
An Efficient RANSAC for 3D Object
Recognition in Noisy and Occluded Scenes

Chavdar Papazov and Darius Burschka

Technische Universität München (TUM), Germany
email: {papazov, burschka}@in.tum.de

Abstract. In this paper, we present an efficient algorithm for 3D object
recognition in presence of clutter and occlusions in noisy, sparse and
unsegmented range data. The method uses a robust geometric descriptor,
a hashing technique and an efficient RANSAC-like sampling strategy.
We assume that each object is represented by a model consisting of a set
of points with corresponding surface normals. Our method recognizes
multiple model instances and estimates their position and orientation
in the scene. The algorithm scales well with the number of models and
its main procedure runs in linear time in the number of scene points.
Moreover, the approach is conceptually simple and easy to implement.
Tests on a variety of real data sets show that the proposed method
performs well on noisy and cluttered scenes in which only small parts of
the objects are visible.

1 Introduction

Object recognition is one of the most fundamental problems of computer vi-
sion. In recent years, advances in 3D geometry acquisition technology have led
to a growing interest in object recognition techniques which work with three-
dimensional data. Referring to [1], the 3D object recognition problem can be
stated as follows. Given a set M = {M1, . . . ,Mq} of models and a scene S are
there transformed subsets of some models which match a subset of the scene?
The output of an object recognition algorithm is a set {(Mk1 , T1), . . . , (Mkr

, Tr)}
where Mkj

∈ M is a recognized model instance and Tj is a transform which
aligns Mkj to the scene S. In this paper, we discuss a special instance of this
problem which is given by the following assumptions.

(i) Each model Mi is a finite set of oriented points, i.e., Mi = {(p,n) : p ∈
R3,n is the normal at p}.

(ii) Each model is representing a non-transparent object.
(iii) The scene S = {p1, . . . ,ps} ⊂ R3 is a range image.
(iv) The transform Tj which aligns Mkj to S is a rigid transform.

Even under these assumptions the problem remains hard because of several
reasons: it is a priori not known which objects are in the scene and how they
are oriented; the scene points are typically corrupted by noise and outliers; the

2 C. Papazov and D. Burschka

Fig. 1. Three views of a typical recognition result obtained with our method. The scene
is shown as a blue mesh and the four recognized model instances are rendered as yellow
point clouds and superimposed over the scene mesh (see Section 4 for details).

objects are only partially visible due to scene clutter, occlusions and scan device
limitations.
Contributions and Overview In this paper, we introduce an efficient algo-
rithm for 3D object recognition in noisy, sparse and unsegmented range data.
We make the following contributions: (i) We use a hash table for rapid retrieval
of pairs of oriented model points which are similar to a sampled pair of oriented
scene points. (ii) A new efficient RANSAC-like sampling strategy for fast gener-
ation of object hypotheses is introduced. (iii) We provide a complexity analysis
of our sampling strategy and derive the number of iterations needed to recognize
model instances with a predefined success probability. (iv) A new measure for
the quality of an object hypothesis is presented. (v) We use a non-maximum sup-
pression to remove false positives and to achieve a consistent scene explanation
by the given models.

The rest of the paper is organized as follows. After reviewing previous work in
Section 2, we describe our algorithm in Section 3. Section 4 presents experimental
results. Conclusions are drawn in the final Section 5 of the paper.

2 Related Work

Object recognition should not be confused with object classification/shape re-
trieval. The latter methods only measure the similarity between a given input
shape and shapes stored in a model library. They do not estimate a transform
which maps the input to the recognized model. Moreover, the input shape is
assumed to be a subset of some of the library shapes. In our case, however, the
input contains points originating from multiple objects and scene clutter.

There are two major classes of 3D object recognition methods. One class
consists of the so-called voting methods. Well-known representatives are the gen-
eralized Hough transform [2] and geometric hashing [1]. The generalized Hough
transform has a favorable space and time complexity of O(nk3), where n is the
number of scene points and k is the number of bins for each dimension of the
discretized rotation space. Unfortunately, the method scales bad with the num-

An Efficient RANSAC for 3D Object Recognition 3

ber of models since one has to match sequentially each one of them to the scene.
The geometric hashing approach [1] allows for a simultaneous recognition of all
models without the need of sequential matching. However, it tends to be very
costly since its space complexity is O(m3) and its worse case time complexity is
O(n4), where m and n are the number of model and scene points, respectively.
A more recent voting approach is the tensor matching algorithm [3]. It performs
well on complex scenes but the authors did not present tests on noisy and sparse
data sets.

The correspondence based methods belong to the second class of object recog-
nition approaches. First, correspondences between the models and the scene are
established usually using local geometric descriptors. In the second step, the
aligning rigid transform is calculated based on the established correspondences.
There is a vast variety of descriptors which can be used in a correspondence based
object recognition framework. A list includes, without being nearly exhaustive,
spin images [4], local feature histograms [5], 3D shape context, harmonic shape
context [6] and integral invariants [7]. In [8], classic 2D image descriptors were
extended to the domain of 2-manifolds embedded in R3 and applied to rigid and
non-rigid matching of meshes. Intrinsic isometry invariant descriptors were de-
veloped in [9] and shown to be effective for the matching of articulated shapes.
All correspondence based algorithms rely heavily on the assumption that the
models to be recognized have distinctive feature points, i.e., points with rare
descriptors. In many cases, however, this assumption does not hold. A cylinder,
for example, will have too many points with similar descriptors. This results
in many ambiguous correspondences between the model and the scene and the
recognition method degenerates to a brute force search.

In our recognition approach, we combine a robust descriptor, a hashing tech-
nique and an efficient RANSAC variant. A similar strategy was proposed in [10].
In contrast to [10], where a hash table is used only for fast indexing into a large
collection of geometry descriptors of single model points, we use a hash table
to store descriptors of pairs of oriented model points (called doublets). This not
only enables us to efficiently determine the model doublets which are similar to
a sampled scene doublet but also allows for a very easy computation of the align-
ing rigid transform since it is uniquely defined by two corresponding doublets.
Furthermore, in [10], a complex scene preprocessing is performed before run-
ning the actual object recognition: (i) multiple views of the scene are registered
in order to build a more complete scene description and (ii) a scene segmen-
tation is executed to separate the object from the background. In contrast to
this, our method copes with a single view of the scene and does not require any
segmentation. Moreover, the scenes used in all tests presented in [10] contain a
single object and some background clutter. In this paper, we deal with the more
challenging problem of object recognition and pose estimation in scenes which
contain multiple object instances plus background clutter.

Before we describe our algorithm in detail, we briefly review the surface reg-
istration technique presented in [11] and include a short discussion on RANSAC
[12] since both are of special relevance to our work.

4 C. Papazov and D. Burschka

Fast Surface Registration [11] To put it briefly, the task of rigid surface
registration is to find a rigid transform which aligns two given surfaces. Let
S be a surface given as a set of oriented points. For a pair of oriented points
(u,v) = ((pu,nu), (pv,nv)) ∈ S× S, a descriptor f : S× S→ R4 is defined by

f(u,v) =


f1(u,v)
f2(u,v)
f3(u,v)
f4(u,v)

 =


‖pu − pv‖
∠(nu, nv)

∠(nu, pv − pu)
∠(nv, pu − pv)

 , (1)

where ∠(a, b) denotes the angle between a and b. In order to register two
surfaces S1 and S2, oriented point pairs (u,v) ∈ S1 × S1 and (ũ, ṽ) ∈ S2 × S2

are sampled uniformly and the corresponding descriptors f(u,v) and f(ũ, ṽ)
are computed and stored in a four-dimensional hash table. The hash table is
continuously filled in this way until a collision occurs, i.e., until a descriptor of
a pair from S1 × S1 and a descriptor of a pair from S2 × S2 end up in the same
hash table cell. Computing the rigid transform which best aligns (in least square
sense) the colliding pairs gives a transform hypothesis for the surfaces.

According to [11], this process is repeated until a hypothesis is good enough,
a predefined time limit is reached or all combinations are tested. Non of these
stopping criteria is well-grounded: the first two are ad hoc and the last one is com-
putationally infeasible. In contrast to this, we compute the number of iterations
required to recognize model instances with a user-defined success probability.
Furthermore, a direct application of the above described registration technique
to 3D object recognition will have an unfavorable computational complexity
since it will require a sequential registration of each model to the scene.
RANSAC [12] can be seen as a general approach for model recognition. It
works by uniformly drawing minimal point sets from the scene and computing a
transform which aligns the model with the minimal point set.1 The score of the
resulting hypothesis is computed by counting the number of transformed model
points which lie within a certain ε-band of the scene. After a given number of
trials, the model is considered to be recognized at the locations defined by the
hypotheses which achieved a score higher than a predefined threshold. In order
to recognize the model with a probability PS we need to perform

N =
ln(1− PS)
ln(1− PM)

, (2)

trials, where PM is the probability of recognizing the model in a single iteration.
The RANSAC approach has the advantages of being conceptually simple,

very general and robust against outliers. Unfortunately, its direct application to
the 3D object recognition problem is computationally very expensive. In order to
compute an aligning rigid transform, we need at least three pairs of corresponding
model ↔ scene points. Under the simplifying assumption that the model is

1 A minimal point set is the smallest set of points required to uniquely determine a
given type of transform.

An Efficient RANSAC for 3D Object Recognition 5

completely contained in the scene, the probability of drawing three such pairs
in a single trial is PM (n) = 3!

(n−2)(n−1)n , where n is the number of scene points.
Since PM (n) is a small number we can approximate the denominator in (2) by
its Taylor series ln(1−PM (n)) = −PM (n) +O(PM (n)2) and get for the number
of trials as a function of the number of scene points:

N(n) ≈ − ln(1− PS)
PM (n)

= O(n3). (3)

Assuming q models in the library the complexity of RANSAC is O(qn3).
There are many modifications of the classic RANSAC scheme. Some recently

proposed methods like ASSC [13] and ASKC [14] significantly improve outlier
robustness by using a different score function. However, these variants are not
designed to enhance the performance of RANSAC. In [15], an efficient RANSAC-
like registration algorithm was proposed. However, it is not advisable to directly
apply the method to 3D object recognition since it will require a sequential
matching of each model to the scene. In [16], another efficient RANSAC variant
for primitive shape detection was introduced. The method is related to ours since
the authors also used a localized minimal point set sampling. Their method,
however, is limited to the detection of planes, spheres, cylinders, cones and tori.

3 Method Description

Like most object recognition methods, ours consists of two phases. The first
phase — the model preprocessing — is done offline. It is executed only once for
each model and does not depend on the scenes in which the model instances have
to be recognized. The second phase is the online recognition which is executed
on the scene using the model representation computed in the offline phase.

3.1 Model Preprocessing Phase

For a given object model M, we sample all pairs of oriented points (u,v) =
((pu,nu), (pv,nv)) ∈ M × M for which pu and pv are approximately at a
distance d from each other. For each pair, the descriptor f(u,v) = (f2(u,v),
f3(u,v), f4(u,v)) is computed as defined in (1) and stored in a three-dimensional
hash table. Note that since d is fixed we do not use f1 as part of the descriptor.
Furthermore, in contrast to [11], we do not consider all pairs of oriented points,
but only those which fulfill ‖pu − pv‖ ∈ [d − δd, d + δd], for a given tolerance
value δd. This has several advantages. The space complexity is reduced from
O(m2) to O(m), where m is the number of points in M (this is an empirical
measurement further discussed in [17]). For large d, the pairs we consider are
wide-pairs which allow a much more stable computation of the aligning rigid
transform than narrow-pairs do [17]. A further advantage of wide-pairs is due
to the fact that the larger the distance the less pairs we have. Thus, computing
and storing descriptors of wide-pairs leads to less populated hash table cells

6 C. Papazov and D. Burschka

which means that we will have to test less transform hypotheses in the online
recognition phase and will save computation time.

Note, however, that the pair width d can not be arbitrary large due to occlu-
sions in real world scenes. For a typical value for d, there are still a lot of pairs
with similar descriptors, i.e., there are hash table cells with too many entries.
To avoid this overpopulation, we remove as many of the most populated cells
as needed to keep only a fraction K of the pairs in the hash table (in our im-
plementation K = 0.1). This strategy leads to some information loss about the
object shape. We take this into account in the online phase of our algorithm.

The final representation of all models M1, . . . ,Mq is computed by processing
each Mi in the way described above using the same hash table. In order not to
confuse the correspondence between pairs and models, each cell contains a list
for each model which has pairs stored in the cell. In this way, new models can
be added to the hash table without recomputing it.

3.2 Online Recognition Phase

The online recognition phase can be outlined as follows:

1. Initialization
(a) Compute an octree for the scene S to produce a modified scene S∗.
(b) T ← ∅ (an empty solution list).

2. Compute a number of iterations N needed to achieve a probability for suc-
cessful recognition higher than a predefined value PS .

[repeat N times]
3. Sampling

(a) Sample a point pu uniformly from S∗.
(b) Sample pv ∈ S∗ uniformly from all points at a distance d± δd from pu.

4. Estimate normals nu and nv at pu and pv, respectively, to get an oriented
scene point pair (u,v) = ((pu,nu), (pv,nv)).

5. Compute the descriptor fuv = (f2(u,v), f3(u,v), f4(u,v)) (see (1)).
6. Use fuv as a key to the model hash table to retrieve the oriented model point

pairs (uj ,vj) similar to (u,v).
[repeat for each (uj ,vj)]
(a) Get the model M of (uj ,vj).
(b) Compute the rigid transform T that best aligns (uj ,vj) to (u,v).
(c) Set T ← T ∪ (M, T) if (M, T) is accepted by an acceptance function µ.
[end repeat]

[end repeat]
7. Filter conflicting hypotheses from T .

For our algorithm to be fast, we need to search efficiently for closest points
(in step 4) and for points lying on a sphere around a given point (in step 3b).
These operations are greatly facilitated if a neighborhood structure is available

An Efficient RANSAC for 3D Object Recognition 7

for the point set. Note that the 2D range image grid defines such a structure
which, however, is not well suited for the above mentioned geometric operations.
This is due to the fact that points which are neighbors on the gird are not
necessarily close to each other in R3 because of perspective effects and scene
depth discontinuities. A very efficient way to establish spatial proximity between
points in R3 is to use an octree.
Step 1, Initialization In step 1a of the algorithm, we construct an octree
with a fixed leaf size L (the edge length of a leaf). The full octree leaves (the
ones which contain at least one point) can be seen as voxels ordered in a regular
axis-aligned 3D grid. Thus, each full leaf has unique integer coordinates (i, j, k).
We say that two full leaves are neighbors if the absolute difference between their
corresponding integer coordinates is ≤ 1. Next, we down-sample S by setting the
new scene points in S∗ to be the centers of mass of the full leaves. The center of
mass of a full leaf is defined to be the average of the points it contains. In this
way, a one-to-one correspondence between the points in S∗ and the full octree
leaves is established. Two points in S∗ are neighbors if the corresponding full
leaves are neighbors.
Step 2, Number of Iterations This step is explained in Section 3.3.
Step 3, Sampling In the sampling stage, we make extensive use of the scene
octree. As in the classic RANSAC, we sample minimal sets from the scene. In
our case, a minimal set consists of two oriented points. However, in contrast to
RANSAC, they are not sampled uniformly. Only the first point, pu, is drawn
uniformly from S∗. In order to draw the second point, pv, we first retrieve the set
L of all full leaves which are intersected by the sphere with center pu and radius
d, where d is the pair width used in the offline phase (see Section 3.1). This
operation can be implemented very efficiently due to the hierarchical structure
of the octree. Finally, a leaf is drawn uniformly from L and pv is set to be its
center of mass.
Step 4, Normal Estimation The normals nu and nv are estimated by per-
forming a Principal Component Analysis. nu and nv are set to be the eigenvec-
tors corresponding to the smallest eigenvalues of the covariance matrix of the
points in the neighborhood of pu and pv, respectively. The result is the oriented
scene point pair (u,v) = ((pu,nu), (pv,nv)).
Steps 5 and 6, Hypotheses Generation and Testing Step 5 involves the
computation of the descriptor fuv = (f2(u,v), f3(u,v), f4(u,v)) (see (1)). In
step 6, fuv is used as a key to the model hash table to retrieve all model pairs
(uj ,vj) which are similar to (u,v). For each (uj ,vj), the model M corresponding
to (uj ,vj) is retrieved (step 6a) and the rigid transform T which best aligns (in
least squares sense) (uj ,vj) to (u,v) is computed (step 6b). The result of these
two sub-steps is the hypothesis that the model M is in the scene at the location
defined by T . In order to save the hypothesis in the solution list, it has to be
accepted by the acceptance function µ.
Step 6c, The Acceptance Function µ measures the quality of a hypothesis
(M, T) and consists of a support term and a penalty term. As in RANSAC,
the support term, µS , is proportional to the number mS of transformed model

8 C. Papazov and D. Burschka

points (i.e., points from T (M)) which fall within a certain ε-band of the scene.
More precisely, µS(M, T) = mS/m, where m is the number of model points. To
compute mS , we back project T (M) in the scene range image and count the
number of points which have a z-coordinate in the interval [z − ε, z + ε], where
z is the z-coordinate of the corresponding range image pixel.

In contrast to RANSAC, our algorithm contains a penalty term, µP , which
is proportional to the size of the transformed model parts which occlude the
scene. It is clear that in a scene viewed by a camera a correctly recognized (non-
transparent) object can not occlude scene points reconstructed from the same
viewpoint. We penalize hypotheses which violate this condition. We compute the
penalty term by counting the number mP of transformed model points which are
between the projection center of the range image and a valid range image pixel
and thus are “occluding” reconstructed scene points. We set µP (M, T) = mP /m,
where m is the number of model points.

For (M, T) to be accepted as a valid hypothesis it has to have a support higher
than a predefined S ∈ [0, 1] and a penalty lower than a predefined P ∈ [0, 1].
Step 7, Filtering Conflicting Hypotheses We say that an accepted hypoth-
esis (M, T) explains a set P ⊂ S∗ of scene points if for each p ∈ P there is
a point from T (M) which lies within the octree leaf corresponding to p. Note
that the points from P explained by (M, T) are not removed from S∗ because
there could be a better hypothesis, i.e., one which explains a superset of P. Two
hypotheses are conflicting if the intersection of the point sets they explain is
non-empty. At the end of step 6, many conflicting hypotheses are saved in the
list T . To filter the weak ones, we construct a so called conflict graph. Its nodes
are the hypotheses in T and an edge is connecting two nodes if the hypotheses
they represent are conflicting ones. To produce the final output, the solution list
is filtered by performing a non-maximum suppression on the conflict graph: a
node is removed if it has a better neighboring node.

3.3 Time Complexity

The complexity of the proposed algorithm is dominated by three major factors:
(i) the number of iterations (the loop after step 2), (ii) the number of pairs per
hash table cell (the loop in step 6) and (iii) the cost of evaluating the acceptance
function for each object hypothesis (step 6c). In the following, we discuss each
one in detail.
(i) Consider the scene S∗ consisting of |S∗| = n points and a model instance
M therein consisting of |M| = m points. We already saw in the discussion on
RANSAC at the end of Section 2 that we need

N =
ln(1− PS)
ln(1− PM)

(4)

iterations to recognize M with a predefined success probability PS , where PM is
the probability of recognizing M in a single iteration. Recall from Section 2 that
in the classic RANSAC applied to 3D object recognition we have PM ≈ 1/n3.

An Efficient RANSAC for 3D Object Recognition 9

Our sampling strategy and the use of the model hash table lead to a significant
increase of PM and thus to a reduction of the complexity. In the following, we
estimate PM .

Let P (pu ∈M,pv ∈M) denote the probability that both points are sampled
from M (see step 3 in Section 3.2). Thus, the probability of recognizing M in a
single iteration is

PM = KP (pu ∈M,pv ∈M), (5)

where K is the fraction of oriented point pairs for which the descriptors are
saved in the model hash table (see Section 3.1). Using conditional probability
and the fact that P (pu ∈M) = m/n we can rewrite (5) to get

PM = (m/n)KP (pv ∈M|pu ∈M). (6)

P (pv ∈ M|pu ∈ M) is the probability to sample pv from M given that
pu ∈M. Recall from Section 3.2 that pv is not independent of pu because it is
sampled uniformly from the set L consisting of the scene points which lie on the
sphere with center pu and radius d, where d is the pair width used in the offline
phase. Under the assumptions that the visible object part has an extent larger
than 2d and that the reconstruction is not too sparse, L contains points from
M. Thus, P (pv ∈ M|pu ∈ M) = |L ∩M|/|L| is well-defined and greater than
zero. |L ∩M|/|L| depends on the scene, i.e., it depends on the extent and the
shape of the visible object part. Estimating C = |L∩M|/|L| by, e.g., 1/4 (this is
what we use in our implementation) accounts for up to 75% outliers and scene
clutter. Thus, we get for PM as a function of n (the number of scene points)

PM (n) = (m/n)KC. (7)

Again, approximating the denominator in (4) by its Taylor series ln(1−PM (n)) =
−PM (n) +O(PM (n)2) we get for the number of iterations

N(n) ≈ − ln(1− PS)
PM (n)

=
−n ln(1− PS)

mKC
= O(n). (8)

This proves that the number of iterations depends linearly on the number of
scene points. Furthermore, it is guaranteed that the model instances will be
recognized with the desired probability PS .
(ii) The number of pairs per hash table cell depends on the number of models as
well on the number of points of each model. An algorithm is considered to scale
well with the number of models if its runtime is less than the sum of the runtime
needed for the recognition of each model separately [10, 18]. In other words, an
algorithm should need less time than it is needed for a sequential matching of
each model to the scene. The use of the model hash table ensures this in the
case of our method. For almost all real world objects it holds that a hash table
cell does not store pairs from all models. Furthermore, not all pairs originating
from a model end up in the same hash table cell.
(iii) The acceptance function µ runs in O(l) time, where l is the number of
model points. Note that µ does not depend on the number of scene points since
back projecting a model point in the range image is performed in constant time.

10 C. Papazov and D. Burschka

Chef Parasaurolophus (Para) T-Rex Chicken
60 70 80 90

1.0

0.8

0.6

0.4

0.2

65 75 85

T-Rex
Chicken

Para
Chef

Tensor Matching
Spin Images

0.0

Our algorithm

re
co

gn
iti

on
 ra

te

% occlusion

Fig. 2. (Upper left) The models used in the comparison test case. (Upper right) The
continuous lines indicate the recognition rate of our algorithm for each object as a
function of its occlusion. The dashed lines give the recognition rate of the spin images
and the tensor matching approaches on the same scenes as reported in [3]. Note that our
method outperforms both algorithms. The chef is recognized in all trials, even in the
case of occlusion over 91%. The blue dots represent the recognition rate in the three
chicken test scenes in which our method performs worse than the other algorithms.
This is due to the fact that in these scenes only the chicken’s back part is visible which
contains strongly varying normals which makes it difficult to compute a stable aligning
transform. (Lower row) Four (out of 50) test scenes and the corresponding recognition
results. The recognized models are rendered as yellow point clouds and superimposed
over the scenes which are rendered as blue meshes. These are challenging examples
since only small parts of the objects are visible.

4 Experimental Results

Comparison with spin images [4] and tensor matching [3] In the first
test scenario, we compare the recognition rate of our algorithm with the spin
images [4] and the tensor matching [3] approaches on occluded real scenes. We
test our method on the same 50 data sets which are used in [3]. This allows
for a precise comparison without the need of re-implementing neither of the
two algorithms. The models of the four toys to be recognized are shown in the
upper row of Fig. 2. Each test scene contains the toys (not necessary all four
of them) in different positions and orientations. Each scene is digitized with a
laser range finder from a single viewpoint which means that the back parts of
the objects are not visible. Furthermore, in most scenes the toys are placed such
that some of them occlude others which makes the visible object parts even
smaller. The lower row of Fig. 2 shows exemplary four (out of 50) test scenes
with the corresponding recognition results obtained with our algorithm. Since
our algorithm is a probabilistic one we run 100 recognition trials on each scene

An Efficient RANSAC for 3D Object Recognition 11

(b) (c)

nu
m

. o
f f

als
e p

os
.

0.0

RM
S

er
ro

r

2

6

10

of Gaussian noise
0 2 4 6 8 10

(a)

re
co

gn
iti

on
 ra

te

0.0

of Gaussian noise

0.2
0.4
0.6
0.8
1.0

0 2 4 6 8 10
of Gaussian noise

0.4
0.8
1.2

8

12
14

4

0 2 4 6 8 10

(d)

 

=0.25 =0.5 =1.0 =3.0

Fig. 3. (a) - (c) Recognition rate, mean number of false positives and mean RMS error
as functions of the σ of Gaussian noise. One σ unit equals 1% of the bounding box
diagonal length of the scene. The RMS units are in millimeters. (d) Typical recognition
results for noise degraded data sets.

and compute the recognition rate for each object represented in the scene in the
following way. We visually inspect the result of each of the 100 trials. If object
A was recognized n times (0 ≤ n ≤ 100) then the recognition rate for A is
n/100. Since the occlusion of every object in each scene is known we report the
recognition rate for each object as a function of its occlusion. According to [4],
the occlusion for an object model is given by 1 − area of visible model surface

total area of model surface . The
results of the tests and the comparison with the spin images [4] and the tensor
matching [3] approaches are summarized in the upper right part of Fig. 2.
Noisy and Sparse Scenes In the second scenario, we run tests under varying
noisy conditions. The models to be recognized are the same as in the last test
case and the scene is the third one in the lower row of Fig. 2. Next, several
versions of the scene are computed by degrading it by zero-mean Gaussian noise
with different variance values σ. Again, we perform 100 recognition trials for
each noisy scene and compute the recognition rate, the mean number of false
positives and the mean RMS error as functions of σ. For a point set P, a (rigidly)
transformed copy Q and a (rigid) transform T the RMS error measures how close
each point pi ∈ P comes to its corresponding point qi ∈ Q after transforming
Q by T . Thus RMS measures the quality of T . It is given by

RMS(T) =

√√√√ 1
N

N∑
i=1

‖pi − T (qi)‖2, (9)

12 C. Papazov and D. Burschka

Rabbit Snail Chicken 2 Bottle Vase

Fig. 4. The models used for object recognition in scenes reconstructed with a low-cost
light intersection based device.

Fig. 5. Typical recognition results obtained with our method for three test scenes. The
scenes are shown as blue meshes and the recognized model instances are rendered as
yellow point clouds and superimposed over the meshes. Some of the scenes contain un-
known objects (the left and the right one). Note that the scene reconstruction contains
only small portions of the objects.

where N is the number of points in P. Since we know the ground truth location
of each model in the test scene the RMS error of the rigid transform computed
by our method can be easily calculated.2 The results of all noise tests are sum-
marized in Fig. 3(a) – (c). Typical recognition results and four of the noisy scenes
are shown in Fig. 3(d).

Next, we demonstrate the ability of our method to deal with data sets cor-
rupted by noise which is not artificially generated but originates in scan device
imprecision. Note that the scenes used in [4] and [3] are dense and have a rel-
atively good quality. We use a low-cost light section based scanner which gives
sparser and noisier data sets. The models used in this test scenario are shown in
Fig. 4. Typical recognition results of our method are shown in Fig. 1 and Fig. 5.
Runtime In the last test scenario, we experimentally verify the two main claims
regarding the time complexity of our algorithm, namely that it needs less time
than it is required for a sequential matching of each model to the scene and that
it has a linear complexity in the number of scene points.

First, we measure the runtime dependency on the number of models. The
models used in this test case are the ones shown in Fig. 2 and Fig. 4 and the

2 The ground truth rigid transform for the models for each scene is available on the
webpage of the authors of [3].

An Efficient RANSAC for 3D Object Recognition 13

(b) (c)(a)

model comp. time (sec)

Chef
Para
T-Rex
Chicken
Rabbit
Snail
Chicken 2
Bottle
Vase

0.568
0.533
0.5
0.522
0.536
0.546
0.551
0.577
0.566

0.568
0.533
0.5
0.522
0.536
0.546
0.551
0.577
0.566

Fig. 6. (a) Recognition time for each model. (b) Computation time for a simultaneous
recognition of multiple objects (solid line) compared to a sequential matching of each
model to the scene (dashed line). The runtime in the case of the sequential matching
is the sum of the times reported in (a) for each model. (c) Linear time complexity in
the number of scene points for the simultaneous recognition of 9 models.

scene is the leftmost one in Fig. 5. The recognition time for each object (when it
is the only one loaded in the hash table) is reported in Fig. 6(a). In Fig. 6(b), the
computation time of our algorithm as a function of the number of models loaded
in the hash table is compared with the time needed for a sequential matching of
each model to the scene. The difference in the performance is obvious.

Second, we measure how the runtime depends on the number of scene points.
There are eleven different data sets involved in this test case — a subset from
the scenes used in the comparison test case. It is important to note that we
do not take a single data set and down/up-sample it to get the desired number
of points. Instead we choose eleven different scenes with varying scene extent,
number of points and number of objects. This suggests that the results will hold
for arbitrary scenes. We report the results of this test in Fig. 6(c).

The algorithm presented in this paper is implemented in C++ and all tests
were performed on a laptop with an Intel Core 2 Duo 3GHz CPU and 4GB
RAM.

5 Conclusions

In this paper, we introduced a new algorithm for multiple 3D object recogni-
tion in noisy, sparsely reconstructed and unsegmented range data. The method
combines a robust descriptor, a hashing technique and an efficient RANSAC-
like sampling strategy. We provided a complexity analysis of the algorithm and
derived the number of iterations required to recognize the model instances with
a given probability. In the experimental part of the paper, it was verified that
the proposed algorithm scales well with the number of models and that it has a
linear time complexity in the number of scene points. Furthermore, we showed
that our method performs well on noisy, sparse and unsegmented scenes in which
only small parts of the objects are visible. A comparison showed that our method
outperforms the spin images [4] and the tensor matching [3] approaches in terms
of recognition rate.

14 C. Papazov and D. Burschka

References

1. Lamdan, Y., Wolfson, H.: Geometric Hashing: A General And Efficient Model-
based Recognition Scheme. In: ICCV. (1988) 238–249

2. Ballard, D.H.: Generalizing the Hough Transform to Detect Arbitrary Shapes.
Pattern Recognition 13 (1981) 111–122

3. Mian, A.S., Bennamoun, M., Owens, R.A.: Three-Dimensional Model-Based Ob-
ject Recognition and Segmentation in Cluttered Scenes. IEEE TPAMI 28 (2006)
1584–1601

4. Johnson, A., Hebert, M.: Using Spin Images for Efficient Object Recognition in
Cluttered 3D Scenes. IEEE TPAMI 21 (1999) 433–449

5. Hetzel, G., Leibe, B., Levi, P., Schiele, B.: 3D Object Recognition from Range
Images Using Local Feature Histograms. In: CVPR. (2001) 394–399

6. Frome, A., Huber, D., Kolluri, R., Bülow, T., Malik, J.: Recognizing Objects in
Range Data Using Regional Point Descriptors. In: ECCV. (2004) 224–237

7. Gelfand, N., Mitra, N., Guibas, L., Pottmann, H.: Robust Global Registration. In:
Eurographics Symposium on Geometry Processing. (2005) 197–206

8. Zaharescu, A., Boyer, E., Varanasi, K., Horaud, R.: Surface Feature Detection and
Description with Applications to Mesh Matching. In: CVPR. (2009) 373–380

9. Sun, J., Ovsjanikov, M., Guibas, L.J.: A Concise and Provably Informative Multi-
Scale Signature Based on Heat Diffusion. Comput. Graph. Forum 28 (2009) 1383–
1392

10. Matei, B., Shan, Y., Sawhney, H.S., Tan, Y., Kumar, R., Huber, D.F., Hebert, M.:
Rapid Object Indexing Using Locality Sensitive Hashing and Joint 3D-Signature
Space Estimation. IEEE TPAMI 28 (2006) 1111–1126

11. Winkelbach, S., Molkenstruck, S., Wahl, F.M.: Low-Cost Laser Range Scanner
and Fast Surface Registration Approach. In: Pattern Recognition, 28th DAGM
Symposium, Proceedings. (2006) 718–728

12. Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model
fitting with applications to image analysis and automated cartography. Commun.
ACM 24 (1981) 381–395

13. Wang, H., Suter, D.: Robust Adaptive-Scale Parametric Model Estimation for
Computer Vision. IEEE TPAMI 26 (2004) 1459–1474

14. Wang, H., Mirota, D., Hager, G.D.: A Generalized Kernel Consensus-Based Robust
Estimator. IEEE TPAMI 32 (2010) 178–184

15. Chen, C.S., Hung, Y.P., Cheng, J.B.: RANSAC-Based DARCES: A New Approach
to Fast Automatic Registration of Partially Overlapping Range Images. IEEE
TPAMI 21 (1999) 1229–1234

16. Schnabel, R., Wahl, R., Klein, R.: Efficient RANSAC for Point-Cloud Shape De-
tection. Comput. Graph. Forum 26 (2007) 214–226

17. Aiger, D., Mitra, N.J., Cohen-Or, D.: 4-points Congruent Sets for Robust Pairwise
Surface Registration. ACM Trans. Graph. 27 (2008)

18. Shan, Y., Matei, B., Sawhney, H.S., Kumar, R., Huber, D.F., Hebert, M.: Linear
Model Hashing and Batch RANSAC for Rapid and Accurate Object Recognition.
In: CVPR. (2004) 121–128

