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Abstract— The introduction of robotic master-slave systems
for minimally invasive surgery has created new opportunities
in assisting surgeons with partial or fully autonomous func-
tions. While autonomy is an ongoing field of research, the
question of how the growing number of offered features can
be triggered in a time-saving manner at the master console
is not well investigated. We have implemented a gesture-
based user interface, whereas the haptic input devices that
are commonly used to control the surgical instruments, are
used to trigger actions. Intuitive and customizable gestures
are learned by the system once, linked to a certain command,
and recalled during operation as the gesture is presented by
the surgeon. Experimental user studies with 24 participants
have been conducted to evaluate the efficiency, accuracy and
user experience of this input method compared to a traditional
menu. The results have shown the potential of gesture-based
input, especially in terms of time savings and enhanced user
experience.

Index Terms— robot surgery, minimally invasive surgery,
human-machine interaction, gesturing

I. INTRODUCTION

Medical robots are well on their way to become as impor-
tant to the surgical process as industrial robots have become
to manufacturing within the last 30 years. Over the last years
there has been a significant development in robot-assisted
minimally invasive systems (RMIS). They enable the surgeon
to overcome several barriers and limitations, compared to
conventional interventions: scaling of movements, tremor
filtering, improved dexterity and haptic feedback aid the
surgeon just as well as teleoperative teamwork (possibly
over long distances) does. Typically, all this functionality
is provided by a master console, which is equipped with
sophisticated input devices and an immersive real-time vi-
sualization of the situs. The instruments at the slave side of
the system can be controlled remotely by a surgeon sitting
at the console. A remarkable example of such achievements
is the daVinciTMmachine [1].
Simultaneously, much effort is made in intelligent assis-
tance functions that aim to improve both patient safety and
operation time. Virtual constraints [2] and supervision of
manipulation forces [3] minimize the risk of tissue dam-
age. Augmentation of the patient with preoperative imaging
modalities [4] and the associated information presentation,
camera control and (partly) autonomous executed actions
of error-prone and recurrent (sub-) tasks, such as knot-

tying [5] or tissue piercing [6], have drawn the attention of
researchers. This growing number of high level functionality
that we might see in future (commercial) systems has to be
executed, controlled and supervised by the human operator.
However, we believe the number of existing functionality
to be imbalanced with the currently available input options
of master consoles. Most RMIS master consoles come with
several foot pedals, e.g., for swapping between different
surgical tools or repositioning the camera. Also a touchpad
and buttons might be available for system settings, but the
user is forced to remove his hand from the main control
device. Using the devices for menu interaction is possible
but time consuming, since the devices have to be relocated
after menu interaction to resemble the posture of the end
effector.
With regard to the growing number of autonomous functions
it is desirable to keep the time used for system interaction
at a minimum. If the call of an assistant function takes more
time than its actual execution, the benefit of automation
is questionable. Several groups investigate human friendly
machine interfaces: A large body of literature is available
with respect to automated camera guidance. The first com-
mercial endoscope holder, the AEOSOPTM, was released to
the market in 1994 and controlled by the surgeon by means of
either a foot or a hand controller [7]. To provide “hands free”
control, camera assistants were quickly extended with new
input modalities such as voice activated control [8], visual
tracking of the surgeon’s movements (e.g., head movements
or “mouth gestures” [9]), which often comes with the burden
of tracking markers, which have to be borne by the doctor.
While force reflecting devices are optimized with respect to
the specific requirements of different types of interventions
[10] and the overall integration of a multitude of human-
machine interfaces into master consoles were studied [11],
the problem of executing system functions is barely tack-
led. [12] investigated the direct execution of higher level
functions by means of gaze contingent control. An eye
tracker was integrated into the daVinciTMstereoscopic con-
sole, which allows video capturing of the eyes at 50fps with-
out obstructing the surgeon’s view. The eyes are illuminated
with a fixed infrared light source and the corneal reflection
in relation to the position of the pupil is measured. The two
centers of the eyes define a vector, which can be mapped to
an unique gaze direction. The relationship between horizontal

978-1-4577-0499-4/11/$26.00 ©2011 IEEE



disparity and depth perception that varies with the viewing
distance recovers depth information. They propose to use
the surgeon’s fixation point to recover tissue deformation for
beating heart stabilization [12]. In [13] virtual fixtures are
interactively prescribed and updated via eye tracking to guide
the user to an incision point at the tissue surface. The same
eye tracker setup is used to automate articulated instrument
positioning [14] and 3D path planning in focused energy
ablation [15].
Like most input modalities, gaze control is dedicated to
a specific group of tasks and cannot cover all cases of
human-machine interaction. Foot pedal or menu interaction
interrupts the intervention, since the user needs to locate the
pedals (for which s/he may have to take his eyes off the
screen) or has to navigate through a (more or less) complex
menu structure. The introduction of “menu shortcuts”, which
show a reduced and situation adapted number of items, is
possible, but difficult to realize: On one hand, the current
state of the medical workflow needs to be known precisely,
on the other hand, only few foot pedals are available. If the
haptic input devices are used as a mouse pointer for menu
interaction, their posture needs to be readjusted to the current
robot pose after use.
In general, we ask the following requirements for an input
modality in medical robotics:

• shortest possible distraction of the surgeon from the
operative situs

• little cognitive burden and mental stress
• fast and seamless integration into the surgical workflow
• correct interpretation and execution of the commands
• little training effort

Sign language and haptic gesturing promises to be an
intuitive and easy understandable concept for human-
machine interfaces, borrowed from everyday life. In [16],
the authors propose that a human operator give hints to a
teleoperated robot by natural sign language. The signs define
a spatial-temporal context (e.g., the user points to an object)
for subsequent robot behavior. The signs are interpreted
from finger encoder readings of an exoskeleton. In a similar
fashion, we propose the use of the haptic input devices of a
surgical workstation to trigger commands with gestures. In
comparison to traditional human-computer interfaces (e.g.,
menus), which are commonly used in robotic surgery, we
hope to offer a customizable and intuitive input modality
with reduced interaction time.

II. THE ENDOPAR SYSTEM

The Endoscopic Partial-Autonomous Robot (EndoPar)
system is an experimental robotic surgical system, developed
by the Robotics and Embedded Systems research group
at the Technical University of Munich. The hardware and
software components of the system have already been
introduced to the research community [17]. Therefore, we
limit the description to an extent necessary for understanding
the subsequent sections. As depicted in Fig. 1 the slave
part of the system is composed of four ceiling mounted

Fig. 1. Hardware setup: Ceiling mounted robots with surgical instruments

industrial robots that are either equipped with surgical
instruments or with a stereoscopic camera. The utilized
EndoWristTMinstruments are originally deployed with the
daVinciTMsystem and are coupled by a magnetic clutch to
the robots’ flange. The instruments are powered by small
servo motors, which are incorporated into the coupling
mechanism. All instruments are augmented with strain gauge
sensors in order to measure forces. The user is located in
front of a master console that provides a stereoscopic view
of the situs. Two PhantomTMhaptic displays are arranged
upside down for less constricted flexibility of the stylus
pen. The devices serve as input devices for the operator
to control the surgical instruments and can simultaneously
feed back forces measured at the instrument tip. As an
additional input modality, four foot pedals can be taught
with individual system functions.

III. HAPTIC GESTURING

Gesture recognition is widely studied as a computer input
modality [18]. The identification and classification of human
motions (e.g., facial gestures, pointing gestures, body poses)
or movements executed by means of pointing device (e.g.,
a mouse, remote controllers, data gloves, or touch-sensitive
displays) can be used to convey meaningful information or
interactions with the environment.
Hand gestures are frequently used by humans, since they are
very intuitive and expressive. Two categories can be distin-
guished: static finger configurations, also called postures, and
dynamic gestures. Variations of the executed gestures usually
occur between different instantiations as well as different
performers. Hidden Markov Models (HMM) have been used
successfully in the field of medical workflow modeling (e.g.,
[19]).

A. Gesture Recognition with HMMs

A Hidden Markov Model is a stochastic model, described
by two random processes. An detailed description of Hidden
Markov Modeling techniques can i.e., be found in [20]. The
model is defined as a quintuple λ = (N,M,A,B, π), where



Fig. 2. Master console with PhantomTMdevices and 3D screen

N is the number of states S = {s1, · · · , sN}, M is the
number of distinct observation symbols per state (the discrete
alphabet size), A = {aij} is the state transition probability
distribution matrix and B = {bj(k)} is the observation
symbol probability distribution in state j. Variable π denotes
a probability distribution over the initial states. The first
process of the model is a hidden Markov chain and describes
the dependency of the state qt = sj , reached at time t,
from the previous states qt−1, · · · , q1. The second stochastic
process defines the probability of the observation fk in the
state qk = si (a.k.a the emission probability).
In this work, the observations that allow to infer the state of
the process are feature vectors fk of time-series representing
the surgical instruments. The chosen features are presented
in Section III-C. The used type of HMM model follows
the left-right topology: The states are arranged in a linear
progression, whereas each state is entered at least once and
no transitions to past states are allowed.
HMMs model the stochastic properties of a training set of
time-series. To train a model λ and to optimize its set of
parameters the Baum-Welch algorithm is a well-know tool.
The Viterbi algorithm is then used to find the path with
the highest likelihood P (Π | λ) through the topology of λ
that would generate the sequence Π). In order to prevent the
underflow problem during longer time-series, a log-scaling
is used.

B. Data Acquisition and Preprocessing

To obtain the data, we recorded 25 individual executions
of each gesture. All demonstrations were performed by a
person who was not involved in the later evaluation.
The trajectories of all grippers were sampled at a frequency
of 10Hz and stored in a data base. The recorded raw data are
represented by the vector ~sraw,i = (x, y, z, fx, fy, fz, g, t)

T ,
where (x, y, z)T is the Cartesian position of the gripper with
corresponding forces (fx, fy, fz)T . Variable g denotes the
state of the gripper (open/closed) and t is a timestamp.
The raw trajectory data contain variations in execution speed
that yield an inhomogeneous distribution of sampling points.
In order to represent the data with regularly spaced points,

the trajectory is resampled. Although the data is time-
stampled, a time equidistant sampling is not preferable:
the varying execution speed of trajectory parts yields to a
different number of sampling points with unequal sampling
distances between the points. For instance, segments that are
executed with low velocity, such as tight turns, comprise
more sampling points then fast movements, such as straight
lines. Therefore, the data are resampled position equidistant
that is with an uniform spatial spacing. The preprocessing
removes demonstration dependent variations such as execu-
tion speed and small geometrical variations (i.e., jitter, caused
by the human tremor). The Euclidean distance between two
sampling points is used for a linear interpolation for each
record (cf. Fig. 3). The resampled position data replace the
raw data in ~sraw and the vector used for feature extraction
is then denoted as ~s.
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Fig. 3. Equidistant resampling of the original trajectory.

C. Features
After preprocessing, the trajectories are represented by

sampling points with equal distance in combination with the
recorded instrument forces and the gripper state. Variable
~Si = (~si,1, · · · , ~si,k) comprises all sampling points of a
trajectory, where i ∈ {l, r} indicates if the data belongs to the
left or right instrument. The distance between two adjacent
Cartesian points pi,t and pi,t+1 is substituted by the vector
∆~pi,t = pi,tpi,t+1. Note that none of the features is related
to a global coordinate system, which is important to allow
a location-independent execution of gestures. The features
F = {f1, · · · , f10} are defined as follows:

1) Directional change of the instrument trajectory:
Similar to [21], the change of the instrument direction,
defined by two adjacent points pi,t and pi,t+1 can be
described by the angle ρt, enclosed by ∆~pi,t−1 and
∆~pi,t (cf. Fig. 4). To ensure a smooth description, sin
and cosine are calculated:

f1,t = cos ρt =
∆~pi,t−1 ·∆~pi,t
‖∆~pi,t−1‖ ‖∆~pi,t‖

(1)

f2,t = sin ρt =
∆~pi,t−1 ×∆~pi,t
‖∆~pi,t−1‖ ‖∆~pi,t‖

(2)



2) Directional change of one instrument w.r.t. a second
instrument: The feature indicates if the first instru-
ment tends to converge to the second instrument or
veers away from it. Sin and cosine of the angle θ are
calculated between the vectors ∆~pi,t and ~v = pi,tpj,t.
The corresponding features are f3,t and f4,t (cf. Fig.
4).

3) Velocity of an instrument: The velocity of the instru-
ment tip can be derived from the recorded data. Each
sampling point is labeled with a timestamp t. After
the linear resampling of the trajectory, the velocity for
each instrument is calculated by

f5/6,t =
l

~si,t − ~si,t−1
(3)

where l is the sampling distance between two points
after the preprocessing step. Note that from the posi-
tion equidistant resampling follows a resampling of the
timestamps that yields certain inaccuracies.

4) Distance between the two instruments: Depending
on the gesture, the Euclidean distance between two
instruments varies over time or keeps similar (e.g.,
in case of parallel moving instruments). The feature
represents the current distance and is denoted as

f7,t = ‖pl,t − pr,t‖ (4)

5) Temporal change of distance between two instru-
ments : In contrast to feature f7, the distance change
between two instruments over time indicates move-
ment direction of one instrument w.r.t the second one:

f8,t = ‖pl,t − pr,t‖ − ‖pl,t−1 − pr,t−1‖ (5)

6) State of the gripper: The state of the grippers
(open/closed) can directly be taken from the data
base and represented as features f9,t and f10,t. For
our experiments all subjects were told to keep the
gripper closed during the gestures. On one hand this
simplifies the gesture, on the other hand most novices
assess the pose of the stylus more comfortable if the
gripper is closed.

Instrument 1

Instrument 2

pi,t-1

pi,t pi,t+1

pj,t

θ

ρ

Fig. 4. Directional change of one instrument (angle ρ) and directional
change of one instrument w.r.t to a second instrument (angle θ).

It is also possible to use a single instrument for gesturing,
instead of two. In this case, we do not consider the change

autonomy

retract

suture

distance

knot

Fig. 5. Structure of the used menu.

of the instrument w.r.t. the second one, but the directional
change of the observed instrument. Instead of the distance
between two instruments, the current distance between the
instrument and the first point of the trajectory is measured,
respectively the change of the distance.
The features are normalized over the range of all demon-
strations and can be weighted afterwards to adjust their
impact. To generate a discrete codebook from the data, the
k-means++ algorithm is used to quantize the feature vector.

IV. EXPERIMENTS AND RESULTS

In order to evaluate the effectiveness of the proposed
gesture recognition method within a realistic context, an
experimental user study was conducted in which gesture-
based input was compared to the traditional menu-based
input. In addition to objective measures of performance with
this system, another aspect evaluated in this study was the
user experience. User experience is an extension of the
concept of usability and has been defined as "all aspects
of the user’s experience when interacting with the product,
service, environment or facility. [...] It includes all aspects
of usability and desirability of a product, system or service
from the user’s perspective" [22]. User experience has been
found to be a critical factor in the design of new products,
as it was found to link to purchasing decisions and product
use [23].

A. Identification of Intuitive Gestures

In principle, gesture-based input has the disadvantage
that the gestures need to be remembered, whereas menu
entries only need to be recognised. This requires greater
cognitive effort and increases the risk of false input com-
mands. This disadvantage is minimised, however, if the
gestures that need to be remembered are intuitive. For a
fair comparison of menu vs. gesture input, it was hence
necessary, to first identify gestures for the system input, that
would feel intuitive to the user and can therefore be easily
remembered and executed. For this purpose, an exploratory
pre-experiment was conducted with an opportunity sample of
22 participants (M = 36 yrs., SD = 14 yrs.), in which they
were asked to spontaneously perform two alternative gestures



(a) (b) (c) (d)

Fig. 6. Trajectories of gesture instances: The blue lines indicate the left instrument, the red ones show the right instrument. Fig. 6(a) shows an instance
of the “knot-tying” gesture, Fig. 6(b) shows the gesture for “suturing”, Fig. 6(c) shows the gesture that initializes the “distance measuring”. The picture is
rotated 90◦ counterclockwise to save space. The gesture depicted in Fig. 6(d) would initialize the retraction of the 3rd robot arm to supply the surgeon
with new material (e.g., threads).

that they would associate with each of nine pre-selected
surgical assistance functions. After performing a particular
gesture, they would also be asked to give a reason for their
choice. The video recordings of the performed gestures were
independently examined and rated by two trained raters.
Based on the results of this study, four gestures which
showed high consistency in ratings and high concordance
amongst participants were selected for the evaluation study.
The assistance functions associated with these gestures were
“knot-tying”, “suturing”, “distance measuring” and “arm
retraction”. The trajectories corresponding to the selected
gestures are depicted in Figure 6.

B. Gesturing vs. Menu Interaction

1) Method:
Participants: The main evaluation study was conducted

with an opportunity sample of 24 participants (M =
24 yrs., SD = 3 yrs.), half of whom had surgical experi-
ence. Eleven participants were female and all but two were
right-handed. None of the participants exhibited signs of
motor impairment.

Experimental Design: A 2× 4 ((input mode) × (gesture))
within-subject design was implemented, whereby gesture
input was tested against menu input, with the four gestures
described above. A plausible menu design was chosen for
this experiment, with which participants had to select two
options for each gesture: on the first screen of the menu, a
general "surgical action" option had to be activated, which
then led to the second screen on which the appropriate
gesture had to be selected and confirmed (cf. Fig. 5). The
time that it took people to activate a surgical action with
the respective input mode was measured in each trial (input
time), as well as the success rate in triggering the correct
action (input success). The user experience of both input
modes was assessed with the AttrakDiff2 [24], a well-tested
questionnaire measuring four different aspects of user expe-
rience on a seven-point bipolar Likert-type scale. The four

aspects of user experience measured are: pragmatic quality
(PQ), attractiveness (ATT), hedonic quality-stimulation (HQ-
S) and hedonic quality-identity (HQ-I). The construct of
pragmatic quality refers to the perceived ability of a product
to accomplish task goals by offering useful and usable
functions and requires participants to rate the system on items
such as complicated/simple and unpredictable/predictable.
Attractiveness measures the users’ global positive/negative
evaluation of a product and contains items such as pretty/ugly
and attractive/repulsive. Hedonic quality-stimulation refers to
the ability of a product to satisfy the user’s needs for the
development of one’s knowledge and skills and is rated with
items such as unimaginative/creative and lame/mesmerizing.
Finally, the construct of hedonic quality-identity measures
the extent to which a product promotes one’s self-worth
and is comprised of items such as unstylish/stylish and
cheap/valuable. The individual items comprising each scale
were found to measure the respective constructs reliably, with
Cronbach’s α > 0.70.

Procedure: Prior to the experiment, participants were
trained in the use of both the menu and the gesture input
modes in triggering the four gestures according to a
standardized training procedure. Including familiarization
with the system and filling in the questionnaire the procedure
took about 1 hour per subject. On average, participants took
6.75 min. (SD = 2.66min.) to learn the four gestures,
whereas it took on average 2.96 min. (SD = 1.12min.) to
learn how to navigate the menu efficiently. Upon successful
completion of the training phase, participants were then
asked to either perform a certain gesture or select the
appropriate menu items in order to trigger a particular
action. The input modes were trained and tested in one
block, meaning that participants would first be trained, then
perform with one input mode, after which they would be
trained and tested with the other input mode. The input
mode and the tested gestures were systematically varied for
each person in order to avoid learning or fatigue effects.



2) Results: Collected data were inspected for outliers and
scores with z > 3.29 were removed for the statistical analysis.
When the assumptions for parametric tests were violated,
corrections were applied. A factorial ANOVA found a large
and statistically significant effect of input mode on input
time (F (1, 22) = 38.44, p < .001, η2 = .64). The estimated
marginal means indicate that, on average, it took significantly
less time to trigger the surgical action via gesture input
(M = 4.45sec., SD = 0.86 sec.) compared to activation
via menu input (M = 7.41sec., SD = 2.06 sec.). The
times needed to trigger a certain action are depicted in
Fig. 7. There was also a significant main effect of gesture
(F (2.04, 44.79) = 23.79, p < .001, η2 = .52), but no
significant interaction effect (F (3, 66) = 2.18, p = .10).
Together, these results suggest that while some surgical
actions (e.g. arm retraction) took longer to activate than
others (e.g. suturing), input times were consistently shorter
with gesture input than with menu input. A look at the
input errors suggest that, while it took less time to input
a command for a surgical action via gesture, this mode is
slighlty more error prone with 10.42% of gesture inputs
classified as false compared to 5.21% of false inputs via
the menu (out of 96 commands). Table I shows the success
rates for the individual actions. Finally, an ANOVA of the
AttrakDiff2 scores indicates a significant main effect of input
mode (F (1, 23) = 23.74, p < .001, η2 = .51), whereby
significantly higher mean user experience scores were given
for gesture input (M = 5.40, SD = 0.87) than for menu
input (M = 4.21, SD = 0.85). Bonferroni-adjusted post-
hoc simple comparisons showed that only the scores to
pragmatic quality did not differ significantly between the two
input modes (t(23) = 0.17, p = .87), whereas gesture input
received significantly higher ratings for hedonic quality-
identity (t(23) = 4.67, p < .001, r = .70), hedonic-
quality stimulation (t(23) = 7.97, p < .001, r = .86) and
attractiveness (t(23) = 4.39, p < .001, r = .68). These
findings indicate that, while the gesture input system was not
necessarily considered to provide greater functionality than
the menu, it was perceived to be more stimulating, creative
and comfortable.

V. DISCUSSION AND CONCLUSION

In summary, a type of gesture-based input was imple-
mented and evaluated as a time saving alternative to menu
input for commanding frequently demanded, automated or
semi-automated surgical actions in robot-assisted minimally
invasive surgery. After identifying intuitive gestures asso-
ciated with surgical assistance functions, a user study was
conducted in order to compare the two input concepts

TABLE I

modality knot retraction distance suture ∅
gesture 95.83% 75.0% 100.0% 87.5% 89.58%
menu 95.83% 91.67% 95.83% 95.83% 94.79%
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Fig. 7. Times needed to trigger an action (in sec): Gesture-based vs. menu.

in terms of performance and user experience. The results
show that gesture-based input is faster and receives more
favourable user experience ratings compared to the tested
menu-mockup, even though this input method is still slightly
more error prone. Furthermore, it must be noted that the
subjects were in full control of the robots during menu-
type interaction and the haptic devices were not decoupled
during this time, which would be very uncommon during
real interventions. Since resembling the posture of the end
effectors usually takes the longest time, a command that was
triggered with haptic gesturing would be significant faster.
Although the effect of learning on input success has not
been explicitly investigated in this study, it seems likely that,
despite the rigorous training protocol implemented in this
experiment, participants were more practiced in menu-based
input than in gesture-based input. Hence, one might assume
that the likelihood to commit an error with gesture input
would decrease with further practice.
Nevertheless, further studies are required to determine the
factors that mitigate the effectiveness of gesture-based in-
put. For example, obviously, the superior effectiveness of
gesture-based input over the traditional menu input strongly
depends on the complexity of the menu, as well as the input
mechanisms (e.g. foot pedals vs. mouse-type interaction).
In our case, a plausible and very simple menu structure of
two layers was used, coupled with a foot pedal mechanism.
Whether or not gesture-based input is equally effective for
other set-up needs to be tested in future studies. Similarly, the
user experience ratings should be interpreted with caution.
Three of the four scales on the user experience questionnaire
would favour technology, that would be considered novel
and exciting. The pragmatic qualities of gesture-based input,
such as its ability to integrate into the surgical workflow,
need to be tested in long-term user studies. In particular,
the possibility to intervene in the execution of (semi-) au-
tonomous tasks in case of an emergency (or a misinterpreted
command) needs to be investigated. Some actions may also
require further user interaction, such as the selection of an ap-
propriate piercing point. How this can be done, e.g., by task-
specific visual servoing or by verbally describing the next
step is, however, a complete open question. Some subjects



also had concerns about the feasibility of gesturing during
a real intervention. Sweeping gestures might be a danger
with regards to the small intra-operative dimensions in MIS.
However, a decoupling of robots and input devices would be
possible to perform the action in an virtual environment.
From a technical point of view, the recognition performance
and robustness of the Hidden Markov Model can further
be improved by fine-tuning. The linearity of a movement,
as well as the curvature in a certain neighborhood of the
trajectory could be considered in addition. If interaction with
the environment or more complex primitive would be as-
sumed during a gesture (e.g., pulling a thread), the measured
force vector gives hints to environmental interaction. For
the evaluation, all gestures were taught the system by an
experienced user. This is not optimal with respect to two
aspects: First, the demonstrations depend on the embodiment
of the teacher and do not reflect the characteristics of
individual users. This might influence the recognition rate of
the HMM in a negative way. Second, the idea of intuitive and
custom-made gestures is lost. The subjects had to mentally
link an action with a gesture that might not be optimal in
their understanding.
In conclusion, we see haptic gesturing as a potential, addi-
tional (but not replacing) input modality in robotic surgery.
For short and easy movements (e.g. as in “measure dis-
tance”), where the surgical instruments can be controlled safe
without being disconnected from the input devices, it offers
a clear time-saving w.r.t menu interaction.
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