TUM

TECHNISCHE UNIVERSITAT MUNCHEN
INSTITUT FUR INFORMATIK

ADAS on COTS with OpenCL: A Case
Study with Lane Detection

Kal Huang, Biao Hu, Long Chen, Alois Knoll, Zhihua
Wang

TUM-11636

ADAS on COTS with OpenCL.:
A Case Study with Lane Detection

Kai Huang, Biao Hu, Long Chen, Alois Knoll, Zhihua Wang

Abstract—The concept of autonomous cars is driving a boost for car electronics and the size of automotive semiconductor market is
foreseen to double by 2025. How to benefit from this boost is an interesting question. This article presents a case study to test the
feasibility of using OpenCL as the programming language and COTS components as the underlying platforms for ADAS development.
For representative ADAS applications, a scalable lane detection is developed that can tune the trade-off between detection accuracy
and speed. Our OpenCL implementation is tested on 14 video streams from different data-sets with different road scenarios on 5 COTS
platforms. We demonstrate that the COTS platforms can provide more than sufficient computing power for lane detection in the
meanwhile our OpenCL implementation can exploit the massive parallelism provided by the COTS platforms.

Index Terms—Advanced Driver Assistance Systems (ADAS), Commercial of the shelf (CoTs), OpenCL, FPGA, GPU

1 INTRODUCTION

UTOMOTIVE IC sales had been estimated to represent

7.3% of the total $287.1 billion IC market in 2015 [22].
The IC Market Drivers Report states that from 2014 through
2019, the automotive IC market is forecast to increase at
an average annual growth rate of 6.7%, highest among
six major end-use applications — computer, consumer,
communications, automotive, industrial/medical, and gov-
ernment/military — and two points more than the 4.3%
CAGR forecast for the total IC industry over the same time
period. More specific, the automotive IC market is forecast
to grow 7% to $22.2 billion in 2016 and continues increasing
to $29.2 billion in 2019 [22]. The driving force of this boost
in automotive electronics is the concept of autonomous cars.
According to the consensus of most Tier-1 OEMs, fully
autonomous cars will present to market by 2018-2020 [27].
Their arrival will help double by 2025 the size of todays
automotive semiconductor market. In additional, according
to Linley Gwennap, president of the Linley Group, an
expected $10,000 premium for a self-driving car will be
paid for lots of cameras and processing horsepower. The
question here is how Tier- 2 and 3 suppliers, particular for
car electronics suppliers, to benefit from this boost.

Freescale, one of the leading car electronics suppliers,
states two critical issues on the path toward autonomous
driving: the lack of open standards for Advanced Driver
Assistance Systems (ADAS) development and safety guar-
antee of consumer-focused silicon chips for safety-critical
autonomous applications [16].

Responding to the current lack of open standards
and to reverse the trend toward closed, proprietary
ADAS systems which inhibit development and design
innovation, Freescale has announced it will soon introduce
an Open Computing Language (OpenCL)-based automotive
development environment, targeting its own silicon. The
motivation of Freescale’ move is to reduce ADAS R&D
overhead and free their customers to focus more on ADAS
innovation, and more importantly, ADAS safety, according
to Bob Conrad, Freescale SVP and General Manager,
Automotive MCUs [16]. OpenCL [20] is an open, royalty-

free standard maintained by the non-profit technology
consortium Khronos Group. As OpenCL is designed for
cross-platform, parallel programming, and improving speed
and responsiveness for a wide spectrum of applications in
numerous markets, we consider as well OpenCL could be a
suitable programming model for ADAS development.

Regarding the underlining platforms that execute ADAS
applications, although Freescale claims that consumer-
oriented silicon solutions designed to enhance gaming
graphics or run smartphone apps are not safe enough
to ensure autonomous driving-quality and reliability, we
consider the mass-production commercial off-the-shelf
(CoTs) components will be the de-facto carriers for ADAS.
The reasons are multi-fold. Firstly, the time-to-market
and development cost can be significantly reduced by
using COTS, compared to traditional dedicated ECU/AsIcC-
implementations. Secondly, autonomous driving requires
significantly higher computing power than those available
via special-purpose controllers equipped with safety
features. Nowadays COTS platforms, on the other hand,
can provide massive computing power and the performance
per price can be even a magnitude higher than automotive-
specialized ones [18]. Third, COTS platforms start to support
OpenCL for heterogeneous computing, which allows ADAS
developers to exploit the computing power of COTS in
the meanwhile trades off different design objectives, e.g.,
performance and energy consumption. Therefore, the use
of high-performance commodity COTS in safety-critical
systems becomes desirable. The safety issue that Freescale
believes to hinder consumer-oriented silicon solutions for
ADAS can and will be solved by the technology advance.
A short survey on COTSs for safety-critical systems is
presented in Section 2.1 to justify this claim.

To test the feasibility of using OpenCL for ADAS
development on COTs platforms, this article conducts
a case study. We choose five different COTS platforms
which are not specifically designed for automotive markets,
i.e., Nvidia GeForce GTX660Ti and Quadro K600, Altera
Stratix VA7 and a resource-restricted Cyclone V SoC FPGA,

and Redmi Note2 mobile phone. All these five platforms
support OpenCL such that source code written in OpenCL
can be executed on them without major modifications. This
helps for a fair comparison. In addition, Nvidia Jetson TK 1,
which is specially designed and targeted for automotive
market, is used for comparison as well. With this case study,
we try to answer following questions: 1) Can OpenCL be a
standard for cross-platform development and applications
developed with OpenCL be smoothly applied on different
Corts platforms? 2) Can an ADAS application, which is
developed using OpenCL, exploit the parallelism provided
by COTSs platforms? 3) Can COTS platforms provide enough
computing power for ADAS applications? For the safety
issue, it is not a focus of this article and we left for the
related work for a brief discussion.

For ADAS applications, lane detection is chosen. Lane
detection is one of the most basic functions for ADAS
and it has grabbed significant attention in research since
mid-1980’s. New development on computer technologies,
however, has allowed new perspectives on designing a
good lane detection algorithm. For example, as the software
in a car is expected to run up to 1GB of software [7],
it is preferable to design a scalable algorithm to leave
rooms for multiple ADAS applications on single ECU [8].
The scalability here means the demanding power of
the algorithm can be tuned to trade off between the
accuracy and speed. The reason is that lane detection, at
certain circumstance, can be particularly computationally
demanding due to, e.g., varying light conditions, traffic on
the road that obstructs the lane markings, and the shadows
cast by buildings or trees. Therefore, such scalability has
practical use in real life. On the other hand, with this
capability to scale the computing demand, we can use this
algorithm to exploit the limits of the tested COTSs. The
contributions of this article are summarized as follows:

e A scalable lane detection approach is developed that can
tune the trade-off between the detection accuracy and
computing power. Lane markings from live road stream
can be either detected or tracked by our approach. For
the case of tracking, Particle Filter [9] is used. The
choice of Particle Filter, rather than the most popularly
used Kalman Filter, is that Particle Filter is non-linear
and particularly suitable for parallel processing, as each
particle can be processed independent of the others. By
changing the number of the used particles, the algorithm
can make a trade-off between the tracking accuracy and
computing power (aka frame rate).

e With an OpenCL implementation, our lane detection is
tested on five different COTS platforms with 14 video
streams from different data-sets representing different
road scenarios. We demonstrate that our OpenCL
implementation can exploit the massive parallelism
provided by the COTS platforms. With an average
deviation fewer than 5 pixels, the average frame rates
can reach about 600 fps on Nvidia GeForce GTX 660 Ti
and Altera Stratix V A7 for the 14 test videos. The peak
frame rates for certain videos on the GeForce GPU can
reach over 1000 fps. On the low-budgeted Quadro K600,
the average frame rates can be more than 200 fps. Even
on the resource-restricted Altera CycloneV SoC FrPGA

2

and Redmi Note2 mobile, the average frame rates can
still reach real time at acceptable accuracy.

e We profiled and analyzed the execution of our appli-
cation and show the detailed timing of the execution on
the 5 COTSs platforms. In addition, we extended existing
OpenCL runtime environment to support Altera FPGA
and demonstrate the heterogeneous execution of our
lane detection application with a combination of Nvidia
GeForce GPU and Altera Stratix FPGA.

e To compare the performance between COTSs and
automotive-specific hardware, Nvidia TK1 is chosen,
which is specially designed and targeted to automotive
market for ADAS applications. Since OpenCL is not sup-
ported by TK 1 for the moment, we re-implemented our
lane detection with CUDA and ran all the test cases with
the CUDA implementation on TK1. By comparing the
measurement results, we demonstrated the usefulness
of COTss platforms for ADAS applications.

The rest of this paper is organized as follows: The next
section reviews related work in the literature. Section 3
provides a short introduction of OpenCL. The details of
our algorithm is presented in Section 4. Section 5 describes
the experimental setup and Section 6 presents experimental
results. Section 7 concludes the paper.

2 RELATED WORK
2.1 CoTts on safety-critical systems

Early discussion on building systems with COTSs can be
dated back to [6], where, from a software engineering
perspective, some basic understanding of how developing
systems with COTS products were described and why
and what new capabilities were being identified. From
the perspective of hardware platforms, Kotaba et al. [26]
systematically analyzed the effects of COTS multi-core
platforms — the applications compete for resource access,
typically arbitrated in a non-explicit manner by specific
hardware implementation, which causes non-deterministic
temporal delays on execution — and suggested mitigation
techniques, where possible.

Inline with the aforementioned guideline, there is
generic work on providing temporal isolation on COTS
platforms without specifying concrete application domains.
In [34], a run-time fixed-size weighted DMA transaction was
suggested to provide temporal separation for hardware-
based I/0 virtualization on PCle. With such virtualization,
secure and safe sharing of I/O subsystems can be
guaranteed for COTS multi-core systems. In [37], an
integrated approach is presented for temporal partitioning
and WCET analysis of COTS multi-core systems. Workload
monitoring at basic block level at runtime is used to
ensure that the respective process does not introduce
further interference on the affected resource. In [18], a so-
called software coded processing technique, i.e., detecting
transient, permanent, and systematic hardware execution
errors by arithmetic encoding of variables, constants, and
operations, is deployed to demonstrate that COTS hardware
can be used in safety-critical applications.

There is also work targeting specific safety-critical
domain, e.g., automotive, railway, and aerospace. Shen

et al. [45] demonstrated that a teleoperation system can
be exclusively composed of low-cost COTS components
yet still meet the high performance demands of remotely
driving a car on the road with wireless communication
over 3G/4G data networks. In [15], an attempt to design
an automotive ECU using a Xilinx Zyng-7000 FPGA, rather
than an MCU-based platform, which conforms to both
the AUTOSAR and ISO 26262 standards, was presented.
Cohen et al. [12] showed the feasibility of hard real-
time and parallel execution of safety-critical tasks on the
Xilinx Zynq COTS. A train signaling usecase provided
by Alstom Transport was programmed in an extension
of the synchronous dataflow language HEPTAGON and
a software stack and composition methodology were
designed to enable hard real-time control code to be
isolated from timing interference. Further, a recent book [24]
examines radiation effects for FPGA and GPU on aerospace
applications. The authors concluded that even FPGA and
GPU are very sensitive to radiation, such COTS platforms
can still meet the reliability requirements with the help of
certain fault-tolerance techniques.

There are also quite a few recent research projects
working on deterministic multi-core architectures, e.g.,
MERASA [51], parMERASA [50], ACROSS [43], RECOM-
P [42] and T-CREST [47]. The MERASA architecture
uses either round robin [40] or TABA arbitration [39] to
guarantee an upper bounded for inter-core interference.
The parMERASA approach presents time predictable on-
chip ring architectures to achieve composable WCET on
a many core architecture [38]. The RECOMP project uses
IDAMC NoC [33] to support mixed critical applications.
The ACROSS project employs time triggered NoC for
time predictable access to the shared memory. Similar
to ACROSS, the T-CREST project aims to build a time
predictable NoC architecture [48, 46].

From semiconductor industry, Freescales latest Qorivva
MPC5643L was the industrys first multi-core to achieve
a formal ISO 26262 certificate for ASIL-D functional
safety capability by an independent third-party accredited
certification body. Infineon in 2012 introduced a 32-bit
TriCore”™ multi-core processor to meet safety and pow-
ertrain requirements of automotive industry. In November
2015, Altera announced a lockstep solution for its Nios® II
embedded processors to enable the implementation of SIL-3
safety designs in Altera FPGAs in full compliance with
functional safety standards IEC 61508 and ISO 26262 [49].
Nvidia and Huawei are also new comers of automotive
industry that announced entering this market [35, 13] and
we expect soon the announcement of their safety-critical
solutions.

From all these R&D activities, We believe that the
concern of Freescale on the safety issue of consumer-
oriented silicon solutions for ADAS can and will be solved
by the technology advance. COTS platforms will be the de-
facto carriers for ADAS applications and thus we focus on
the performance and programming issues in this article.

2.2 Lane detection

Numbers of researches have already been done in
developing lane detection systems for the past two decades.

3

Vision based sensing is among the most popularly used
techniques. For vision sensing, one of the most commonly
used methods for lane detection is Hough Transform [21] to
detect lane markings [3, 5]. Hough Transform suffers from
its own problems like grid dimension, quantization errors,
and noise [41], to name a few.

To overcome the problems of Hough Transform, different
alternatives have been proposed, e.g., a randomized line
detection [10] that picks up three random edge points and
finds the best candidate, color based segmentation methods
that use color information in the image and extract the
lines [11, 30], and steerable filter [31]. These methods are
designed for a sequential implementation on a CPU and
not quite suitable for parallel implementation. Compared to
the aforementioned methods, our method combines particle
based and gradient based approaches for detecting the lines.
Therefore, the accumulator array as in the case of HT need
not be maintained, which can reduce the memory transfers
between GPU/FPGA and the Host CPU.

For lane tracking, the most frequently used techniques
are the Kalman and Particle filters. In [29], a Kalman Filter
is used to track the lanes after the detection. An ego
vehicle lateral offset is predicted and the lane lines are
selected based on this predicted value. Once the lines are
selected, the ego vehicle lateral offset is updated. Though
the performance of their algorithm was reported to be
providing up to 94.34 Hz on a PC (based on AMD Athlon 64
3000+), there are several strong assumptions made about a
constant ego vehicle lateral offset, lane width, and the width
of lane markings. This raises questions about the robustness
of the algorithm on different situations. In [31], lane tracking
is conducted by combined using Kalman Filter updated by
Hough transform. The throughput that was reported for
their system is around 30Hz. Kalman Filter provides an
optimal solution as long as the probability distribution of
the states to be estimated are linear and the noise is Gaussian
but it fails when the problem is non-linear. In this regard,
there is a modified version of the Kalman Filter known as
Extended Kalman Filter used in [32] and [52] especially for
lane tracking problem.

To capture the non-linear dynamics of lane tracking,
Particle Filter is typically used. In [28], lane tracking is
conducted by a statistical Hough Transform with Particle
Filter. Stratified resampling is used to resample the particles
based on their weights and the high weight particles
after resampling are chosen as the detected lines. This
algorithm was implemented in MATLAB on Intel Core?2
Duo (2.2 GHz) machine. However, the throughput of lane
tracking algorithm is as low as 1.0Hz. There are also
learning approaches, e.g., [19] uses around 200 particles
to track the lane markings with a separate particle filter
dedicated to each of the lane markings. The lane tracking
algorithm in their case was reported to be working on
240x320 images at 25Hz on a 4 GHz processor. While the
major advantage of a particle filter being its ability to
capture non-linearity and Kalman Filter can provide optimal
solution if a part of the solution is linear, [36] provides a
very innovative approach to combine both, where, the lane
tracking problem is split into two separate sub-problems.
The states that are linear are processed by Kalman filter
while Particle Filter estimates the non-linear states. This

algorithm was tested on Intel Atom CrUu N270 (1.6 GHz)
and the performance obtained is up to 30 Hz. In [4], an FPGA
implementation is presented where the frame rate can reach
40 fps for 752x320 images.

In our approach, we use Particle Filter to perform lane
tracking after the lane detection step. While we follow a
weak model, i.e., no assumptions about the lane width and
lane marking size, that makes our algorithm quite robust in
different road conditions, our main aim is to implement the
application with OpenCL to exploit the parallelism of COTS
platforms. We will demonstrate, giving sufficient computing
power, an algorithm even with weak model can still achieve
both high accuracy and speed.

3 OPENCL OVERVIEW

OpenCL (Open Computing Language) [20] is a standard for
heterogeneous high performance computing managed by
the non-profit technology consortium Khronos Group. It
defines a high level abstraction layer for low level hardware
instructions. This enables cross-platform execution from
general purpose processors to massively parallel devices
without changing the source code.

3.1 OpenCL framework

The OpenCL specification provides specific view and rules
to organize the execution of applications. An OpenCL
application runs on a host system which is connected to
one or more accelerators devices. The host coordinates the
execution and the devices are capable of executing C-like
OpenCL code as accelerators. The computing acceleration
by OpenCL is achieved by the means of the following four
models in OpenCL framework.

Platform Model OpenCL abstracts the combination of
host and devices as a single platform. Any platform has only
one host and one or more than one devices. The host is
often a CPU of a system. The device can be any accelerators,
such as GPU and FPGA. A device is considered to be made
of blocks of several compute units and each compute unit
is made up of several processing element. According to
this model, a processing element is the smallest entity and
it resembles a thread in traditional parallel programming
terminology.

Execution Model There are two kinds of executions
of OpenCL, i.e., host execution and device execution. The
host execution is mainly responsible for assigning jobs
to devices, and making use of results from devices. The
device execution is called the kernel that is called by host
and executed in parallel in device. The kernels are mostly
written in the OpenCL C programming language, a dialect
of the C99 standard and compiled with a vendor-specific
compiler, but native kernels are optionally supported as
well. They describe the sequence of instructions within a
single execution instance, called a work-itern. Work-items
that are grouped in the same work-group are executed
concurrently.

Memory Model The memory hierarchy consists of
four distinct regions for the kernels: Global memory that
can be written and read by all work-items in all work-
groups. Constant memory, a region of global memory that

4

is initialized by the host and does not change during the
execution. Local memory that is only accessible to work-
items within the same work-group. Private memory owned
by a single work-item and not visible by others.

Program Model OpenCL supports Data-Parallel and
Task-Paralle] models. Data-Parallel model involves a kernel
operating on multiple elements of a data structure
concurrently. Task-Parallel model can be defined as a set
of independent programs operating concurrently.

3.2 OpenCL on GPUs and FPGAs

OpenCL has been implemented on a wide range of GPU
devices, such as Nvidia and ATi GPU. In recent years,
FPGA providers also start to provide tools to generate
hardware design specification from OpenCL kernels, e.g.,
Altera Complete Design Suite [14] or Xilinx AutoESL [44].
To allow multiple OpenCL implementations from different
vendors to co-exist on the same system, there is a
cl_khr_icd extension [25]. It defines an installable client
driver (ICD) loader, a unifying library that acts as a mediator
between the different platforms. This enables the use
of multiple heterogeneous devices in a single process
without interference between implementations on different
devices. Without this mechanism, the overheads of multiple
processes and inter-process communication (IPC) between
them are required.

4 LANE DETECTION IMPLEMENTATION

This section presents in details our lane detection approach,
an extension of our preliminary work in [23]. The appli-
cation contains three parts, namely video pre-processing,
lane detection, and land tracking, as shown in Fig. 1. The
video stream showing a road and the area surrounding it
will be processed in two subsequent steps frame by frame.
First, information on the lane markings is amplified and
extracted from each frame in the pre-processing step. Then,
depending on whether previous estimates of the position
exist or not, the exact position of the lane markings is
detected or tracked in a lane detection or lane tracking steps.
Note that the proposed method is vision-based and requires
no knowledge of any physical parameters like position and
orientation of the camera.

Lane
Y Detection 1
Input Pre- Position of
N o P e
N Lane T
- Tracking

Fig. 1. Algorithm overview.

4.1 Pre-processing

The pre-processing is the first step for detecting or tracking
street lanes. A region of interest(ROI) is selected from an
incoming image. This region is pre-processed to provide
the required information on the lane markings. First the
image is transformed to a grayscale space. Then a Sobel
filter detects edges in the image and finally a thresholding
step removes minor disturbances and strengthens the
appearance of the lane markings. The sub-steps for pre-
processing is shown in Fig. 2.

select ROI

Grayscaling

Sobel Filter

Thresholding

Fig. 2. Steps for pre-processing.

Fig. 4 in the experiment section shows images from
KITTI-ROAD Dataset [17]. As the figures shown, only a
small part of the images is of actual interest, i.e., the
RoI showing the street. The ROI contains all essential
information for the subsequent steps and the rest of
the image can be discarded. The size of the ROI is a
parameter that determines the efforts for later-on lane
detection/tracking. The smaller the ROI chosen, the less
computing power is needed. In this work, the size and
position of the ROI are kept adjustable, so that the algorithm
can be tested in a wide range of a scenarios. Once the ROI is
selected, only the area within the region is processed in the
subsequent steps.

The ROI is then transformed to a grayscale format,
where each pixel reflects the intensity of the pixel in the
original image. In principle, dark pixel will receive lower
intensity values and bright pixels will receive higher values.
The grayscale is performed for each pixel of the ROI
individually. In this manner, lane markings are substantially
brighter than the road they are printed on.

Afterward, a Sobel filter is applied to the grayscaled
image to produce a new image, where only transitions and
edges (such as the lane markings) of the original image
are present. More technically, each pixel in the new image
describes the gradient of the original image at that position.
A strong gradient will be represented by a high absolute
value and a soft gradient by a value close to zero.

With the outcome from the Sobel filter, there may be still
noises from e.g., varying colors of the street material and
shadows. Therefore, a thresholding step is introduced to set
the intensity of those pixels, whose gradient falls below a
certain threshold, to zero, otherwise a maximum value. This
step will make the lane detection possible under difficult
conditions, e.g., when rain or fog lead to blurred images. In
those situations the edges of the lane markings might be less
visible and the thresholding will make them brighter.

The pre-processing displays a high potential for parallel
computations. Grayscaling and Thresholding can be applied
to each pixel independently. The use of the Sobel Filter
requires knowledge of eight neighbouring pixels. This
provided, all pixels in the ROI can be pre-processed in
parallel. Therefore, an OpenCL kernel was developed such
that the pre-processing can be performed on FPGA or GPU.

In the pre-processing step, every pixel of this ROI needs
to be pre-processed. The settings of local work items and
global work items depend on the device architecture. For
the Nvidia GPUs listed in Tab. 1, the size of local work items
is set to be 16 X 4, and the size of global work items is set
to be ([HOLWIDTH . 16) x ([HQLHEIGHT] . 4) because
this setting matches the architecture of Nvidia GPU better.
For the Altera FPGA, the sizes of both local work item and
global work item are default to be 1 according to Altera
OpenCL guidance [1].

4.2 Lane Detection

After the pre-processing, the lane markings are indicated by
a band of pixels with high intensities in the ROL. It is the task
of the lane detection or lane tracking algorithm to extract
the exact positions of the lane markings. Lane detection is
performed whenever no estimates on the lane markings are
available, for example the very first frame that is processed.
After detecting the lane markings, lane detection is only
performed when the lane tracking algorithm fails to track
the markings.

4.2.1 Lane Marking Representation

To represent the lane markings, i.e., the band of pixels with
high intensities in the ROI, we assume all lane markings
within the ROI are straight lines. This is due to the fact that
the ROI captures only a small section of the street ahead
and, on straight roads and even in moderate bends, the
straight-line-assumption always holds. In sharp bends or
other exceptionally routed roads where the lane markings
might exhibit a bend, the ROI can then be split horizontally
into two or more regions, yielding sub-regions with straight
lane markings.

With the straight-line assumption, a lane marking can be
defined by two points, one at the top and the other at the
bottom of the ROI. The position (or state) of a line can thus
be expressed as X = (Iii":m), as the height of the ROI is
known and the y-values of these two points are constant and
given by the respective line number in the ROI. The slope
sx of the line and any other point on the line with y-value ¢
can be determined by:

Thottom — Ltop

= P = o -1 1
X = ROoLHEIGHT' &~ Ter Fexci (D)

In this manner, one can access the intensity value of any
pixels for a given line X.

4.2.2 Intensity weight

To detect multiple lane markings, the ROI is vertically split
into multiple regions, each for one lane marking. To detect
one lane marking, a number of randomly placed candidate
lines are populated within each region. The actual detection
is achieved by assigning an intensity weight to the candidate
lines, which expresses how close the line is placed to a real
lane marking. The intensity weight of a line is determined
by summing up the intensities of all pixels in the line
within the ROI. Further, also the pixels in an adjustable
neighborhood around a line (left and right of the actual
line) are added to this intensity weight. This accounts for the
width of a lane marking. The intensity weight is therefore
calculated as
ROI_HEIGHT 2N,,
w! = Z Z intensity(z;, j),)
=1 j=1
where 2N, is the neighborhood used to decide the width of
the lane marking and z; from Eqn. 1.

4.2.3 Detection

Keeping in mind that lane markings are represented by
pixels with high intensities, this method results in candidate
lines with higher intensity weights, if they are close to a

lane marking. The candidate line with the highest intensity
weight is selected to represent the lane marking. The
number of candidate lines that are sampled in a region is
adjustable and, therefore, there is a trade-off between the
timing performance of the lane detection and its quality.
Using more candidate lines will result in a better detection,
but also consumes more computing power.

The candidate lines are created by sampling its x¢,,- and
Thottom-values following a normal distribution. The mean p
of a normal distribution represents the value we expect to
appear (the expectation). In the case of lane detection the
most likely position of a lane marking is the center of a
region. This is the position of a lane marking, if a vehicle
drives on a straight road. The standard deviation o decides
how the candidates are distributed around the expectation.
In this work, o is set to half of the region width. From the
definition of the standard deviation of a normal distribution
follows that statistically about 68% of the sampled lines will
be placed completely within a region and the other 32%
of the lines might overlap to other regions. This empirical
choice of parameters proved to detect lane markings in all
kind of positions from our later experiments.

4.2.4

The presented method for detecting lane markings has
the desirable characteristic that the candidate lines are
independent from one another. The sampling of the lines
and the calculation of their intensity weights can be done in
parallel. Hence, an OpenCL kernel is used to compute the
intensity weight of each sample line. Notes that the selection
of the best lines from the candidate lines requires knowledge
of all lines and is therefore performed on the host.

In this kernel, only the intensity of sampled lines need to
be computed. Hence, according to the OpenCL guidance
of both Nvidia and Altera, the local work size is set to
be 8 and the global work size is set to be equal to the
number of sampled lines. For every work item in the kernel,
an indexed sample_from_Gaussian based on the work
item id is loaded. The intensity of a sampled line is thus
computed. The intensities of all sampled lines will be sent
back to the host and the host will select the lines with the
highest intensity as the best lines.

The lane tracking algorithm, which will be described
in the following section, requires a set of possible
candidates/particles for each lane marking. Therefore not
only the best candidate is stored, but for each lane marking
a subset of the candidate lines is kept. In the following this
subset will be referred to as the good lines. The line with
the highest intensity weight amongst the good lines will be
called the best line and represents the actual lane marking.

Implementation

4.3 Lane Tracking

Lane tracking differs from lane detection as it uses
information from a previous frame to detect the lane
markings in a subsequent frame. Hence it does not actually
detect the lines, but rather tracks them. The lane tracking
algorithm has two sources of information at its disposal, the
pre-processed ROI and the set of good lines and best lines
from the previous frame. A Particle Filter is employed to
keep track of the markings. Each lane marking is tracked

6

separately, which means that multiple instances of the same
particle filter are used in the algorithm.

4.3.1 Particle Filter Basics

Particle filter is a stochastic computational technique
based on Bayesian Signal Processing and Markov Chain
Monte Carlo simulation models. According to [9], Bayesian
Signal Processing is concerned with the estimation of the
underlying probability distribution of a random signal in
order to perform statistical inferences. A Particle Filter
implements the Bayesian recursion equation

P(Y|X)P(X)
P(Y)

where X is the desired state variable that is inferred from
the measurement Y, the term P(X|Y) ! is called posterior
probability distribution, P(Y'|X) is likelihood, P(X) is prior
probability distribution, and P(Y') is evidence.

Eqn. 3 is implemented by sampling a number of
weighted particles ¢ = 0,1,..., N from the prior
distribution. Each particle has a state X;. In addition, each
particle is assigned an importance weight w;. The importance
weight expresses the likelihood that X is identical with the
true state of the state-space model given the measurement
Y, hence w; = P(Y|X;)P(X;). Inserting this to Eqn. 3
yields

PX]Y) = ®)

(Y|X:)P(X;) PY|X)P(X:) w

P
PO = =y TSN POIXOP(X) S gwn

@

A vparticle filter is usually implemented in three
consecutive steps in an iterative manner:

e DPrediction update: The state X; of each particle is
updated in the same manner as the true state is expected
to change.

¢ Importance weight update: The importance weight w; is
calculated for each particle.

e Resampling: This step is introduced that randomly
samples particles according to their importance weight
and copies them to a new, equally sized set. This yields
a set with a higher density of good particles and avoids
degeneration of the particle set.

A particle filter requires little or no assumptions on the
model, only periodic (indirect) measurements of the true
state. Indirect position measurements in the form of images
are the only available information in a vision-based lane
tracking algorithm, making a particle filter a promising tool
for lane tracking.

4.3.2 Particle Filter setup

To use Particle Filter for the tracking. We match Eqn. 3 as
follows. The state variable is defined as the position of a
lane marking: X = (Z¢op, Thottom). The prior distribution
P(X) is derived from the good lines from the previous
frame. Similarly, observations Y is the actual lane marking
positions. Though direct observations cannot be obtain, the
best lines from the previous frame can be interpreted as
observations of the lane markings in the current frame,

1. The notation P(A|B) denotes a conditional probability, namely the
probability of event A occurring subject to the condition that event B has already
occurred.

assuming that the positions of the markings do not change
significantly between two consecutive frames.

Following the aforementioned matching, below present
the three steps to implement a Particle Filter.

4.3.3 Prediction update

Since the particles are already given in form of the good
lines, sampling candidate lines from a normal distribution
like in the detection phase is not necessary. Instead,
prediction update step is introduced. This step is required,
because the particles (good lines) are representing the lane
markings in one frame, but are used as prior distribution
in the next frame. In the new frame, the lane markings
might have moved slightly (because the vehicle moves). The
particles need to move the same distance in order to be a
valid prior distribution in the new frame.

The distance the lane markings shift is not known.
Therefore the particles are shifted by a random value
sampled from a normal distribution with mean ;1 = 0 and
standard deviation o > 0. i = 0 indicates that we expect no
shift in an optimal case and ¢ > 0 accounts for a deviation
from the optimal case. In our work, ¢ is empirically set to
1/16 ROI_WIDTH.

4.3.4 Importance weight update

For each particle of the prior distribution the importance
weight is calculated. This is done by applying Eqn. 4. As
previously mentioned, the importance weight of a particle is
determined by the numerator: P(Y|X;)P(X1i). It assesses
the likelihood that the predicted particle X; produces the
observation Y. In this work this is determined by fitting the
state of the predicted particle to the Gaussian function

= e 2T (5)

where ;i = Y. The standard deviation o represents the
measurement noise that accounts for a possible error in the
assumption that the position of a lane marking does not
change between two frames. The term X; — puf = Xi - Y
represents the distance of two lines, the particle X; and the
observation Y. This distance is calculated by summing up
the pointwise distance of line X; and line Y. It yields the
area between the two lines.

The evidence P(Y'), or marginal likelihood, is required
in order to put the importance weight of different particles
in relation to each other. The evidence describes the overall
probability of the observation Y and is simply calculated as

N N
P(Y) = ZP(Y|XL')P(%‘) = qu (6)

updated
i =

Therefore, the importance weight update is w
P(X;|Y) of Eqn. 4.

4.3.5 Resampling

The prediction and importance weight update produce a
new set of good lines, where each particle has a normalized
importance weight. Finally, a resampling step is performed
in order to increase the accuracy of the tracking and to
prevent a degeneration of the set. The pseudo code for the
resampling is shown in Algo. 1.

Algorithm 1 RESAMPLE

1: idx < rand()%Ny; B + 0.0
2: fori =1: N, do
3 B+ =rand()%(2 * Wmaz);
while 8 > w;q, do
B— = Widy; idx < (idz + 1)%N,;
end while
particle(i) < particle(idz);
end for

> N, = #particle

Here, idx is an index drawn randomly from the particle
indexes. The weight w,,q, belongs to the particle with
the maximum weight after the update step. Variable § is
assigned a random weight which is within 2 X Wy, and
used to ensure that any particle with weight less than the
value of 3 is skipped and all other particles are kept in
the new set. As the new set contains the same amount of
particles as the old set after the resampling step, there can
be multiple copie of some particles from the old set in the
new set. Usually, the higher the weight of a particle, the
higher the probability of multiple copies of that particle in
the new set. Nevertheless, some of the particles can still be
completely missed out in the new set even if they have high
weight.

4.3.6 Best lines update

Although the best lines of current frame are considered as
the lane markings of next frame in updating the importance
weight of particles, the best lines of current frame are
not the real lane markings of next frame because the lane
markings also move with the movement of vehicle. The
collected intensity of a resampled good line still represents
the closeness between the resampled good line and the real
lane markings. Hence, the reampled good lines with the
highest intensity weights are chosen as the best lines in each
frame and continuously be used as the lane markings of next
frame in updating the importance weight and resampling
the particles.

4.3.7 Implementation

The prediction and importance weight update of one
particle is not dependent on other particles. Therefore
these parts can be performed in parallel and an OpenCL
kernel was created that carries out the updates on GPU
or FPGA. The procedure is similar to lane detection but
with a different mean and deviation values mentioned in
Sec. 4.3.3. The resampling and best lines update, in contrast,
are dependent on information from all particles and are
implemented on the host. The job of a work item in the lane
tracking kernel is to compute the importance and intensity
of a particle line. Therefore, the group work size is set to be
the number of all particles so that every particle is used. The
local work size is set to be 8 because this can fully utilize the
accelerating device.

Note the number of particles used for the tracking does
not have to be same as the number of sampling candidates
used for the detection. The number of sampling candidates
is the upper bound for the number of particles. In principle,
larger number of both or either will lead to higher accuracy.
Nevertheless, both numbers can be used to tune the trade-
off between speed and accuracy of our algorithm.

4.4 Re-detection Criteria

The switch from lane tracking to detection depends on the
actual road scenarios. During lane tracking, a few criteria
are checked whether the detected lane marking positions
are reasonable and in line with the physical properties of
lane markings. If the criteria are not met, a detection step is
triggered to re-discover the positions of the lane markings
again. The used criteria are:

e Lane markings do not cross.

e Minimum distance between any detected lane markings.
In this work, 20% of the width of the ROI.

o At least 30% of a lane marking are in the ROI.

The last check is important for the lane tracking. The
algorithm tracks lane markings based on existing estimates
and it will do so even if the lane markings moves to the
boundary or even out of the ROIL. No new lane markings are
detected in the lane tracking stage. In many scenarios, for
example when a car changes the lane on the highway, one
lane marking moves out of the ROI and another one moves
in. The third check of the re-detection criteria discovers these
cases and triggers a lane detection step to discover a new
lane marking.

5 EVALUATION SETUP

This section describes the setup of our case study. Details of
the chosen COTSs and test videos are depicted. In addition,
the OpenCL runtime environment are presented.

5.1 Test cases

We choose five different COTS platforms, i.e., an Nvidia
GeForce GTX660Ti GPU and an Altera Stratix VA7 FPGA
(Nallatech PCIe385n_a7 card) mounted on a desktop with
an Intel Intel Xeon processor, an Nvidia Quadro K600 on
another desktop with an Intel Core2 Quad desktop, a
standalone Altera Cyclone V SoC FPGA, and a Redmi Note 2
mobile phone. The Cyclone SoC is embedded with a Cortex-
A9 dual-core as the host. The Redmi Note 2 mobile uses the
MediaTek Helio X10 octa-core on 2 GHz [2], with an on-chip
PowerVR G6200 GPU. The detailed specifications of these
platforms are listed in Tab. 1.

The choices of COTSs for evaluating the application per-
formance are follows. First of all, the COTS platforms should
be diverse to test the heterogeneity support of OpenCL.
From this regard, GPUs and FPGAs, which represent two
structurally different programming platforms, are chosen.
In addition, a mobile GPU is tested as well. Secondly, we
intend to test the scalability of our approach and extract
the limits for a wider range of platforms, from powerful
high-end to low-budgeted low-cost platforms. For high-end
platforms, GTX660Ti GPU and Altera Stratix VA7 FPGA
are chosen. For budgeted platforms, Quadro K600 GPU
and Altera CycloneV SOC FPGA are chosen. The Redmi
Note2 mobile is another type of low-budgeted platform,
as the mobile itself costs around $100. In addition, Nvidia
Jetson TK1, which is specially designed and targeted to
automotive market for ADAS applications, is chosen for
further comparison.

To test our lane detection application on these five COTS
platforms, 14 video streams from different data-sets with

8

different scenarios are used. The detailed information of
these video streams is listed in Tab. 2. These videos can
respectively represent different road situations, including
night, blurred lane, and broken lanes. In these 14 video
streams, the third one and the fourth one come from
Caltech Lanes Dataset, while all others are self-recorded.
The original videos and the lane detection results can be
seen in this link?.

5.2 OpenCL runtime

The Nvidia GeForce GTX 660 Ti GPU and Altera Stratix V A7
FPGA (on the Nallatech PClIe385n_a7 card), are mounted
on an Intel Intel Xeon desktop via PICe bus. This allows a
heterogeneous execution of our application, i.e., distributing
the workload around GPU and FPGA during runtime.

In order to use different devices together, an Installable
Client Driver (ICD) loader is needed. The ICD loader
libraries act as a proxy between the user program and
the actual implementations. It employs the C programming
language library dl that is used on Linux to load libraries at
runtime. Due to the absence of ICD loader in Altera AOCL
13.0spl, a self-developed ICD loader was developed and
implemented. The relationships between the libraries are
shown in Fig. 3, where different vendor implementations
can be loaded at runtime without the symbol conflicts.

Host

ICD Loader
n particles 1ibOpenCL.so m particles
Collect and resample
particles

Update importance importance importance Update importance
and intensity weight | | & intensity & intensity | | and intensity weight

Nvidia ICD Altera ICD

libcuda.so libalteracl.so

GPU FPGA

Fig. 3. Relation of IcD libraries in the case of lane tracking.

The communication between the host and devices is
organized in a server-client model, as shown in Fig. 3.
The host distributes the workload between the devices and
collects the results when they are ready. This distribution
is adjustable at runtime because frames are processed one
after another independently.

6 EVALUATION RESULTS

This section presents experimental results and analyzes
these results from different aspects.

6.1 Accuracy

First of all, the detection capability of our approach is
evaluated. In order to do so, the KITTI-ROAD Dataset [17] is
used for the evaluation, which consists of two independent
marked subsets, 96 frames for urban marked two-way roads
and 94 frames of urban marked multi-way roads. Our
approach can detect lane markings in 92% of the images

2. https:/ /www.youtube.com/playlist?list=PLMf5knkexT9JLOHI6Yg
Mk7HWL7_Bs_Zh9

TABLE 1
Hardware specification of the COTS platforms.

[[FPGA1 [FPGA2 [GPU1 [GPU2 [GPU3
Model Nallatech 385-D5 Cyclone V SoC GeForce GTX 660 Ti Quadro K600 PowerVR G6200
Architecture Stratix V 5SGXA7 ST 5CSTDé6 Kepler GK104 Kepler GK 107 Mediatek Helio X10
Driver version 13.1 13.1 304.88 340.58 Android 5.0
Host CPU Intel Xeon E31225 Cortex-A9 dual-core Intel Xeon E31225 Intel Core 2 Quad Q9300 Cortex-A53 Octa-core
Host connection PCle AMBA AXI PCle PCle MTK MCSI
PClIe Generation 3.0 N/A 3.0 2.0 N/A
PCle lanes 8x N/A 16x 16x N/A
On-board memory 8GB DDR3 1GB DDR3 2GB DDR5 1GB DDR3 2 GB DDR3
Max. Freq. (MHz) 600 210 915 876 700
Max. GFLOPS 294.7 56 2,460 336.4 89.6
Max. Power (W) 25 (board) ~4 (chip) 150 (board) 41 (board) ~4 (chip)
OpenCL version 1.1 1.1 2.0 1.2 1.2

TABLE 2
The detailed information of the 14 test videos.
[Videos [1 [2 [3 [4 [5 [6 [7 |
Total frames 1285 895 250 406 1718 3056 4597
Detection 204 20 13 68 3 70 385
Tracking 1081 875 233 334 846 1442 4212
Resolution 360X640 | 360X640 480X640 480X768 480X640 480X640 360X480
Scenario city dark bus view blur lane high way outskirts lane crossing
ROI size 72X512 72X512 96X384 96X384 96X512 96X512 72X384
[Videos [8 [9 [10 [11 [12 [13 [14 |
Total frames 1385 938 2473 1313 2283 1512 2448
Detection 5 6 85 30 80 55 108
Tracking 1380 932 2388 1283 2203 1457 2340
Resolution 480X640 | 480X640 480X640 480X640 320X480 480X640 480X640
Scenario night broken | streetroad | blur lanes | broken lanes driving light
lanes in night in night in night with traffic disturbance
ROI size 96X512 96X512 96X512 96X512 64X384 96X512 96X512

(j) Three lanes with shadow

Three lanes in city

@
Fig. 4. Lane detection for KITTI-ROAD dataset.

from this dataset and only failed to detect when the Sobel
filter creates no edges., Some of the especially challenging
images are demonstrated in Fig. 4.

We also evaluate the impact of numbers of candidate
lines(denoted as N.) and particles (denoted as N,) on
the overall accuracy. Since our approach is a stochastic
approach, the lane markings detected from a N, = 24 and
N, = 2'? setting are used as baselines. We evaluate different
N, and N, combinations. Each combination is tested with
the 14 videos in Tab. 2. The numbers of pixels deviated from
the baselines are reported.

The results are shown in Fig. 6(a). From the figure, the

(g) No markings, pavement edges (h) Disturba
lane
2 |

are tracked

(k) Three lanes, no markings on the (I) Three lanes with arrow distur-
right bance

first observation is that the accuracy increases when N,
increases. With IV, = 128, the average deviation is already
below 4 pixels. Considering the neighborhood NV, is set to
10 pixels, i.e., a lane marking is represented by 20 pixels, we
can conclude that our approach can achieve high accuracy.
The second observation is that when IV, > 512 the deviation
is saturated to 3 pixels. The reason for the saturation at 3
pixels is that particle filter is a statistical result. Since every
time particles are randomly distributed on the image, there
exists inherent deviation between any two detection results.
Although our reference baselines are calculated by a large
N, and N,, this reference baselines cannot guarantee to be

10

Frame Rate

364
222 220 191
140 113 110
18 17 1 1 nm a4
&0 %G &0, Q &0 Q o S, G, 2
o, Lo, %O, 'f‘ 2 //‘* '1‘ N2 @/ T 0y 0 0 L A
«%;90; %, 6%— o, 7 «%ﬁ@ 6Q+ 7 ‘90' 6 % 7 ’%,‘90' éé%l— %/)\7
(4’(] @ ° %o @ @ Cc,’0 O ()
Q /) @) Q /)&
72*512 216*512 144*1024 432*1024
Fig. 5. Frame rate w.r.t. ROI.
the real lane markings. It can happen that real lane markings ” 3888 T
are obtained with smaller N, and N, during the runtime. 21500} =
Besides, the real lane on the image is not a strictly straight @ 10.00 =L
. . . . o g # 5.00 B R e ™ = S
line, which will also result in some deviations between the 000 T T T 5 . 5
detected lane and the real lane. 22 2z 2 2 r2rr 42 627 82
(a) Deviation of best lines with the referred best lines
2 1 -
6.2 Performance & 288’ T 5
We also report the frame rates for the five COTS platforms % 400 TR g
in Tab. 1 for all N, and N, combinations in Fig. 6(a). For i 208

each N, and N, combination, the 14 videos in Tab. 2 are
checked and the corresponding frame rates are recorded
for every platform. The results are shown in Fig. 6(b)-
6(f). It can be seen that, the GeForce GPU achieves the
highest frame rates, as expected among all COTSs (Fig. 6(b)).
It can reach over 1000fps for certain videos when the
numbers of particles (/V,) are small. With N,, < 512, i.e,,
average deviation less than 3 pixels, the average frame rate
can still reach more than 550 fps. For the StratixV FPGA
(Fig. 6(e), the frame rates are lower than the GeForce GPU
but still super fast, about average 400 fps for N, < 512
and almost 1000 fps for smaller V,. Considering the Stratix
is running at 200Mhz, such performance is magnificent.
The budgeted Quadro K600 GPU (Fig. 6(f)) can also reach
relatively high performance, e.g., over 200 fps for average
frame rate at NV, = 512. For the ultra-low power resource-
restricted Redmi PowerVR GPU (Fig. 6(d)) and CycloneV
SoC FPGA (Fig. 6(f)), our algorithm can still reach real time.
Considering the power consumption for these two chips is
just 4 W, our algorithm is also energy efficient.

In addition, we also investigate the influence of ROT size
on the frame rate. Four different ROI sizes are tested and
the results are shown in Fig. 5. In these cases, N,, = 256 and
N, = 512 are adopted. From the figure, It can be seen that
the ROI size has big influence on the frame rate. In general,
the drops of the frame rates are sub-linear to the increases of
the size of the ROI for devices. Nevertheless, our algorithm
can still reach 77 fps on Stratix V FPGA for large ROI.

Furthermore, Nvidia Jetson TK 1 is used as a comparison
to evaluate the performance. TK1 is developed as a small
super computer that aims at the use in autonomous driving
and robot. Since it does not support OpenCL, our OpenCL
code is ported into CUDA code and runs on TK 1. Compared
to other GPUs in a PC platform, TK1 architecture is
optimized by using a share memory between CPU and GPU
to save the time of data communication. Nevertheless, the
frame rates (Fig. 6(g)) can only reach half of those on Quadro
K600, though TK1 and Quadro K600 have similar GFLOPS.
Note that we ran the CUDA code on Quadro GPU as well

2% 2% 25 28 27 28 292%2% 4x® 2% g®
(b) GeForce GTX 660 Ti GPU

© 600
2 ,
S L ibddl
o -
£ 200 =
E 0 . . T o i T "SR SR
23 2% 25 26 27 28 29249 gx® x2® ge2®
(c) Quadro K600 GPU
o 50 ; . : .
Eoaolmddoddg
p 30 ===
E 20 EE ===
s 10
v 0 3 4 5 6 7 8 9 9 9 9 9
2% 2% 25 28 27 28 292% 4 gx% gw
(d) Cellphone Redmi Note 2
© 1200 —
LR
e T oo
S 200 S ===
v O 3 4 5 6 27 28 49 50 9 CORRRP
23 2% 25 26 27 28 29209 4% g% gw
(e) Stratix V FPGA
©50.00
S 40.00
meQQQ@@E
520.00 | @ ; = &
L i i i i i
10.00 2 2% 25 25 o7 28 200° 42 620 g2
(f) Cyclone V FPGA
o 300— i . T | , .
T & : : : 6‘ T
% 200 o e e I s
£ 100 = =]
< T = oo ok g
v 0 3 4 5 6 7 8 9 9 9 9 9
23 2% 25 26 27 28 2920% 4x% E2° gw2

(g) Nvidia Jetson TK1

Fig. 6. Accuracy v.s. frame rate. The X axis is the number of particles
Np. For N, <29, N, = 29, otherwise N, = 212

to compare the OpenCL and CUDA implementations. From
this comparison, we found the OpenCL implementation
is only 10% slower than the CUDA implementation. This
shows that our CUDA implementation is not the cause of

.
23 9% 95 98 57T 58 59 559
(a) GeForce GPU

23 9% 95 98 57T 58 59 5459
(b) Quadro GPU

EIIIII|.I||||IIE
: :

23 0% 95 96 57 58 59 559
(c) Cellphone

23 9% 95 98 57T 58 59 559
(d) Stratix V FPGA

---lll!lllllll

23 9% 95 98 57T 58 59 5459
(e) Cyclone V FPGA

2% 2% 25 28 o7 28 2999 4% gxp% gxp?
I Pre-Processing LaneDetection M LaneTracking

(f) Nividia Jetson TK1

Fig. 7. Ratios of the average computation time of kernels on different
platforms.

Composit'i_g
NROOO

2499 @09 geo?

Compositiiéo
NGO

4%9% @09 g

Compositli_(‘)
NP0

ax09 g9 g9

Composit'i_g
N0

[cococsl ool N ool Noooss ol N oo s]

4499 @09 geo?

Compositiiéo
NGO

4%9% @9 g

Compositigl
NEOO
OOOOOO

the low frame rate on TK 1. We believe that the bottleneck
of TK1 is the host processor, a 32-bit quad-core Cortex A15
and its 64-bit memory data width.

6.3 Timing Analysis

In our approach, there are three OpenCL kernels, i.e., pre-
processing, lane detection, and lane tracking. Therefore,
we investigate the detailed timing of these three kernels
for all the experiments in Fig. 6. The normalized average
computation time of all N, and N, combinations is shown
in Fig. 7. From this figure, we have following observations.
In general, given fixed N, increasing N, will increase
the timing percentage of lane tracking. The reason is that
there are more particles needed to be processed with larger
N,. Another reason is that with less particles, i.e., smaller
N, the tracking is less accurate and need more times
of detection. On the other hand, the workload for pre-
processing is fixed for a given ROI. Therefore, the ratios for
pre-processing drop further as the number of IV, increases.
The second observation is the ratios are different for
different platforms, given the same N, and N, combination.
In general, the two FPGAs have higher percentages for pre-
processing than the GPUs. The reason is that more floating
point operations are involved during pre-processing.

Lets take a closer look and consider the case N, = 256
and N, = 512. The normalized average total execution

11

time and execution time per frame are shown in Fig. 8 and
Fig. 9, respectively. For the total execution time (Fig. 8), the
major computation is expected spending on lane tracking.
The reason is that average 95% frames are conducted
lane tracking. When we consider the computing time for
individual frames (Fig. 9), lane detection consumes much
more computing power than lane tracking, e.g., more than
twice for GPUs, which justifies the need of a lane tracking
step, rather than detection for every frames.

Fig. 10 shows the ratios of timing expense between
the host CPU and devices. In general, the hosts have a
bigger portion, i.e, about 80%. This means the hosts are
always the bottleneck. The main reason for this bottleneck
is the conversion of OpenCV structure of image frames
into OpenCL peer. This conversion unfortunately cannot be
paralleled with the devices. Comparing the Stratix V FPGA
and GeForce GPU (Fig. 10(a) and 10(d)), who are mounted
on the same machine with Intel Xeon processor, one can find
the portion for the host is smaller (i.e., 58%) for Stratix V
FPGA. The reason is that the Stratix V FPGA has much small
computing resources than the GeForce GPru, i.e., slower.
Although almost half computation time is spent on the
Stratix V , the processing speed of Stratix V is still very fast
as the frame rate for Stratix V is the second highest among
all devices. The reason for the high percentage of Stratix V
computation time is that the host processor is very powerful.
For the case of CycloneV, the host processor is a dual-core
Cortex-A9, which results in the highest ratio for the host.

6.4 Heterogeneous Execution on Multiple Devices

In section 5.2, the framework of heterogeneous execution
of OpenCL application using multiple devices is described.
This section presents experiments of heterogeneous exe-
cution of our lane detection with Altera’s Stratix V FPGA
and Nvidia’s GeForce GTX 660 TI GPU in combination. The
results are summarized in Fig. 11.

In this experiment, the number of sampled lines are
set twice as the number of particles (N, = 2N,) and we
tested four cases, each with different number of particles,
i.e., N, = 64,128,1024, and 10240. For each N,,, six scenarios
are evaluated, i.e., the percentage of N, computed on FPGA
is set to be 0%,20%,40%, 60%, 80%, and 100%. When this
percentage is 0% and 100%, all computations are solely
executed on GPU and FPGA, respectively. In these two cases,
there is no ICD overhead during the test because the ICD is
not used when only one device is used.

There are three main observations from Fig. 11. First, the
frame rates decrease as more workload are on the FPGA
for most of the cases. This is because the GeForce GPU has
higher computer power than the Stratix FPGA, as shown
in Figs. 6(b) and 6(e). Second, the ICD overhead is non-
trivial. Comparing scenarios 0% (without ICD) and 20%
(with ICD) for cases 64, 128, and 1024, the frame rates drop
significantly, i.e., 40.16%, 34.52%, and 27.55%, respectively.
While comparing 20% to 40%, 40% to 60%, and 60% to
80%, the drops on frame rates are not significant as 0% to
20%. On the other hand, the frame rates increase again from
80% (with ICD) to 100%(without ICD). Third, the speed-up
in computation by distributing workload to both devices
is effective only when particles number is sufficiently

DD

(a) GeForce GPU (b) Quadro GPU (c) Cellphone

29

(d) Stratix V (e) Cyclone V (f) Nvidia Jetson TK1

Fig. 8. Normalized average total execution time of OpenCL kernels for N, = 256 and N. = 512.

=T ‘. Y

(a) GeForce GPU (b) Quadro GPU (c) Cellphone

DS

(d) Stratix V (e) Cyclone V (f) Nvidia Jetson TK1

Fig. 9. Normalized execution time of OpenCL kernels for single frame for N, = 256 and N. = 512.

17%
device

18%
28%

83% 82%

host 2%

(a) GeForce GPU

Fig. 10. Distribution of the computation time between host and devices.

(b) Quadro GPU (c) Cellphone

767

42%
58%

90% 84%

(d) Stratix V (e) Cyclone V (f) Nvidia Jetson TK1

% with icd overhead 61055

04

o 397 359

£ 292

I 137

L 45 35
6,5 (I ENNONY, 6,5 6,5 6,5 6,5
SN, SN N SN ON©) - ASSNON) - ASSNON) S NN

& 97970 @ 97970 @ 97970 Q@ 97970 & 97970 & 97970
0% 20% 40% 60% 80% 100%

Fig. 11. Heterogeneous execution with Stratix FPGA and GeForce GPU, where the bottom numbers represent the percentage of particles on FPGA.

large where single device cannot cope with the required
workload. Comparing scenarios 0% to 20%, only in the case
of 10240 particles, the frame rate increases from 90 to 126,
which the frame rates drop for all other cases. It indicates
that the benefit of distributing workload overcomes the
IcD overhead and thus increases the frame rate. In other
cases, the workload distribution cannot compensate the ICD
overhead and only results in performance decrease.

7 CONCLUSION

This article presents a case study for running ADAS
application on COTss with OpenCL. From this case study,
we draw following conclusions. First, our lane detection
developed with OpenCL can smoothly execute on both
Nvidia GPUs and Altera FPGAs, individually and jointly.
Although getting ideal performance on Redmi mobile
needs customized optimization, such optimization does
not affect the basic of the source code. Regarding the
effort of coding in OpenCL, it took 6 months for a
master student without any prior knowledge of parallel
programming to develop a working prototype of the lane
detection application. It took another 4 months for a
bachelor student without no knowledge of OpenCL to

optimize the memory consumption as well as the FPGA
execution. Therefore, we can confidently say OpenCL can
be considered as a viable standard programming model
for ADAS development. Second, as shown the experiments,
all the examined COTSs can provide more than sufficient
computing power for lane detection. With proper manners
that can exploit the available parallelism, we believe COTS
platforms can provide enough computing power to support
ADAS applications, even multiple applications jointly on
single platforms. In summary, Using OpenCL to develop
parallel ADAS applications on COTS platforms is a viable
solution for future ADAS development.

ACKNOWLEDGMENTS

The authors would thank Nikhil Madduri, Jan Botsch, Di
Zhu, Zhihu Pan, Alibi Rakhmatulin, and Mingyue Cui
for their contributions to the paper. This work is partly
supported by German BMBF fund: 13N11936 and China
SYSU ’the Fundamental Research Funds for the Central
Universities”: 151gjc32.

REFERENCES

(1]

(2]
(3]
(4]

(5]

(6]

(7]

(8]

(9]
[10]

[11]

(12]

(13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]
[21]

[22]
(23]
[24]

[25]

Altera SDK for OpenCL - Programming Guide.
https:/fwwuw.altera.com/content/dam/altera-www/global/en_US/pdfs/
literature/hb/opencl-sdk/aocl_programming_guide.pdf, 2015.
GPU GFLOPS for Game Consoles/ARM, X86
http:/ /kyokojap.myweb.hinet.net/gpu_gflops/, 2016.

M. Aly. Real time detection of lane markers in urban streets. In
IEEE Intelligent Vehicles Symposium, pages 7-12. leee, June 2008.

X. An, E. Shang, J. Song, J. Li, and H. He. Real-time lane departure
warning system based on a single FPGA. EURASIP Journal on
Image and Video Processing, 2013(1), 2013.

A. Borkar, M. Hayes, M. T. Smith, and S. Pankanti. A layered
approach to robust lane detection at night. IEEE Workshop on
Computational Intelligence in Vehicles and Vehicular Systems, pages
51-57, Mar. 2009.

L. Brownsword, D. Carney, and T. Oberndorf. The opportunities
and complexities of applying commercial-off-the-shelf compo-
nents. Crosstalk, 11(4):4-6, 1998.

M. Broy, I. Kruger, A. Pretschner, and C. Salzmann. Engineering
automotive software. Proceedings of the IEEE, 95(2):356-373, Feb.
2007.

M. Buechel, J. Frtunikj, K. Becker, S. Sommer, C. Buckl,
M. Armbruster, A. Marek, A. Zirkler, C. Klein, and A. Knoll.
An automated electric vehicle prototype showing new trends in
automotive architectures. In International Conference on Intelligent
Transportation Systems(ITSC), September 2015.

J. V. Candy. Bayesian Signal Processing: Classical, Modern and Particle
Filtering Methods. Wiley-Interscience, New York, NY, USA, 2009.
T.-C. Chen and K.-L. Chung. A New Randomized Algorithm for
Detecting Lines. Real-Time Imaging, 7(6):473-481, Dec. 2001.

K.-Y. Chiu and S-F. Lin. Lane detection using color-based
segmentation. In IEEE Intelligent Vehicles Symposium, pages 706—
711, 2005.

A. Cohen, V. Perrelle, D. Potop-Butucaru, M. Pouzet, E. Soubiran,
and Z. Zhang. Hard Real Time and Mixed Time Criticality on
Off-The-Shelf Embedded Multi-Cores. In 8th European Congress on
Embedded Real Time Software and Systems (ERTS), Toulouse, France,
Jan. 2016.

W. Cunningham. Bmw adopts nvidia gpu for in-car dis-
plays. http:/ /www.cnet.com/news/bmw-adopts-nvidia-gpu-for-
in-car-displays/, 2011.

T. Czajkowski, U. Aydonat, D. Denisenko, J. Freeman, M. Kinsner,
D. Neto, J. Wong, P. Yiannacouras, and D. Singh. From opencl
to high-performance hardware on fpgas. In Intl. Conf. Field
Programmable Logic and Applications (FPL), pages 531-534, 2012.

F. Fons and M. Fons. Fpga-based automotive ecu design addresses
autosar and iso 26262 standards. Xcell journal, 78:20, 2012.
Freescale. OpenCL ADAS development environment addresses
safety concerns. http://automotive.electronicspecifier.com/, 2015.

J. Fritsch, T. Kuhnl, and A. Geiger. A new performance measure
and evaluation benchmark for road detection algorithms. In
Intelligent Transportation Systems-(ITSC), 2013 16th International
IEEE Conference on, pages 1693-1700, 2013.

M. Ghadhab, J. Kaienburg, M. StiSkraut, and C. Fetzer. Is software
coded processing an answer to the execution integrity challenge of
current and future automotive software-intensive applications? In
Advanced Microsystems for Automotive Applications, pages 263-275.
Springer, 2016.

R. Gopalan, T. Hong, M. Shneier, and R. Chellappa. A Learning
Approach Towards Detection and Tracking of LaneMarkings. In
IEEE Transactions on Intelligent Transportation Systems, volume 13,
pages 1088-1098, 2012.

K. Group. OpenCL. http:/ /www.khronos.org/opencl/.

P. Hough. Method and means for recognizing complex patterns.
US-Patent:3069654, 1962.

http:/ /www.icinsights.com/. 2016 IC Market Drivers Report.

K. Huang, B. Hu, J. Botsch, N. Madduri, and A. Knoll. A scalable
lane detection algorithm on cotss with opencl. In In Design,
Automation and Test in Europe, March 2016.

F. Kastensmidt and P. Rech, editors. FPGAs and Parallel
Architectures for Aerospace Applications. Springer, 2016.
Khronos Group. OpenCL Extension
Installable Client (ICD) Loader.

SoC.

#5:

Driver http-

s:/ /www.khronos.org/registry/cl/extensions/khr/cl_khr_icd.txt,

2010. Retrieved on 2015.03.15.

[26]

[27]

[28]

[29]

(30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

(39]

[40]

[41]

[42]

[43]

(44]

[45]

13

O. Kotaba, J. Nowotsch, M. Paulitsch, S. M. Petters, and
H. Theiling. Multicore in real-time systems—temporal isolation
challenges due to shared resources. In Workshop on Industry-Driven
Approaches for Cost-effective Certification of Safety-Critical, Mixed-
Criticality Systems, 2014.

T. Litman. Autonomous vehicle implementation predictions.
Victoria Transport Policy Institute, 28, 2014.

G. Liu, E. Worgotter, and 1. Markelic. Combining statistical hough
transform and particle filter for robust lane detection and tracking.
In IEEE Intelligent Vehicles Symposium (IV), pages 993-997, 2010.
X. Liu, B. Dai, J. Song, H. He, and B. Zhang. Real-time long-range
lane detection and tracking for intelligent vehicle. In Sixth Intl.
Conf. Image and Graphics (ICIG), pages 654659, 2011.

C. Ma, L. Mao, Y. Zhang, and M. Xie. Lane detection using
heuristic search methods based on color clustering. In International
Conference on Communications, Circuits and Systems (ICCCAS),
pages 368-372, 2010.

J. McCall and M. Trivedi. Video-based lane estimation and
tracking for driver assistance: survey, system, and evaluation.
Intelligent Transportation Systems, IEEE Transactions on, 7(1):20-37,
2006.

M. Meuter, S. Muller-Schneiders, A. Mika, S. Hold, C. Nunn, and
A. Kummert. A novel approach to lane detection and tracking.
2009 12th International IEEE Conference on Intelligent Transportation
Systems, pages 1-6, Oct. 2009.

B. Motruk, J. Diemer, R. Buchty, R. Ernst, and M. Berekovic. Idamc:
A many-core platform with run-time monitoring for mixed-
criticality. In High-Assurance Systems Engineering (HASE), 2012
IEEE 14th International Symposium on, pages 24-31, Oct 2012.

D. Muench, M. Paulitsch, and A. Herkersdorf. Temporal
separation for hardware-based i/o virtualization for mixed-
criticality embedded real-time systems using pcie sr-iov. In
27th International Conference on Architecture of Computing Systems
(ARCS), pages 1-7, Feb 2014.

P. Muyanoézgelik and V. Glavtchev. Gpu computing in tomorrow’s
automobiles. http://www.nvidia.com/content/nvision2008
/tech_presentations/ Automotive_Track/NVISION08-GPU_
Computing_in_Tomorrows_Automobiles.pdf, 2008.

M. Nieto, A. Corts, O. Otaegui, J. Arrspide, and L. Salgado. Real-
time lane tracking using rao-blackwellized particle filter. Journal of
Real-Time Image Processing, pages 1-13, 2012.

J. Nowotsch, M. Paulitsch, A. Henrichsen, W. Pongratz, and
A. Schacht. Monitoring and wcet analysis in cots multi-core-soc-
based mixed-criticality systems. In Design, Automation and Test in
Europe Conference and Exhibition (DATE), pages 1-5, March 2014.
M. Pani¢, G. Rodriguez, E. Quifiones, J. Abella, and F. J. Cazorla.
On-chip ring network designs for hard-real time systems. In
Proceedings of the 21st International Conference on Real-Time Networks
and Systems, RTINS ’13, pages 23-32, New York, NY, USA, 2013.
ACM.

M. Paolieri, E. Quifiones, F. J. Cazorla, G. Bernat, and M. Valero.
Hardware support for wcet analysis of hard real-time multicore
systems. SIGARCH Comput. Archit. News, 37:57-68, June 2009.

M. Paolieri, E. Quinones, E J. Cazorla, and M. Valero. An
analyzable memory controller for hard real-time cmps. Embedded
Systems Letters, IEEE, 1(4):86-90, Dec 2009.

J. Ponce and D. Forsyth. Computer Vision A Modern Approach. 2012.
P. Pop, L. Tsiopoulos, S. Voss, C. E. Oscar Slotosch, U. Nyman, and
A. R. Lopez. Methods and tools for reducing certification costs of
mixed-criticality applications on multi-core platforms: the recomp
approach. In WICERT 2013 proceedings, 2013.

C. E. Salloum, M. Elshuber, O. Hoeftberger, H. Isakovic, and
A. Wasicek. The across mpsoc — a new generation of multi-
core processors designed for safety-critical embedded systems. In
Digital System Design (DSD), 2012 15th Euromicro Conference on,
pages 105-113, Sept 2012.

K. Shagrithaya, K. Kepa, and P. Athanas. Enabling development
of opencl applications on fpga platforms. In IEEE 24th
International Conference on Application-Specific Systems, Architectures
and Processors (ASAP), pages 26-30, 2013.

X. Shen, Z.]J. Chong, S. Pendleton, G. M. James Fu, B. Qin,
E. Frazzoli, and M. H. Ang. Intelligent Autonomous Systems
13: Proceedings of the 13th International Conference IAS-13, chapter
Teleoperation of On-Road Vehicles via Immersive Telepresence
Using Off-the-shelf Components, pages 1419-1433. Springer
International Publishing, Cham, 2016.

[46] R. B. Sorensen, M. Schoeberl, and J. Sparso. A light-weight
statically scheduled network-on-chip. In NORCHIP, 2012, pages
1-6, Nov 2012.

[47] J. Sparso. Design of networks-on-chip for real-time multi-
processor systems-on-chip. 2010 10th International Conference on
Application of Concurrency to System Design, 0:1-5, 2012.

[48]]. Sparso, E. Kasapaki, and M. Schoeberl. An area-efficient network
interface for a tdm-based network-on-chip. In Design, Automation
Test in Europe Conference Exhibition (DATE), 2013, pages 1044-1047,
March 2013.

[49] K. Taylor. Altera functional safety package combines fpga
flexibility with lockstep processor solution to reduce risk and time-
to-market. http://newsroom.altera.com/press-releases/nr-altera-
functional-safety-yogitech.htm, 2015.

[50] T. Ungerer, C. Bradatsch, M. Gerdes, F. Kluge, R. Jahr, J. Mische,
and J. E. et al. parmerasa — multi-core execution of parallelised hard
real-time applications supporting analysability. In Digital System
Design (DSD), 2013 Euromicro Conference on, pages 363-370, Sept
2013.

[51] T. Ungerer, F. Cazorla, H. Casse, S. Uhrig, 1. Guliashvili,
M. Houston, and F. K. et al. Merasa: Multicore execution of
hard real-time applications supporting analyzability. Micro, IEEE,
30(5):66-75, Sept 2010.

[52] K. Zhao, M. Meuter, C. Nunn, D. Muller, S. Muller-Schneiders,
and J. Pauli. A novel multi-lane detection and tracking system. In
IEEE Intelligent Vehicles Symposium (IV), pages 1084-1089, 2012.

Kai Huang Kai Huang joined Sun Yat-Sen
University as a Professor in 2015. He was
appointed as the director of the Institute of
Cyber Physical Systems of School of Data and
Computer Science in 2016. He was a senior re-
searcher in the Computer Science Department,
the Technical University of Munich, Germany
from 2012 to 2015 and a research group leader
in fortiss GmbH in Munich Germany in 2011.
He obtained his Ph.D. degree in ETH Zurich,
Switzerland in 2010. his MSc from University of
Leiden, the Netherlands in 2005, and his BSc from Fudan University,
China in 1999. His research interests include techniques for the
analysis, design, and optimization of embedded systems, particularly
in the automotive domain. He was awarded the Program of Chinese
Global Youth Experts 2014 and was granted the Chinese Government
Award for Outstanding Self-Financed Students Abroad 2010. He was
the recipient of Best Paper Awards ESTIMedia 2013, SAMOS 2009, and
General Chairs’ Recognition Award For Interactive Papers in CDC 2009.
He is a regional editor for Elsevier Journal of Circuits, Systems, and
Computers, and have served as a member of the technical committee
on Cybernetics for Cyber-Physical Systems of IEEE SMC Society since
2015.

Biao Hu Biao Hu received the B.Sc. degree
in Control Science and Engineering at Harbin
Institute of Technology, received the M.Sc.
degree in Control Science and Engineering at
Harbin Institute of Technology from Tsinghua
University. He is working toward the PhD degree
in Department of Computer Science at the De-
partment of Informatics of the Technische Uni-
versitdt Mnchen. His research interests includes
the autonomous driving, OpenCL computing in
heterogeneous system, the scheduling theory in
real-time systems, and safety-critical embedded systems.

14

Long Chen received the B.Sc. degree in com-
munication engineering and the Ph.D. degree in
signal and information processing from Wuhan
University, Wuhan, China, in 2007 and in 2013,
respectively. From October 2010 to November
2012, he was co-trained Phd Student at National
University of Singapore. From 2008 to 2013,
he was in charge of environmental perception
system for autonomous vehicle SmartV-1l with
the Intelligent Vehicle Group, Wuhan University.
He is currently an Assistant Professor with
the School of Data and Computer Science, Sun Yat-sen University,
Guangzhou, China. His areas of interest include computer vision, point
cloud processing and unmanned autonomous vehicles.

Alois Knoll Alois C. Knoll received the diploma
(M.Sc.) degree in Electrical/Communications
Engineering from the University of Stuttgart,
Germany, in 1985 and his Ph.D. (summa cum
laude) in Computer Science from the Technical
University of Berlin, Germany, in 1988. He
served on the faculty of the Computer Science
department of TU Berlin until 1993, when he
qualified for teaching computer science at a
university (habilitation). He then joined the Fac-
ulty of Technology of the University of Bielefeld,
where he was a full professor and the director of the research group
Technical Informatics until 2001. Since autumn 2001 he has been a
professor of Computer Science at the Department of Informatics of the
Technische Universitat Mnchen. He was also on the board of directors of
the Central Institute of Medical Technology at TUM (IMETUM); between
April 2004 and March 2006 he was Executive Director of the Institute of
Computer Science at TUM. Between 2007 and 2009, he was a member
of the EUs highest advisory board for information technology, ISTAG,
the Information Society Technology Advisory Group, and a member
of its subgroup for Future and Emerging Technologies (FET). In this
capacity, he was actively involved in developing the concept of the EUs
FET Flagship projects, and he was one of the authors of the original
FET-Flagship report. His research interests include cognitive, medical
and sensor-based robotics, multi-agent systems, data fusion, adaptive
systems, multimedia information retrieval, model-driven development of
embedded systems with applications to automotive software and electric
transportation, as well as simulation systems for robotics and traffic.

Zhihua Wang Zhihua Wang received the B.S,,
M.S., and Ph.D. degrees in electronic engineer-
ing from Tsinghua University, Beijing, China, in
1983, 1985, and 1990, respectively. In 1983, he
joined the faculty at Tsinghua University, where
he is a Full Professor since 1997 and Deputy
v Director of Institute of Microelectronics since
/ 2000. From 1992 to 1993, he was a visiting
Q scholar at Carnegie Mellon University. From
1993 to 1994, he was a Visiting Researcher
at KU Leuven, Belgium. From September 2014
to March 2015, he was a Visiting professor in Hong Kong University
of Science and Technology. His current research mainly focuses on
CMOS RF IC and biomedical applications. His ongoing work includes
RFID, PLL, low-power wireless transceivers, and smart clinic equipment
with combination of leading edge CMOS RFIC and digital imaging
processing techniques. He is co-authors of 11 books and book
chapters, more than 118 paper in international Journals and over
350 papers in international Conferences. He is holding 75 Chinese
patents and 4 US patent. Prof. Wang has served as Deputy Chairman
of Beijing Semiconductor Industries Association and ASIC Society
of Chinese Institute of Communication, as well as Deputy Secretary
General of Integrated Circuit Society in China Semiconductor Industries
Association. He had been one of the chief scientists of the China
Ministry of Science and Technology serves on the expert committee of
the National High Technology Research and Development Program of
China (863 Program) in the area of information science and technologies
from 2007 to 2011.

