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Abstract— In this paper, an approach for matching of prim-
itive shapes detected from point clouds, to boundary repre-
sentations of primitive shapes contained in CAD models of
objects/workpieces is presented. The primary target application
is object detection and pose estimation from noisy RGBD sensor
data. This approach can also be used to determine incomplete
object poses, including those of symmetrical objects. Detection
and reasoning about these under-specified object poses is useful
in several practical applications such as robotic manipulation,
which are also presented in this paper.

I. INTRODUCTION

Object recognition and pose estimation from 3D sensor
data using CAD models is a classic problem in computer
vision. This work is focused on detection of industrial
objects/workpieces that are typically textureless. Hence, we
focus on purely shape based approaches. Previous work in
this area features primitive shape graphs [1], [2], surflet-pair
based approaches [2], [3], [4], and the triple-point feature
method [5]. Keypoint and descriptor based approaches in-
clude local shape keypoint [6] and global descriptors [7].
Each of these approaches have their own advantages and
disadvantages. Global descriptors such as VFH [7] require a
cumbersome training phase, where a large number of object
views need to be generated by real experiments. Besides,
their accuracy decreases significantly in case of occlusions
and partial views. The advantage of these methods lies in
their computational speed. On the other hand, methods such
as [1], [3], [4], are designed to be robust to partial views,
occlusions and noisy data but don’t scale well for real-time
applications or large point clouds. Approaches for efficient
object detection and pose estimation using CAD models have
been presented in our previous work [2].

Another important property of the typical industrial parts
that we deal with, is that they are often composed of
simpler geometric parts. Hence, their geometries can be
approximated accurately using a set of primitive shapes such
as planes, cylinders, spheres, etc. A key idea in our work
is to utilize the mathematical properties of such geometric
primitives for object detection, since they can be detected
more accurately and efficiently than complete CAD models.
We use a boundary representation (BREP) of CAD models,
since it retains the information about primitive geometric
shapes. Also, BREP is a standard supported by several
popular CAD modeling softwares (e.g. SolidWorks) and
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exchange formats (e.g., STEP, IGES). In [8], we presented
an ontological representation of BREP-based CAD models,
which we also use in this work.

In [2], [9], we used an energy minimization approach
for decomposing object models (in point cloud format) into
primitive shapes. This approach discarded the information
about primitive shapes contained in the CAD models (stored
in STEP, IGES files) and tried to estimate it again, possibly
introducing errors in the process. In this work, we directly
use the information of primitive shapes stored in CAD
models, thereby achieving a perfect decomposition of the
CAD models into primitive shapes.

In [2], we presented the concept of object detection using
sets of primitive shapes that are minimal sets for 3D pose
estimation. However, possible minimal combinations such as
3 planes or a plane and a cylinder were defined explicitly.
In [9], we modelled the constraints that each primitive shape
enforces on the object’s pose and could detect these minimal
sets automatically from a set of shapes. The presented
object recognition approach could also handle over-specified
constraints and estimate the pose in a least-squares sense.

For estimating object poses, we propose the use of
a non-linear least squares solver that supports inequality
constraints. The constraints introduced by primitive shape
matching are modified to be inequality constraints, since
this enables explicit modeling of sensor noise in RGBD
data and errors in fitting of primitive shapes to scene point
clouds, in the form of bounds for these inequality constraints.
Hence, instead of matching primitive shapes exactly we
explicitly model and allow tolerances, which leads to a better
convergence of the pose estimation process.

In Section II-A, we briefly describe the boundary represen-
tation (BREP) format for modeling objects. The ontological
representation of BREP objects is explained in Section II-B.
Mathematical and ontological modeling of constraints from
matching of primitive shapes, is described in Section III.
Algorithms for object detection and pose estimation using
primitive shape matches are presented in Section IV. Finally,
applications of the presented approaches are described in
Section V.

II. ONTOLOGY FOR BOUNDARY REPRESENTATION
OF GEOMETRIC SHAPES

Using an ontological representation of CAD models en-
ables us to easily link our work to important applications
such as robotic manipulation and intuitive robot task pro-
gramming.



Fig. 1: The ontological representation of a simple BREP-based CAD model. The corresponding ontological instances for
some of the points, lines and planes of the object have been indicated.

A. Boundary Representation of CAD models

A Boundary Representation (BREP) of CAD models uses
mathematical models of primitive shape elements to de-
scribe the geometric properties of points, curves, surfaces
and volumes. CAD models are constructed by defining
boundaries to these (often unbounded) geometric entities.
The BREP specification distinguishes between geometric and
topological entities, as illustrated in Fig. 2. The topological
entities describe the arrangement and connections between
geometric entities, while numerical data and mathematical
definitions of the base shapes are contained in the geometric
entities.
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Fig. 2: Overview of the BREP structure. The data model
contains the topological entities, and corresponding geomet-
ric entities (indicated by a representedBy property).

B. Ontological representation of shapes and constraints

Fig. 1 illustrates the representation of a simple CAD model
using the BREP ontology. In our formulation, a geometric
constraint is defined between two geometric entities: a fixed
entity with a defined pose and a constrained entity whose
pose depends on the fixed entity and the constraint itself. For
the pose estimation problem, the fixed entities are the primi-
tive shapes detected in the scene and the constrained entities
are the primitive shapes in the model, whose pose needs to
be estimated. The nullspace of a geometric constraint is a set
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Fig. 3: Geometric inter-relational constraints enforced by
each primitive shape match. Constrained/un-constrained axes
are indicated by solid/dotted arrows respectively. (a) Infinite
Plane: The position along z-axis (normal direction) is fixed,
while positions along x and y is are free. Rotation is allowed
only around z-axis. (b) Infinite Cylinder: The position along
x and y axes is fixed, while position along z-axis (principal
axis of cylinder) is not fixed. Rotation is allowed only around
the z-axis. (c) Sphere: The positions in all axes are fixed.
Rotation is allowed around all axes.

of relative transformations between the involved geometries
that satisfy the constraint.

III. GEOMETRIC CONSTRAINTS FROM
PRIMITIVE SHAPE MATCHING

Each primitive shape Pi enforces a set of constraints
(Cpi ,Cni ) on the position and orientation of the object
respectively. Each row of Cpi and Cni contains a direction
along which the constraint has been set. Examples of con-
straints set by each primitive shape are shown in Fig. 3 and
explained below:

∙ Infinite plane: Cpi = [0, 0, 1] and Cni = [1, 0, 0; 0, 1, 0]
∙ Infinite cylinder: Cpi = [1, 0, 0; 0, 1, 0] and Cni =
[1, 0, 0; 0, 1, 0]

∙ Sphere: Cpi = [1, 0, 0; 0, 1, 0; 0, 0, 1] and Cni = �
A complete set of primitive shapes is defined as a set where

the constraints fully specify the 3D position and orientation
of the object. A minimal set of primitive shapes is defined
as a set which is complete but removing any primitive shape
from the set would render it incomplete.
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Fig. 4: Primitive shape groups in an industrial workpiece. (a) Object model. (b) The position of the object is fully defined
in 3D. However, rotation of the object along the z-axis is not fixed. (c) Position and orientation of the object are both fully
defined and these primitive shapes form a minimal set. (d) The expected errors or tolerances in estimation of primitive
shapes from point cloud data are shown (exaggerated).

TABLE I: Summary of supported constraints between primitive shapes

Fixed Constrained Constraint (i) Cost Function (gi) Lower Bound (lb) Upper Bound (ub)

Plane1 Plane2 Parallel Distance (dmin, dmax) [nT1 ṕ21; ń
T
2n1] [dmin; amin] [dmax; amax]

Cylinder1 Cylinder2 Parallel Distance (dmin, dmax, amin, amax) [‖ṕ21 − (nT1 ṕ21)n1‖
2
2; ń

T
2n1] [d2min; amin] [d2max; amax]

Sphere1 Sphere2 Distance (dmin, dmax) [ṕ21] dmin dmax

Table I presents the list of supported geometric constraints
between primitive shapes, where

ṕ2 = Rp2 + t
ṕ21 = ṕ2 − p1

ń2 = Rn2

A. Feature Vectors for Sets of Primitive Shapes

For detection of objects in the scene, correspondences be-
tween the scene shape primitives and model shape primitives
need to be determined. We obtain these correspondences by
computing and matching feature vectors from the geometric
properties of the primitive shapes. These feature vectors not
only encode the geometric properties of the shapes, but also
of the relations between the shapes.

Some of the feature vectors used for primitive shapes
and their combinations are defined in Table II. The table
only defines some simple combinations of feature vectors.
However, more complicated features involving more primi-
tive shapes can be constructed from these representations by
simple extensions.

Using this approach, a feature vector can be constructed
for the entire object as well. The visibility of primitive shapes
depends on the viewpoint of the camera. Hence, feature
vectors for all possible sets of primitive shapes should be
calculated offline for the object models. Minimal sets of
primitives from the scene point cloud are calculated during
the pose estimation stage (see Section IV-B), and the distance
between the feature vectors provides a metric for obtaining
hypotheses of shape associations.

TABLE II: Feature Vectors for Primitive shape sets

Primitive shape Feature Vector (fv)

Inf. Plane �
Sphere radius
Inf. Cylinder radius

Plane+Plane
fv(plane1), fv(plane2),
angle(plane1_normal, plane2_normal),
min_distance(plane1, plane2)

Plane+Cylinder fv(cylinder), fv(plane),
angle(plane_normal, cylinder_axis)

Cylinder+Cylinder
fv(cylinder1), fv(cylinder2),
angle(cylinder1_axis, cylinder2_axis),
min_distance(cylinder1, cylinder2)

Plane+Plane+Cylinder fv(plane1, cylinder), fv(plane2, cylinder)

IV. CONSTRAINT PROCESSING FOR INCOMPLETE POSE
ESTIMATION

A. Detection of minimal and complete sets of primitives

The constraints (Cpi , Cni ) enforced by each primitive shape
Pi are stacked into two matrices Cp and Cn (each having 3
columns), where Cp represents the combination of constraints
for the position and Cn represents the combination of con-
straints on the orientation. The constraints are complete if
the matrices Cp and Cn both have rank 3. Fig. 4 shows an
example of a complete set of primitive shapes. An algorithm
for detecting minimal sets is presented in Algorithm 1.

B. Constraint solving for pose estimation

Let us consider the object’s frame to be specified at
position t and orientation (rotation matrix) R. This can also
be represented in the form of a homogeneous transformation



Fig. 5: Pipeline for primitive shape based object detection from noisy sensor data

Algorithm 1 Detecting minimal and complete primitive
shape sets

Input : [Pi] (set of primitive shapes)
Output : [[Pi]min], [[Pi]complete] (sets of minimal and com-
plete primitive shapes)
forall Pi

min_flag ← true
[P ]candidate ← Pi
forall Pj , wℎere j > i

[P ]candidate ← [P ]candidate ∪ Pj
If cℎeck_complete([P ]candidate)

[[Pi]complete] ← [[Pi]complete] ∪ [P ]candidate
If min_flag

min_flag ← false
[[Pi]min] ← [[Pi]min] ∪ [P ]candidate

EndIf
EndIf

EndFor
EndFor

matrix T . From the object models, the relative pose (partially
defined) Ti of each primitive shape Pi w.r.t. the object’s frame
is available.

The optimization is performed over transformations that
align the model to the objects in the scene. The transforma-
tions are represented as △x = (t, r) where t is the translation
and r is the rotation in axis angle representation.

The function to be optimized is the absolute value of
the transformation. In other words, this means minimizing
‖ △ x‖2. The constraint functions gi along with their
limits (lb(gi), ub(gi)) are obtained from the primitive shape
matching constraints shown in Table I. The (dmin, dmax)
values of the constraints can be used to incorporate the
noise in sensor data or primitive shape fitting errors (see
Section V-A), as well as manufacturing uncertainties (see
Section V-E). As an example shown in Fig. 4: If the error
in estimation of a cylinder’s radius (r) is �r, the bounds for
the cylinder matching constraint can be set as (dmin, dmax) =
(r−�r∕2, r+�r∕2). For an error �� in estimation of the normal
direction, the bounds can be set as (amin, amax) = (cos(��), 1).

The resulting optimization problem is:

argmin
△x

‖△ x‖2

subject to lb(gi) ≤ gi ≤ ub(gi), i = 1,… , m.

This set of equations is then solved using a non-linear
least squares min-max solver (MA27) from [10] using the
deterministic non-linear optimization utility from library
Coin-OR (named IPOPT) [11].

In this way, the constraints defined by the primitive shapes
can be solved to obtain a pose of the object. If the constraints
are complete, the pose is uniquely defined. Otherwise, the
constraint solver returns one possible solution.

C. RANSAC based constraint solving for pose estimation

A shape matching hypothesis Hi consists of a set of asso-
ciations between primitive shape sets, i.e., correspondences
that relate each primitive shape in the scene to a primitive
shape in the model. The hypotheses can be computed by
matching feature vectors, see Section III-A. An algorithm for
pose estimation using RANSAC-like iterations on minimal
sets of primitive shapes is described in Algorithm 2.

We use an efficient hypothesis verification approach that
utilizes the geometric information from CAD models and
primitive shape decomposition of scene point clouds, as
described in [2].

V. EVALUATION AND APPLICATIONS

A. Calculating object poses from noisy sensor data

The primary application of this work is the detection and
pose estimation of objects from noisy sensor data. Primitive
shapes such as planes, cylinders and spheres are detected
from RGBD data, as explained in [2]. This step also provides

Algorithm 2 Detecting object poses using RANSAC

1: Input : [Ps, [Pm]min]] (set of scene primitive shapes and
minimal sets of model primitive shapes)

2: Output : [T , smax] (best pose estimate with score for
detected object instance)

3: forall Pi ∈ [Pm]min]
4: smax ← 0
5: compute shape matching hypothesis (Hi) using fv’s, see

Section III-A
6: calculate transformation estimate Ti for Hi , see Section

IV-B
7: compute score si for hypothesis Hi
8: If si ≥ thresh & si > smax
9: T ← Ti

10: smax ← si
11: EndFor
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Fig. 6: Primitive shape groups for different views of an object. Using primitive shape sets, it can be calculated whether an
object’s pose can be fully estimated from a viewpoint or not. The arrows indicate the expected noise (qualitative only) in
estimation of the primitive shape parameters. (a) the position of the object along y axis is not determined. In (b) and (c) the
complete pose of the object can be estimated. (Note: The detected primitive shapes are highlighted manually to make the
image clearer.)

estimates of the shape fitting errors. These noise estimates
can be expressed as inequality constraints and solved using
the constraint solving algorithms (see Section IV). This
pipeline is explained in Fig. 5.

B. Calculating detectability of objects from viewpoints

Depending on the viewpoint of the camera, different sets
of primitive shapes might be visible in the scene point
cloud. Also, the accuracy of the primitive shape detection
depends on the distance of the object and the viewpoint, as
shown in Fig. 6. Using Algorithm 1, it can be ascertained
whether the object is detectable from a given viewpoint
or not. This knowledge is important in object recognition
and pose estimation problems, where primitive shape based
approaches might fail due to insufficient data available from
a certain viewpoint.

C. Reasoning about symmetrical objects

The ontological representation of CAD models is used to
obtain geometric information about the CAD models. The
information about minimal and complete sets of primitive
shapes can be propagated back to the ontology and utilized
by different applications. Information about the nullspace of
geometric constraints, now available in the ontology, can also
be used for several robotic manipulation applications, see
Section V-D.

D. Manipulation of symmetric objects

Knowledge about the symmetrical properties of ob-
jects/workpieces can be used to optimize robotic manipu-
lation tasks involving these objects. Fig. 7 shows a grasping
task involving a symmetrical object. Using the object recog-
nition approach presented in this paper, the robotic system
is aware of the fact that the z-axis of the object is an axis of
symmetry. Hence, as illustrated in Fig. 7, the object can be
grasped using any orientation of the end effector along the
z-axis. This allows optimization of the robot’s pose within
this nullspace. More such applications have been described
in our works [12], [13].

Fig. 7: Grasping of a symmetric object: The grasp pose for
the object is invariant to rotations along the symmetrical axis
of the cylindrical object. Two such grasping poses are shown
in this figure.

E. Manufacturing uncertainties in object models

The manufactured objects might differ from the nominal
CAD models due to manufacturing tolerances. In case of
assembled objects, there can also be errors in the placement
of individual parts. Fig. 8 shows an electronic circuit, where
the capacitors (blue cylinders) are supposed to be mounted
perpendicular to the circuit board. On an actual workpiece,
the capacitors (red cylinders) are mounted at a slightly dif-
ferent angle. Also, the resistors (blue cuboids) are mounted
at a slightly different location on the real workpiece (red
cuboids). These are not errors but allowed tolerances in the
manufacturing process.

Using our object recognition approach (see Sections III
and IV-B), these uncertainties can be modeled explicitly
and even such imperfect object models can be detected
accurately.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we presented an approach for detection
and pose estimation of industrial workpieces that can be
decomposed into primitive shapes. An important contribution
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Fig. 8: Manufacturing tolerances in prodution or assembly of parts. (a) Nominal object CAD model (b) Actual manufactured
model, with parts in Red having some placement errors (c) Superimposed image of the perfect and manufactured object,
that illustrates the manufacturing tolerances.

in this work is the possibility to incorporate sensor noise
and errors in primitive shape fitting directly into the non-
linear optimization framework. Another contribution is the
use of boundary representation for CAD models, stored in
the form of an ontology. This not only enables accurate
primitive shape decompositions of objects models, but also
the propagation of information about geometric symmetries
back into the ontology. This information is useful for several
applications, which have also been briefly presented.

Future work includes implementation of more primitive
shapes that are supported by the BREP standard. Also,
a quantitative analysis of the benefits of this approach in
robotic applications can be further investigated.
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