A Multi-Agent Distributed Real-Time System for a
Microprocessor Field-Bus Network

(3. Schrott

Technische Universitat Minchen

Institut fir Informatik

80290 Munich, Germany

Abstract

A new conception of a Multi-Agent Distributed
Real-Time System (MAD-RTS) is presented compris-
g compiler, operating system kernel and communi-
cation tools. It allows for an uniform programming of
complex process conirol systems on a microprocessor
field-bus network. The key tdea is to decompose the
whole control task into small execution units, called
agents which communicate by sending and execuling
contracts. The specification of the agents is done in
an hardware independent language using the notion of
states and guarded commands. At compile time the
agents are distributed to specified target microproces-
sors. The system automatically translates each agent
to the particular code and realizes the communication
between the agents either on the same processor or

through the field-bus.

1 Introduction

Distributed systems on a microprocessor network
connected by a field—bus are increasingly used in pro-
cess control. Such systems now available at low prices
will replace the ”one for all” computer solution and
solve its inherent problems: Dedicated computers
guarantee the needed response times in time—critical
applications; the complexity of control applications is
mastered; modern concepts to improve the flexibility
and fault tolerance of subsystems may be used.

Due to bus standards, heterogenous hardware can
be easily connected. However, adequate tools for spec-
ification and programming of distributed microproces-
sor systems are missing. Even if the connection of
heterogenous hardware is supported by commercially
available real-time operating systems the links have
to be programmed explicitely using ports or messages
and subroutines to access the field—bus. All available
operating systems are based on the paradigma of par-
allel tasks causing the known problems of scheduling
and interrupt response times. In this paper a new ap-
proach for programming real-time applications is pro-
posed which guarantees response times by a strictly
cyclic and therefore predictable scheduling. It does
not aim to applications with hard real-time constraints
in the range of microseconds, however it can be used
by a lot of applications in industrial plants and com-
puter integrated manufacturing, but also by smaller

applications (e.g. machine tools, elevators, cluster of
embedded systems).

1.1 Multi—agent systems

One of the main topics of distributed artificial in-
telligence is the conception of distributed multi-agent
systems ([1],[3],(6]). Agents are small autonomous
units which are able to perceive, to plan, to com-
municate with each other, to decide and to act.
Multi-agent systems are in many aspects similar to
distributed real-time systems. Tasks correspond to
agents, messages to contracts between agents, percep-
tion and action are equivalent to the input/output of
the technical process and planning and deciding is im-
plicitely programmed in intelligent autonomous appli-
cations. It is obvious that the paradigma of the agent
can easily be transfered to distributed real-time sys-
tems and may give new impulses to the programming
of distributed process control.

1.2 Cyeclic predictable scheduling

Cyclic scheduling has already be proposed in differ-
ent papers on real-time systems: Kopetz [4] compares
the properties of event-triggered and time-triggered
distributed real-time systems, underlining the advan-
tages of time-triggered systems; Faulk and Parnas [2]
give an algorithm to transform a conventionally pro-
grammed application into a cyclic predictable pro-
gram. Lawson [5] stresses that only cyclic systems can
be proved in their time behavior and are therefore ad-
mitted for safety critical applications. The proposed
multi-agent distributed real-time system (MAD-RTS)
is a new approach to program complex distributed het-
erogenous real-time applications [7]. It also highly
supports structured design and test- and maintain-
abilty of the resulting system.

2 MAD-RTS Specification

In MAD-RTS specification and coding of the con-
trol programs are closely related. The MAD-language
supports the definition of small agents which commu-
nicate with each other by sending contracts to start
activities of other agents. If more than one agent
can perform the needed activity, bids are sent and the
"cheapest’ agent will get the contract. Each agent has
a set of defined states and executes the guarded ac-
tions of this state. It interacts via generic subagents

with physical input/output channels, timers and other
specific hardware. As in object oriented programming
the agent executes the contract like a method without
showing the real implementation.

A complete MAD program starts with the decla-
ration of the available target microprocessors and is
followed by a number of agents (cmp. appendix A).
The complete definition of an agent in MAD is divided
into the following parts:

e Declaration of the target microprocessor, the agent
will be executed on

o Instantiation of subagents used in the agent to in-
terface to the hardware and to special functions

Declaration of bids for contracts
Declaration of contracts, the agent will accept

A o
ACLIOIl part

2.1 Target definition

The target processor chosen within the network to
execute the agent is defined after the keyword host.
More than one agent may of course run on one pro-
cessor. The final distribution is determined both by
the physical input/output channels used by the agent
and connected to the processor, and by the load on
one processor resp. the response time needed by the
agent. This assignement can be changed at any time;
only recompiling is necessary to get a new running
system.

2.2 Subagents

At lowest level generic subagents are defined to re-
alize the interface to the technical process (e.g. digital
and analog input/output, timer, stepper motor, pid-
controller). They are instantiated in the decls defi-
nition of a MAD—program with the actual i/o-address
and mnemonic identifiers to enhance self documenta-
tion of the program. Subagents are called similar to
contracts in other agents. Additional subagents may
be added on demand, e.g. C-function call or interface
to files.

2.3 Contracts and bidding

The only interface between agents is the contract

protocol. In the contracts definition every contract
which can be called by other agents is listed. A con-
tract transfers parameters and causes the execution of
actions or in most cases a state transition in the agents
action part. Included in the communication system is
a contract net bidding protocol. If more than one
agent can execute a contract each agent sends its cost
to perform the activity of the contract, computed by
a cost function supported in the bids definition. The
runtime system choses the cheapest’ agent and sends
the contract to it.
Sending a contract only starts the activity of another
agent but does not wait for its completion. There-
fore, deadlocks in contract calls cannot occur. It is the
duty of the programmer to avoid cyclic dependencies
of calls to contracts e.g. by using strictly hierarchical
dependencies of contracts.

MC68 MC68
CAN CAN

CAN—Bu/

MC68
CAN

floor 4

Elevator 1 Elevator 2

MC68
» CAN

floor 3

A

MC68
CAN

floor 1 \

MC68 MC68 | |2
< CAN CAN = |
1

111G

HRE @

Figure 1: Microprocessor network for twin elevator

2.4 States and Action

The action part is subdivided into a set of states.
Control tasks usually change between different states
of operation, e.g. at lowest level ’on’ or ’off’, at higher
level ’open’, ’closed’ or ’error’. One state is active
and the actions comprising it are executed. Each ac-
tion is bound by a condition (guard) and only if it is
true the corresponding statements are executed. At
lower level these conditions will be signals from the
controlled process, at higher level it may be timers or
conditional expressions on variables. There is also a
special condition to ensure that the following state-
ments are executed only once when entering the cor-
responding state. All other conditions in one state
are tested cyclically and all agents fixed to one mi-
croprocessor are executed one after the other to guar-
antuee an exactly predictable time behaviour. Special
agents may be defined for time consuming computa-
tions which get a specified time slice per cycle. Two
distinguished states are obligatory on each agent: At
start up the agent goes into the initial state, in case
of emergency the shutdown state is entered.

Figure 2: View of base of model twin elevator

3 Implementation

The programming system MAD-RTS is hosted on a
PC under MS-DOS. It contains the compiler for MAD
and code generators and run time systems for different
targets. The compiler is written in the object-oriented
language C++. The syntax of MAD-RTS (see ap-
pendix A) is defined in YACC, for lexical analysis the
tool "FLEX’, for syntactical analysis the tool "BISON’
is used. Therefore, the compiler can easily be extended
by additional language features as well as additional
code generators and subagents. The compiler uses the
contract specification to generate automatically the
code for the transmission of contracts between agents
on the same or on different targets. Code generators
are available for AT486, MC68HC11 and ladder logic
for PLC ; the communication link is implemented for

the CAN-field-bus.
4 Applications

Two process models built with FischerTechnik
bricks are used to test the MAD-RTS system:

1. A twin elevator with four floors (see figures 1-3) is
controlled by one microprocessors MC68HC11 on
each floor, one in each cage and one at each motor
platform, all connected via the CAN—field—bus.

2. A big plant (see figure 4 and figure 5) comprising
of an input and an output conveyor belt, four

display cabin_up
diplay goal_up display cabin_down

key_door_close
display goal_down

Overload ’

CAN-board N

motor . Q
Q motor

CAN-board

floord N Q

CAN-board key_door_open

led_dig

floor3 N light-barrier sensor

\

sensor_up " -

sensor, middle \ light-barrier light
sensor_down

/7
A

CAN-board key_up
key_down

Q Q CAN-board cabin

floor2 s

key_to_floord
key_to_floor3
key_to_floor2
key_to_floorl

‘CAN-board

floorl fa

NN

display to_floord
display to_floor3
display to_floor2
display to_floor1

Can-Bus

Figure 3: Sketch of one elevator

simulated machine tools, two robots for trans-
portation and two stores. Till now it was con-
trolled by a VAX-ELN and a PLC TI500; the new
distributed control structure includes b microcon-
troller boards, 3 programmable logic controllers,

and an AT486 connected via CAN-field—bus.

4.1 Door agent

The implementation of the door agent shows an ex-
ample of a MAD program. Every agent may send the
contract open in order to induce the door agent to
open the elevator door, wait for 10 seconds and close
it again. If the ligth barrier is interrupted during clos-
ing the door is opened again. If the door is closed, the
contract start is sent to agent elevatorl.

hostdecl mc68hclil mcl2;
agent door2 host mcl2;

decls
DigOut motor(Al,on,off);
DigOut direction(A3,open,close);
DigIn open_key(C1l,on,off);
DigIn closed_key(C2,on,o0ff);
DigIn 1light_barrier(C7,interrupted,ok);
Timer delay;

contracts
open do newstate opening;

states
closed/shutdown:
once => motor.off;
opening:
once => {direction.open; motor.on;}

open_key.on => newstate waiting;

waiting:
once => {motor.off;
delay(10000);}
delay.tout => newstate closing;
closing/initial:
once => {direction.close;

motor.on;}
closed_key.on
=> {newstate closed;
elevatoril.start;}
light_barrier.interrupted
=> {motor.off;
newstate opening;}

endagent;

4.2 Bidding agent

There exist two similar agents each controlling one
elevator motor. A contract may be sent to both el-
evator agents if a cage is called from a certain floor.
Both elevator agents compute their actual cost to go
to this floor based on their actual state and the dif-
ference to the floor the cage is actually located. Of
course, more sophisticated cost functions are neces-
sary to get a better strategy. The runtime system will
send the contract to the cheaper agent and it will send
the cage to this floor. The following example shows
the relevant parts for bidding in the definition of the
contract:

hostdecl mc68hcil mci;
agent elevatorl host mci;

decls
varinteger aktfloor;
arraybool(4) stop;

bids
get (integer floor) cost
((instate busy)*100 +
abs(floor-aktfloor)*20);

contracts
get (integer floor) do
stop(floor).set(true);

states
busy:

endagent;

Some other agent will send the following contract
to call one of both elevators to the second floor:

elevatorl|elevator2.get(2)

Figure 4: View of the modell plant

5 Results

Due to this strictly cyclic processing you get the
advantages of a distributed multi-agent programming
system combined with the exact preview of the max-
imal delay time until the acceptance of a new signal.
The complex program can be easily tested: A moni-
tor shows the actual states of each agent and the con-
tracts sent between the agents. Reaction on errors can
be embedded into the guarded actions and fault toler-
ance can be realized by distributed tasks on different
hardware. Our experience showed that even severe er-
rors in one agent don’t lead to a total breakdown of
the controlled process.

The strict cyclic approach produces a minimum of
overhead and results in fast reaction times; on the
microcontroller MC68HC11 (8§ MHz) the periodic ex-
ecution time for the model elevator is between 3 to
10 msec, including the transfer on the CAN-Bus. The
produced code is very small, max. 20 KBytes for one
controller.

6 Conclusions

MAD-RTS presents a new approach to program
distributed real-time applications. It introduces the
notion of multi—agent systems, the security of state
driven design and the flexibilty of distributed multi—
processing. Because of its strictly cyclic execution, ex-
act response times can be guaranteed. Problems with
priorities, task scheduling and interrupts don’t occur.

No explicit programming of the communication be-
tween the agents is necessary. MAD-RTS is avail-
able on MC68HC11 microcontroller, AT486 and pro-
grammable logic controllers. Each agent can be shifted
to other hardware with only minor changes in the def-
inition part of the agent. Likewise, the communica-
tion links are automatically altered without the need
for changes in the application program. A contract
net protocol with simple bidding is embedded into the
runtime system of MAD-RTS. The system engineer
can design the control application at first according
to problem oriented criterias and afterwards decide
about the optimal hardware structure for his applica-
tion.

millin
too

MC68 e [T
CAN — [—
Mces | || T
CAN input belt

PLC PLC PLC
CAN CAN CAN
lathe tool meaﬁlzl " ?OOI

MC68

f CAN
[

MC68
CAN

MC68
CAN

AT486

Can-Bus

LynxOS

Figure 5: Outline of the modell plant and its

Acknowledgements

I want to thank all students who have contributed

to design and implementation of the MAD-RTS sys-
tem, especially B. Sterzbach, G. Rotzer, Ch. Husch,
A. Schmieja and T. Lopatic.

References

[1]

K. Fischer, Concepts for an Agent System in a
Flexible Manufacturing System. Proceedings of the
23rd Int. Sympostum on Automotive Technilogy &
Automation (ISATA). Vienna, pp. 392-399, Vol. 2,
1990.

S.R. Faulk and D.L. Parnas, On Synchronization
in Hard-Real-Time Systems. Communications of

the ACM Vol. 31(3), pp. 274-287, 1988.

S. Hahndel and P. Levi, A Distributed Task
Planning Method for Autonomous Agents in a
FMS. Proc. IEEE/RSJ/GI Int. Conf. on Intelli-
gent Robots and Systems (IROS °94), Miinchen,
Sept. 12-16, 1994. Los Alamitos, CA: IEEE Com-
puter Society Press, pp. 1285-1292, 1994.

H. Kopetz, Event-Triggered versus Time-Triggered
Real-Time Systems. Proc. of the Int. Workshop

MC68 | v24

CAN

HP 735
HP-UX

microprocessor field—bus network

on Operating Systems of the 90s and Beyond,
Dagstuhl Castle, Germany, July 8-12, 1991, A.
Karshmer and J. Nehmer (Eds.), Lecture Notes
in Computer Science 563, Springer, Berlin, pp. 87-
101, 1991.

H.W. Lawson, Engineering Predictable Real-Time
Systems. Lecture Notes for the NATO Advanced
Study Institute on Real-Time Computing, St.
Maarten, Oct. 8-15, pp. 31-46, 1992.

G. Schrott, An Experimental Environment for
Task-Level Programming of Robots. Proceedings of
the 2nd Int. Symposium on Ezperimental Robotics,
Toulouse, Juni 25-27, 1991. R. Chatila (Ed.), Lect.
Notes in Control and Information Sciences 190,
Springer, Berlin, pp. 196-206, 1992.

G. Schrott, A Distributed Task-Oriented Real-
Time Programming System. Proc. of the 19th
IFAC/IFIP Workshop on Real Time Programming
WRTP’94, Lake Constance, Germany, Juni 22-
24, 1994. W.A. Halang (Ed.). Oxford: Pergamon
Press, 1994, pp. 163-166, (Real Time Program-
ming; 1994).

A Formal grammar of MAD-language
Excerpts of MAD-language specification in Backus-Naur-syntax:

MAD_program — MAD_program block
I block

block — HOSTDECL hosttype identifier ;
| AGENT identifier HOST identiﬁer ; agent_block ENDAGENT ;

hosttype — Mc68HC11
| AT486
| PLC
agent_block — ggent_block agent_def
[
agent_def — DECLS declarations
| BIDS bids
I CONTRACTS contracts
I STATES states
bids — é)m’,s bid
[
btd — identifier form_params COST expression ;
coniracts — gontmcts coniract
[
contract — identifier form_params DO action
| type identiﬁer_f];rm_params RETURN ezpresston ;
form_params — e(type_id_list)
[
type_id_list — type tdentifier
| type_id_list , type identifier
declarations — g’,eclamtion declarations
[
declaration — generic_subagent identifier opt_id_list ;
optuid_list — e(1d_list)
[
wd_list — identifier
| wd_list , identifier
states — gta,tes state
[
state — state_id identifier : actions
state_td — gtate_id identifier /
[
actions — gctions action
[
action — bid_list identifier . identifier opt_expr_list ;
| NEWSTATE identifier ;
i { actions }
| expression => action
I ONCE => action
bid_list — g)id_list tdentifier |
[
opt_expr_list — e(expr_list)
[
expr_list — gzpr_list erpresston
[
eTpression expression operator expression

(expression)
INSTATE identifier
unsigned_expression

---1

