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Abstract— The main contribution of this paper is a prob-
abilistic method for predicting human manipulation intention
from image sequences of human-object interaction. Predicting
intention amounts to inferring the imminent manipulation task
when human hand is observed to have stably grasped the object.
Inference is performed by means of a probabilistic graphical
model that encodes object grasping tasks over the 3D state of the
observed scene. The 3D state is extracted from RGB-D image
sequences by a novel vision-based, markerless hand-object 3D
tracking framework. To deal with the high-dimensional state-
space and mixed data types (discrete and continuous) involved
in grasping tasks, we introduce a generative vector quantization
method using mixture models and self-organizing maps. This
yields a compact model for encoding of grasping actions, able of
handling uncertain and partial sensory data. Experimentation
showed that the model trained on simulated data can provide
a potent basis for accurate goal-inference with partial and
noisy observations of actual real-world demonstrations. We also
show a grasp selection process, guided by the inferred human
intention, to illustrate the use of the system for goal-directed
grasp imitation.

I. INTRODUCTION

Humans possess a profound capability of learning though
imitation. Imitation learning has been addressed frequently
in robotics for enabling bootstrapping in object grasping and
interaction with the environment in general, [28], [8], [20],
[27], [2]. An important challenge in imitation learning is
the “correspondence problem” [21] due to the differences
in embodiments between humans and robots, being espe-
cially problematic in grasping applications [32], [30], see
an example in Fig. 1. One solution to the correspondence
problem is “goal-directed imitation” [34] where the learner
infers the intent of the activity from the teacher and then
achieves the same goal using own sensorimotor acts (see a
flowchart of goal-directed imitation process in the context
of robot grasping in Fig. 6). Recognizing the intention of
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a) Demo of Hand-over Task b) Imitate Power Grasp c) Imitate Hand-over Task

Fig. 1. a) Human demonstrates a grasp with an intention to hand-over
an apple. b) Robot imitates the power grasp configuration used by the
human, and fails to hand-over because there is not enough free space for
regrasp. c) Robot estimates that human intends to hand-over the apple. It
also learns the task requires leaving enough free space on the object. It
applies a precision grasp to achieve the task.

object grasping actions in humans is then an integral part of
enabling robots to act and interact with the environment. The
intention in the scope of object grasping and manipulation
is what kind of tasks a human / a robot intend to do after
sucessfully grasping the object. An example of such high-
level tasks is to hand-over an apple as shown in Fig. 1. Most
of the work that addressed this problem is either evaluated in
simulated environments where perfect knowledge of objects
and grasps is available [32], [30], or in situations where
the human teacher is equipped with magnetic sensing or
datagloves [17], [5].

In this work, we show how to approach the problem of
learning object grasping and manipualtion tasks by consid-
ering natural human demonstration - with no markers and
no datagloves. A similar idea was also exploited in [11],
[12], [33]. In [12] the recognition module was based on
a discriminative model that could not be used to generate
grasping actions in the imitation phase. [11] addressed grasp
imitation on a robot platform but the approach was based
on manual mapping between human and robot hands, thus
difficult to generalize across different embodiments. The
work in [33] focused on extracting object affordances [7].
However, detailed grasp parameters such as hand position,
orientation and finger configuration were not considered. We
argue that these are actually the most important parameters
that encode the information relevant for the task. Work in
[32], [30] adopted a generative modeling approach similar
to us. However they only tested their model in simulation
environments. We present our state of the art, markerless,
vision-based 3D hand and object tracking system that is
capable of extracting detailed parameters of human hand
motion in interaction with objects.

To estimate human intention, we build a model that en-
codes the grasping tasks (i.e., intentions) using probabilistic
graphical models as in [32], [30]. We show how to model



the object grasping domain using a combination of discrete
Bayesian networks and vector quantization models. The
generative modeling approach allows goal inference under
partial and noisy observations in real world applications.
Combined with the markerless vision-based hand/object
tracking module, we show that the generative modeling
approach results in accurate goal inference even under partial
and noisy observations in real world applications. Finally we
illustrate the applicability of the learned model in a goal-
directed imitation scenario.

II. MODELS

A. Modeling Grasping Tasks using Graphical Models

In this section we shortly describe the use of BN for grasp
planning and learning of goal-directed grasping policies.
Goal-based grasp planning involves decisions over (a) object
selection and (b) grasp realization so that a given task, out
of several, can be afforded. Let also T be a selection over
common house-hold task set T that an agent might intend
to do after grasping an object. Let O be the set of variables
describing object category, size, and shape-related features.
Let A be the set of variables that parameterize a grasp action
such as hand position, orientation and articulation. Planning a
grasp is then to decide O and A given T . In addition to O,A,
we also introduce a set of “constraint” variables, denoted
as C that further describe the configuration of the object
and hand in the final object-grasp complex. An example C
variable is free volume that quantitize how much free space
on the object is left uncovered by the hand in final grasp
configuration.

We assume that object related variables O are intrinsic
properties (they do not change as the object moves) and
action variables A regard a static hand pose, at the moment of
grasping, expressed in the local coordinate frame of objects.
A variables are agent-specific because humans and robots
differ in the kinematics of their end-effectors. Each object-
grasp complex, as shown in Fig. 1, can be described by a
set of object, action and constraint variables O,A,C and the
task(s) T that the grasp can afford. While O,A,C variables
can be measured or extracted using robot’s vision and haptic
sensors, the high level task semantics such as “grasp a
water bottle in order to pour water” or “grasp the cup
to put it in dishwasher” have to be provided by a human
teacher. Therefore while O,A,C is a set of variables that are
instantiated by robot’s sensor measurements, T is instantiated
by human labeling that states if this grasp could afford the
given task label.

If a large set of example grasps with task semantics
is provided, we can train a BN to model the joint dis-
tribution of all variables p(O,A,C, T ). We use BNR to
represent BNs for a robot and BNH for humans. Goal
inference is then the process that determines the most
likely task(s) t∗ through inferring the marginal probabil-
ity p(t|o,a, (c), BNH), given a grasp demonstration with
observed object features o, grasp action parameterized by
a, and with or without the constraints c. Grasp planning
is a process that determines the most appropriate object

o∗ = arg maxo p(o|t∗, BNR), and then the most appropriate
grasp a∗ = arg maxa p(a|o∗, t∗, BNR) for executing the
given task.

B. Generative Soft Vector Quantization

To correctly encode a grasping task, both symbolic infor-
mation (e.g., task and object class) and continuous low-level
sensorimotor variables (most O,A,C features) are needed.
Learning a BN from both continuous and discrete data
simultaneously is an open problem, particularly for the cases
of high dimensionality and complex distributions (e.g., hand
grasp configuration and hand orientation). Most learning ap-
proaches only work with discrete variables and multinomial
distributions [15]. An efficient approach is to discretize a
mixed model by quantizing the continuous variables [6]. In
the common case where quantization incurs “hard” cuts be-
tween neighboring discrete states, each continuous data point
x is mapped to a single discrete state. This is disadvantageous
especially in a domain with limited training data, obtained
from noisy observations. This problem has been identified
and remedied in [16], [4] with “soft” discretization, i.e. by
taking into account the influence of a continuous data point
over its neighboring discretization intervals. The resulting
Bayesian network can be interpreted as a “fuzzy” network.
Such solutions have been shown to outperform their hard-
discretization counterparts [16], [4].

We use a generative soft vector quantization approach
for our high-dimensional continuous problem, based on
self-organizing maps (SOM) and Gaussian mixture models
(GMM). Here “fuzziness” in the discrete assignment of
continuous data is not handled using a spread function
convoluted with the manually-defined discrete intervals as in
[4]. Instead, clustering is employed to automatically define
the boundaries of discrete intervals, thus can efficiently
cope with high-dimensional data. Given the initial clustering
results, we then obtain a GMM model to represent the
density of each input space. GMM provides a probability
representation that can “smooth out” the boundaries in the
initial clusters (see Sec. II-B.1 and Sec. II-B.2). GMM model
is also used in [16] to obtain a fuzzy BN. Different from [16]
who integrated GMM as a node in the Bayesian network,
our GMM is decoupled from the network. Each continuous
data is discretized prior to training of the BN. This increases
training efficiency compared to [16].

1) Clustering using Self-Organizing Map: For a high-
dimensional continuous variable Z, we use a SOM-based
clustering approach as in [35] to form K clusters on a dataset
X = [x1,x2, . . . ,xN ], where N is the number of samples.
The principle is to first use SOM to project X to a set of
prototypes (map units) that are then combined to form final
clusters.

SOM [13] is often used in quantization and visualization
of high-dimensional data and it consists of a regular, usually
2-dimensional grid of map units. Each unit j is represented
by a prototype vector wj that has the same dimensionality
as the original data. The units are connected by neigh-
borhood relations discovered from original training data.



a) SOM b) U-Matrix c) Davies-Bouldin index d) Cluster on SOM e) GMM density

Fig. 2. SOM-based Soft Discretization illustrated on the 4D data of the Quaternion Hand Orientation: a) The SOM with the size of the unit determined
by number of original training data that is mapped to that unit; b) U-matrix where the the light color indicates large distance between adjacent map
units; c) Davies-Bouldin index the minimization of which determines the optimal number of the clusters K; d) the clustering results on the SOM; e) the
density map from the trained GMM.

The SOM can thus be interpreted as a topology preserving
mapping from input space X onto the 2D map units W =
[w1,w2, . . . ,wM ] resembling the density of the original
data. Given this property, the problem of clustering on the
original N data points can be reformuated into clustering
on their mapped M prototype vectors on the SOM. Since
M << N , clustering is more efficient in computation.

Fig. 2 illustrates this process. First, a large set of proto-
types – much larger than the expected number of clusters
K– is formed using the SOM (Fig. 2 a). The prototypes
are combined in the next level to form the actual clusters
(see Fig. 2 d). The U-Matrix (Fig. 2 b), which repre-
sents the distance between neuron weights, can be used
to determine the clusters and their boundaries. Given a
predefined number of clusters K, clustering is performed
on W using the K-means algorithm. To determine K, we
use the Davies-Bouldin validity index, defined as Idb , 1

2
1
K

∑K
k=1 maxl 6=k{ sk+sl

dkl
}, where sk is intra-cluster distance

and dkl the inter-cluster distance. K is the minimizer of Idb
(see Fig. 2 c). Each data point of the original data set X is
assigned to the cluster of its prototype wj .

2) Gaussian Mixture Model: The result of the first step
is a selected number of clusters K and the corresponding
cluster assignment on the original data X. This result allows
for the learning of a Gaussian mixture model that encodes
the density distribution in the original data space (see Fig. 2
e),

p(x) ∝
K∏

k=1

λkN(x|uk,Σ
−1
k ). (1)

where uk and Σk are the mean and covariance of each
Gaussian component, and λk are the mixing weights. The
parameters of the mixture model are learned using a standard
EM approach.

Given the GMM model, a continuous data point x is
converted to a soft discrete evidence y = [y1, y2, ..., yK ]T ,
where yk = p(x|k) is the probability of the data being
generated by the kth mixture component in GMM . These
probabilities quantify the level of influence of a continuous
data point over its neighboring discretization intervals. In
parameter learning of the BN, we can then update the
conditional probability table for each variable using the soft
discrete evidences (details of the algorithm refer to [4]).

C. Inference

A trained BN defines a factorization of the joint distri-
bution p(T,O,A), that adheres to the discovered conditional
dependencies. The availability of such a BN enables the
computation of the marginal probability density of a group
of variables by conditioning on the rest. This is commonly
performed by applying the junction tree algorithm [9]. The
result of the latter is a set of probabilities, for all the discrete
states of a variable Z, conditioned on the observed evidence
e: pk = p(Z = k|e). The expected continuous value E(Z)
of the variable Z is required.

Estimating a continuous representation from soft evidence
is an “inverse problem” in soft discretization as it recovers
the continuous value from discrete states. This is also known
as de-fuzzification in fuzzy set theory, which does not have
a simple solution [14]. A practical approach for interpreting
the output of a discrete Bayesian network is to use the most
likely point of the inferred variable as the output. We can
define a distribution over the continuous space x associated
with the multi-nominal distribution pk,

p(x|e) ∝
K∑

k=1

pkN(x|uk,Σ
−1
k ) (2)

where uk and Σ−1k are the mean and covariance of the
components of the GMM model (Eq. 1). We can then sample
from the above distribution in order to find the most likely
locations over the continuous space. This approach will be
henceforth referred to as ML. In ML, however, there is a
danger of information loss, especially when pk does not
have a strong preferred single state, but it spreads out to
multiple states. An alternative method would be to estimate
the expected value using a weighted sum of the component
centers that takes probabilities of all the states into account.
The expected value of variable Z is then defined as,

E(Z) =

K∑
k=1

p(Z = k|e) uk =

K∑
k=1

pk uk (3)

This approach is expected to be better if the different modes
(state centers) preserves the topological map of the original
data space

III. VISION-BASED OBJECT AND HAND POSE TRACKING

In order for inferring the intention given natural observa-
tions, the latter need to be translated into the domain of the
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Fig. 3. Tracking: The first frame of a sequence is used to recognize objects of a database that appear in a scene, according to Sec. III-A. The rest of the
frames of the hand-object(s) ensemble are tracked in a hypothesize-and-test fashion (see Sec. III-B). The channels of information of each frame that are
used in each phase are outlined with green borders.

proposed probabilistic model. In our work, the observations
are acquired using a RGBD sensor [18]. Translation is
achieved by means of a novel hand-object 3D tracking
system that combines state-of-the-art methods for object
recognition [25], [26] and hand-object 3D tracking [23], [22].

At any given time instant, the state of a human’s hand and
the object(s) he/she interacts with are represented by a vector
that encodes the involved degrees of freedom (DoFs). For a
hand 26 parameters are required to represent its pose and
articulation [22]. For an object 6 parameters are required
to represent its pose (3D position and 3D orientation).
Tracking a hand interacting with N object means to extract
26 + 6N parameters for each time instant that best explain
the actual observations. We formulate this scene tracking as
an optimization problem and follow the hypothesize-and-test
scheme of [23], [22] while combining their merits. Since
tracking is formulated as an evolution of hypotheses over
time, an initial state needs to be provided. We delegate
this task to the robust and powerful method of [25], [26]
and thus fill the gap of [23], [22] with respect to the
initialization problem. The tracking process is illustrated
in Fig. 3. The reference coordinate system is conveniently
defined to reside on the demonstration table rather than inside
the RGBD sensor (default). This is achieved by means of
straightforward calibration, using a chessboard pattern of
known dimensions and structure.

A. Object Recognition and Pose Estimation

Given a set of 3D object models and a scene observation
(Fig. 3 a), we need to estimate the position and orientation of
the objects present in the scene (Fig. 3 b) in order to initialize
tracking. The employed object recognition algorithm [25],
[26] consists of an offline pre-processing phase and an online
recognition step. In the offline phase, pairs of points with
corresponding normals are sampled from the model and a
geometric descriptor signature is computed for each pair
and stored in a hash-table. The complete representation for
all models is computed by processing each model in this

way using the same hash table. Thus, new models can
easily be added without recomputing the whole hash table.
In the online recognition phase, a point pair is sampled
from the input scene, the two normals are estimated and the
same geometric descriptor is computed. Next, the descriptor
signature is used as a key to the hash-table to retrieve all
model point pairs similar to the one sampled from the scene.
Note that two pairs of points with normals are sufficient to
compute a unique rigid transform which aligns them. This
results in a number of hypotheses each one consisting of
a model and a rigid transform which maps it to the scene.
A hypothesis is accepted as a solution if it passes several
verification stages. This process of sampling, hypothesis
generation and verification is repeated a number of times
such that all objects in the scene are recognized with a certain
user-defined probability.

B. Tracking

By combining the efficient hand-tracking from RGB-D
input of [22] with contextual information over objects under
manipulation as in [23], we derive a system that is able to
simultaneously track a hand and several objects from RGB-
D input. Given an initial recognition of N objects in the
scene, tracking of the 26 + 6N parameters that best explain
the input sequences is performed. As in [23], [22], tracking
amounts to a series of optimization steps that correspond to
individual time instants along the input sequences.

For a given instant in time, every hypothesis over the
26 + 6N parameters yields a 3D configuration of a 3D hand
and objects. Upon its 3D rendering, with respect to camera-
world calibration information, the hand-object(s) ensemble
provides feature maps (depth and silhouettes) that are directly
comparable to actual observations (see depth map in Fig. 3
d). The Particle Swam Optimization (PSO) search heuristic is
responsible for generating and improving hypotheses over the
true state that is captured in the observations. A hypotheses is
improved if it is altered so as to score better in an objective
function that quantifies discrepancies between 3D renders



TABLE I
FEATURE DESCRIPTION.

Name Dim Description
T task - Task Identifier
O1 obcl - Object Class
O2 size 3 Object Dimensions
O3 conv 1 Convexity Value [0, 1]
A1 dir 4 Approach Direction (Quaternion)
A2 npos 3 Unit Grasp Position
A3 fcon 20 Final Hand Configuration
C1 fvol 1 Free Volume
C2 coc 3 Center of Contacts
C3 gbvl 3 Grasped Box Volumn

of it and actual observations. In this paper, instead of only
considering a 3D hand model during 3D rendering (as in
[22]), we also consider the recognized 3D objects, which
additionally modulate the objective values. The availability
of additional appearance models over predefined objects al-
lows more direct incorporation of the objects during tracking
than in [23]. These models are defined, trained in an offline
phase and used online according to [1].

IV. EXPERIMENTS

Consider a setup where a robot observes a human ex-
ecuting a task that involves grasping and manipulation of
objects. The goal of the robot is to (1) infer the intention
of the teacher given a demonstration example and (2) to
reach the intended goal using its own grasping policy.
To do this, the robot has to learn from past observations
of human demonstration and past experiences of its own
grasp execution. These knowledge are encoded in human-
specific networks BNH , and networks specific to its own
embodiment BNR.

The experiments in this section are designed to first
evaluate the accuracy in goal inference using BNH trained
with simulated data. We then test the ability of this model
to recognize the goal of real human grasps tracked with the
proposed vision system in Section III. Finally we illustrate
the process of goal-directed imitation on a robot platform us-
ing one examplar demonstration. Notice that this illustration
is not intended to evaluate the imitation performance on a
robot platform, but to place the proposed intention prediction
method in a full goal-directed imitation framework in order
to demonstrate how to apply it. In the experiments, we
consider a set of four tasks: T = {hand-over, pouring, tool-
use, and dish-washing}, which represent common house-hold
tasks which we would like a personal robot to help out in a
future home.

A. Data Generation

Tab. I show the features used in the experiment. Some
variables such as free volumn fvol and grasped box volumn
gbvl can be useful to discriminate tasks such as hand-over.
However they are not directly observable in real human
demonstration. We therefore use simulated data with full ob-
servation to train the model, and then test the goal inference
performance using both simulated test data and the test data
from real human demonstration.

TABLE II
DATA STATISTICS.

Simulated Real
Task Pos. Neg. Pos. Neg.
Hand-over 996 996 324 636
Pouring 860 860 773 893
Tool-use 986 986 399 336
Dish-washing 457 457 682 893

We use a box-based grasp planner Box Approximation,
Decomposition and Grasping (BADGr) [10] as a tool to gen-
erate the simulated data set that instantiate the {O,A,C, T}
features as listed in Tab. I. Two hand models – a 20-DoF
human hand model and a 7-DoF Schunk Dexterous hand
model – are used to generate grasp hypotheses over 48 object
models with 6 types: bottle, glass, mug, knife, hammer and
screwdriver. To extract those features, we first generate grasp
hypotheses using the grasp-planner BADGr [10], and then
evaluate them as scenes of object-grasp configurations in
a grasp simulator, GraspIt! [19] for task labeling. BADGr
includes extraction and labeling modules to provide the set
of variables presented in Tab. I. Notice that one object-grasp
configuration can be good for multipel tasks among the set
T = {t1, t2, . . . , tN}. To extract a set of negative examples
for a given task ti, we look through all the grasp instances
and pick out the ones that are not valid for ti. As a result,
we may not obtain balanced positive versus negative training
set for all the tasks.

The data from real human demonstration is obtained using
the vision-based object-hand tracking system described in
Section III. Three known (3D models available) objects – a
bottle, a mug and a hammer are used for data collection. For
each object, a human subject is asked to perform a number
of grasps that satisfy one specified task (positive examples)
and a number of grasps that are not good for one specified
task (negative examples). We finally obtain a set of task-
labeled real grasp data that instantiate the {O,A, T} features
in Tab. I. Notice that even though the vision-based tracking
system can provide temporal data during the entire sequence
of reaching and grasping action, we only take the data at
the last time frame corresponding to the moment of the final
stable grasp configurations that are modeled by the static
Bayesian networks. Tab. II summarizes the number of the
positive and negative examples for each of the four tasks (or
intentions, goals) in the simulated and real datasets.

B. Model Training

Given the simulated data D = [O,A,C,T], we obtain
four task-specific Bayesian networks for the four tasks.

1) Data Discretization: As stated in Section II-B, to
learn the structure of the Bayesian network from data, we
need to discretize the continuous data. For one-dimensional
continuous variables, we first apply the equal-width binning
to cluster the continuous data into K intervals, and then
train a GMM model based on this initial clustering. The
free parameter K is selected from a given range of Ks
that minimize the Bayesian information criteror (BIC). For



a) Hand-over b) Pouring c) Tool-use d) Dish-washing

Fig. 4. Task-specific Bayesian networks for human hand. The DAGs shown on a) – d) are learned from the simulated data.

a) hand-over b) pouring c) tool-use d) dish-washing e) AUC, mean (std)

tasks full partial

hand: 0.88 (0.019) 0.82 (0.021)

pour: 0.95 (0.008) 0.95 (0.011)

tool: 0.97 (0.013) 0.95 (0.021)

dish: 0.94 (0.020) 0.94 (0.020)

Fig. 5. Goal inference: a) – d) show the average ROC curves (true positive vs. false positive rates) for the four task goals. The shaded region represents
2 standard deviation on true positive rate (Y axis). Two colors represent two different observation conditions: pink – full; blue – partial where free volumn
and grasped part shape are missing. e) summarizes the area under the ROC curves (AUC). Goal inference results on the real human data are shown by
the red triangles superimposed on ROC curves. The result is at the optimal classification threshold.

multivariate variables we apply SOM-based discretization.
Number of cluster K is determined by minimizing the the
Davies-Bouldin (see description in Section II-B).

2) Learning Bayesian Networks: Given the discretized
data, we use a greedy search algorithm to find the network
structure (the directed acyclic graph, or DAG) in a neighbor-
hood of graphs that maximizes the network score (Bayesian
information criterion [29]). The search is local and in the
space of DAGs, so the effectiveness of the algorithm relies
on the initial DAG. As suggested by [15], we use another
simpler algorithm, the maximum weight spanning tree [3],
to find an oriented tree structure as the initial DAG. Once
the structure is determined, the conditional probability tables
are updated sequentially using a standard Bayesian parameter
updating scheme.

Fig. 4 shows the learned BNs of the four tasks for the
human hand. We observe that the learned network structures
successfully reflect the different requirements of the four
tasks. For example, for hand-over task, the variable free vol-
umn fvol directly encodes the task requirements, therefore it
is directly linked as a child node of the task variable. Since
one can hand-over any types of object, therefore the object
class obcl is further away from task. On the contrary, since
other tasks demands specific object types, e.g., a tool-use
task needs to select tool objects, task has direct dependency
on obcl. In additon, we notice that the pose (npos, dir) of the
hand relative to the object is important variables to encode
task affordance of a grasp. For example, pouring task requires
a hand to be placed on the side of a bottle or a mug with
specific orientations.

C. Goal Inference

Using the graphical model, the problem of goal inference
reduces to finding the marginal p(t|o,a, (c), BNH), where
t is the goal, o,a and c are the observed object features, the
grasping action parameters and constraint features when the
human hand is closed around the object. This probability can
be efficiently computed using inference methods explained
in Section II-C. A grasp is considered to be good for one or
more tasks {t}∗ if p is higher than a chosen threshold. If a
single goal is to be selected, then it will be the one with the
highest probability t∗ = arg maxt p(t|o,a, (c), BNH).

To evaluate the performance of goal inference, we show
the Receiver Operator Characteristic (ROC) curves, one for
each goal, in Fig. 5. The ROC curves are obtained using the
simulated data. We use a 30-trial hold-out cross-validation
with 70% of the data for training and 30% for testing. Total
number of data points for each goal is shown in Tab. II. Each
trial induces a ROC curve for one goal when p(t|o,a,BNH)
is thresholded at different levels. We then average all ROC
curves to obtain the mean ROC curves as shown in Fig.
5. The shaded region represents two standard deviations
of the true positive rate. ROC curves are obtained under
two observation conditions: 1) full observation is when all
O,A,C features are available, and 2) partial observation is
when C features are missing which is the situation in real
human demonstration.

We observe that the goal inference is quite good for all
the four goals even under partial observations (above 0.80
AUC). Hand-over is more difficult than others since it is a
less constrained task. To hand-over an object, the object can
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Fig. 6. Flowchart showing the full process of goal-directed grasp imitation. Robot is equiped with the knowledge of human grasp intentions (modeled in
BNH ) and its own grasp capability (modeled in BNR). Given its observation of a human grasp demonstration, it first uses BNH to infer the intention
of the human, and then decides, using BNR, which object and action that are most suitable to achieve the same intention on its own embodiment. The
image of the real robot platform is on the Humanoid torso, TOMBATOSSALS from the Robotic Intelligence Lab at Universitat Jaume I.

be grasped from all directions, but in pouring, the hand can
not cover the opening. To achieve the goal of hand-over, a
grasp should not cover the entire surface of the object, thus it
should induce larger free volume. So when fvol observation
is missing, we observe a performance drop in the blue ROC
curve. Similarly, a tool-use task requires grasp to be on the
handle part of an object such as a hammer, therefore when the
part-relevant observation gbvl is missing, we observe worse
performance in goal inference.

The most interesting results is when we tested the goal
inference with real demonstration using the model trained
with the simulated data. Here the observation is partial
where information of constraint variables is missing. The
red triangles superimposed on the ROC curves on Fig. 5
show the result at the optimal classification thresholds. We
observe that goal inference on real human data is as good as
the results on the simulated data. This confirms the ability
of our model to generalize to real-world data.

D. Goal-directed Imitation

Given the estimated goal t∗, grasp imitation is accom-
plished by executing the grasping strategy (selecting the
object to grasp and how to grasp it) according to the learned
grasping policy suitable for the robot’s own embodiment
BNR. We train task-specific Bayesian networks for robot
hands in the same way as for human hands. Due to space
limits, we will not show the learned robot hand BNs. Fig.
6 illustrates the whole process of goal-directed imitation.
Note that this is not a real time implementation but a simple
flow chart to demonstrate how to use the BN-based grasp
reasoning system.

First, the robot observes the human demonstration, and
extracts the object and action parameters o,a (using its
perception system described in Section III). It uses the
human-specific networks BNH to infer the intention of the
human, and estimates the most likely goal is t∗ =pouring
with the mug. Second, the robot needs to select the most
suitable object for pouring task among the three novel objects
on the table: a hammer, a toy car and a mug. This requires
the use of the robot’s own experiences encoded in BNR to
infer p(o|t∗). The most likely object is the mug.

Finally, the robot needs to search for the best grasp strat-
egy on the mug that affords pouring. This step can be done in
multiple ways. A grasp hypothesis is usually parameterized
by three action parameters A = {npos, dir, fcon}. One way
to plan a grasp is to infer the joint distribution of this set
of parameters given selected object and the goal p(a|t∗,o∗).
And then find the most probable configuration. However, this
method may suffer from the inaccuracy posed in the de-
fuzzification step as explained in Section II-C. A small error
in the reconstruction of finger configuration may result in
unstable grasps or even impossible situations where fingers
penatrate the object surface. A better way is to have a set
of preplanned grasp hypotheses that are parameterized by
a (see the four example hypotheses in Fig. 6). The robot
can then use p(a|t∗,o∗) to select the most suitable one in
order to pour with the selected mug. Notice here the optimal
grasping policies (including selected object and grasp) may
be different from the exact human demonstration. However,
this is acceptable as long as the task goal is satisfied and the
action is compatible with the embodiment of the robot.

V. CONCLUSION

We have presented a method for task/goal prediction
within the scope of goal-directed grasp imitation. The
method allows a robot to predict human intention during
object grasping based on a novel hand-object 3D tracking
framework and a probabilistic modeling approach that en-
code the grasping tasks. The tracking framework is able
to extract hand-object grasp configurations using Kinect-
based natural observation on human demonstrations. This
observation is the basis for the goal inference using Bayesian
networks which encode the embodiment-specific relations
between task semantics and grasping strategies for human
demonstrators. Real-world related problems, like noise in
observations, high dimensionality and complex probability
distribution, are tackled through a SOM-powered soft dis-
cretization technique. The learned Bayesian networks repre-
sent the internal models for visual-manual tasks similar to
[24]. But far beyond the scope of [24], our method gener-
alizes to multiple hands, objects and tasks. The generative
modeling approach is able to deal with uncertain, incomplete
perception in real world applications. Interestingly, when the



models are learned from simulated data, they were potent
enough to provide high accuracy in task prediction over real-
world data. We also pointed out the method’s place within
a full goal-directed imitation framework by establishing the
method’s connection to actual robot execution.

In this paper, we used a SOM-based method to discretize
high-dimensional continuous data. A similar problem has
been addressed by [31] where the authors proposed a multi-
variate discretization approach based on latent variable mod-
els. Since the discretization is not the focus of this paper
and due to space limitation, we did not evaluate our method
against that in [31]. This will be done in the future work.

In addition, the current Bayesian network is a static model
encoding task information only at the moment of final grasp
configuration. However, the dynamic manipulation of object
after lifting contains rich information about the task. Espe-
cially for some tasks (e.g., pouring and drinking) that are dif-
ficult to differenciate by only the static grasp configuration,
sequential data of object manipulation will be much more
powerful to solve the ambiguity. We are now investigating
how to exploit this by modeling the sequence of grasping and
manipulation actions using dynamic Bayesian networks. The
model should be used for both task recognition during human
demostration and action reproduction on a robot platform.
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