</yy>

34 <zz>6.45e-04</zz>

35 <yz>2.56e-05</yz>

36 <xz>1.23e-06</xz>

37 <xy>2.45e-04</xy>

38 </i>

39 <m>0.704</m>

40 </body>

41 <frame id="frameElbowAxis" />
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42 <frame id="foreArmPre" />

43 <body id="foreArm">
44 <cm>

45 <x>0.0016</x>

46 <y>0.0012</y>

47 <z>-0.081</z>

48 </cm>

49 <i>

50 <xx>4.04e-04</xx>

51 <yy>4.0e-04</yy>

52 <zz>1.47e-05</zz>

53 <yz>-2.82e-06</yz>

54 <xz>-1.01e-05</xz>

55 <xy>2.30e-07</xy>

56 </i>

57 <m>0.111</m>

58 </body>

59 <body id="endeffectorLoad">
60 <cm>

61 <x>0</x>

62 <y>0</y>

63 <z>0</z>

64 </cm>

65 <i>

66 <xx>0</xx>

67 <yy>0</yy>

68 <zz>0</zz>

69 <yz>0</yz>

70 <xz>0</xz>

71 <xy>0</xy>

72 </i>

73 <m>0</m>

74 </body>

75 <fixed id=" linkBase">
76 <frame>

77 <a idref="frame0" />

78 <b idref="frameTurningPoint" />

79 </frame>

80 <rotation>

81 <x>0</x>

82 <y>0</y>

83 <z>0</z>

84 </rotation>

85 <translation>

86 <x>0</x>

87 <y>-0.218</y>

88 <z>0.410</z>
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89 </translation>

90 </fixed>

91 <spherical id="shoulder">
92 <frame>

93 <a idref="frameTurningPoint" />

94 <b idref="upperArm" />

95 </frame>

96 </spherical>

97 <fixed id="linkUpper">
98 <frame>

99 <a idref="upperArm" />

100 <b idref="frameElbowAxis" />

101 </frame>

102 <rotation>

103 <x>90</x>

104 <y>0</y>

105 <z>0</z>

106 </rotation>

107 <translation>

108 <x>0</x>

109 <y>0</y>

110 <z>-0.217</z>

111 </translation>

112 </fixed>

113 <revolute id="elbow">
114 <frame>

115 <a idref="frameElbowAxis" />

116 <b idref="foreArmPre" />

117 </frame>

118 </revolute>

119 <fixed id="ElbowPre">
120 <frame>

121 <a idref="foreArmPre" />

122 <b idref="foreArm" />

123 </frame>

124 <rotation>

125 <x>-90</x>

126 <y>0</y>

127 <z>0</z>

128 </rotation>

129 <translation>

130 <x>0</x>

131 <y>0</y>

132 <z>0</z>

133 </translation>

134 </fixed>

135 <fixed id="linkForeArm">
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136 <frame>

137 <a idref="foreArm" />

138 <b idref="endeffectorLoad" />

139 </frame>

140 <rotation>

141 <x>0</x>

142 <y>0</y>

143 <z>0</z>

144 </rotation>

145 <translation>

146 <x>0</x>

147 <y>0</y>

148 <z>-0.237</z>

149 </translation>

150 </fixed>

151 </model>

152 </rlmdl> �
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Table B.8: Anthrob Control Parameters.

Trajectory Computation: Adaptive Joint Friction:

P I4 · 2 ΓJF -0.005

D I4 · 2.5 ΣJF 0.1

τFmin [Nm] -0.04

Control Period: τFmax [Nm] 0.04

High-level [s] 5 · 10−3

Low-Level [s] 1 · 10−3 Adaptive Muscle Friction:

ΓMF 60

Backstepping: ˚MF 0.1

Kd I4 · 15 fFmin [N] 0

Λ1 I4 · 10 fFmax [N] 0.25 · fmax
1

Λ2 I8 · 15
Λ3 I8 · 170 High-gain observer:

h1 60

DSC: h2 60

µ1 [s] 0.02

µ2 [s] 0.01

1 maximum forces [N]: fmax = [50 50 50 50 50 90 90 80 170 80 50]T

Table B.9: Comparison of Anthrob Results.

1st run 2nd run

mean max mean max

∆q̇ ∆q ∆q̇ ∆q ∆q̇ ∆q ∆q̇ ∆q

[rad/s] [rad] [rad/s] [rad] [rad/s] [rad] [rad/s] [rad]

DSC 0.076 0.139 1.278 0.216 0.087 0.119 1.428 0.212

Ad. JF 0.090 0.123 1.530 0.190 0.079 0.104 1.205 0.177

Ad. MF 0.085 0.096 1.459 0.171 0.090 0.084 1.519 0.177

Ad. (both) 0.080 0.084 1.457 0.167 0.085 0.076 1.433 0.176
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