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Abstract - Real time human body motion estimation

plays an important role in the perception for robotics

nowadays, especially for the applications of human robot

interaction and service robotics. In this paper, we propose

a method for real-time 3D human body motion estima-

tion based on 3-layer laser scans. All the useful scanned

points, presenting the human body contour information,

are subtracted from the learned background of the envi-

ronment. For human contour feature extraction, in or-

der to avoid the situations of unsuccessful segmentation,

we propose a novel iterative template matching algorithm

for clustering, where the templates of torso and hip sec-

tions are modeled with different radii. Robust distinct hu-

man motion features are extracted using maximum likeli-

hood estimation and nearest neighbor clustering method.

Subsequently, the positions of human joints in 3D space

are retrieved by associating the extracted features with a

pre-defined articulated model of human body. Finally we

demonstrate our proposed methods through experiments,

which show accurate human body motion tracking in real

time.

Keywords - Human body motion estimation, multi-layer

laser scans, iterative template matching for clustering

1. Introduction

Nowadays 3D human body motion capturing has been

given increasing attention, due to its widespread use in

human robot interaction, the analysis of human social be-

havior and other applications for service robots. Several

challenges are still standing, such as the fusion of the lim-

ited information from the sensors, useful information ex-

traction.

Multiple cameras and Time of Flight (TOF) camera based

approaches are typical in 3D human body motion on-line

capturing, due to the obtained richness of information [1],

[2], [3]. With the development of the sensor technology,

some new sensors are increasingly used within robot per-

ception system, such as the Kinect1, which can provide

full 3D view depth and color information.

Nevertheless, an important issue with these kinds of sen-

sors is that they are quite sensitive to illumination and

other environmental changes, which is why most of them

are still limited to indoor applications. Compared to these

sensors, laser range finders (LRF) are much robuster to

illumination changes [4], [5], especially in outdoor ap-

1http://www.primesense.com

plications such as autonomous city explorer robot ACE2,

also provide large scan range, a high data rate, and ac-

curate measurement. However, the disadvantage of stan-

dard LRF is that the obtained information is 2D, which is

limited comparing to the aforementioned sensors.

There are two ways to overcome the 2D limitation of

LRF: actuation or use of multi-layer scanning. With ac-

tuating LRFs, as demonstrated in [6], [7], it is possible

to achieve very good 3D scans of static environments,

but making a full scan is usually quite time-consuming,

so that cannot be used for real-time tasks such as hu-

man tracking. While multi-layer laser scanning does not

have this problem, it can be obtained either using multi-

ple single-layer LRFs or a sensor with built-in multi-layer

scanning, such as the ibeo-LUX3.

Multi-layer LRF systems have been used previously for

accurate people detection and tracking [4], [5]. Mozos et

al. [4] use a static 3-layer LRFs system to detect the sur-

rounding people. The approach is composed of a prob-

abilistic combination of the outputs from different clas-

sifiers which are extracted for each layer to detect a par-

ticular body part such as head, torso or leg. A mobile

robot with a 2-layer LRFs system is used by Carballo et

al. [5], where a human model is built for the association

of the different features, e.g. chest and legs areas and

a volume representation, which allows the estimation of

the current person’s position. However, these works only

focus on people tracking. There are also some works on

estimating both human position and pose using multiple

LRFs [8], [9]. Glas et al. [8] propose a people track-

ing method using particle filter to get not only the people

location but also the body rotation and arm position, by

using the contour information from the torso-level lasers.

Matsumoto et al. [9] try to use four corner LRFs at same

height to get the contour features for multiple people pose

estimation. Some pose candidates are weighted after the

re-sampling step and propagation by the transition model

to get the winner pose as the result. The estimated re-

gion is fixed and just some poses can be estimated. In

the above related works multi-LRF setups are only used

for either people location tracking or general pose estima-

tion. As LRF gives a fewer amount of information when

compared to other full 3D view sensor, it is challenging

to estimate the full human body motion in real time.

The contribution of this paper is an approach to esti-

mate the 3D human body motion in real-time using multi-

layer laser range finders which does not only provide the

2http://www.ace-robot.de/
3http://www.ibeo-as.com/
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Fig. 1 Overview of the proposed estimation system.

accurate human position but also the full human body

pose. The system is presented in Figure 1, where three

LRFs are vertically aligned on different fixed heights

from the ground plane. The heights are chosen in such

a way so that the LRFs can capture the arc-shaped con-

tour points of the human’s torso and upper arms, the hip

and forearms, and the thighs separately. During segmen-

tation and clustering for these useful scanned foreground

points which are extracted from the learning background,

a novel iterative template matching method is proposed to

solve the self occlusions to get robust distinct human mo-

tion features. The system is able to estimate full human

body motion after associating the extracted features with

the pre-defined articulated human model in real-time.

The remainder of this paper is organized as follows: Sec-

tion 2 provides the detailed structure of the whole esti-

mation system, including background subtraction, feature

extraction, human modeling and data association. The

hardware setup and experimental results are presented

and discussed in Section 3.

2. Proposed Approach

In this section, we provide the details about the human

body motion estimation system resulting in real-time es-

timation of body joint position in 3D space. The pro-

posed method aims at the problem to get the real hu-

man motion based on the limited spatial data in terms of

the scanned contour information based on 3-layered laser

scans. The processing modules and components are illus-

trated in Figure 2. After the background subtraction for

the raw data from each LRF is done, all the related hu-

man arc-shaped contour points are estimated. A novel

segmentation and clustering method to extract the hu-

man contour features is proposed. The final human pose

will be retrieved by associating these features with a pre-

defined articulated human model.

2.1 Background Subtraction

All the scanned contour points of objects in front of

LRFs represent the raw data, which means they include

both the background information (such as walls and other

static objects) as well as the moving objects information.

Background information subtraction is needed in order to

extract the human contour information from the data.
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Fig. 2 Diagram of the proposed estimation system.

The three LRFs measurements are with X and Y axes

parallel to the ground plane and with heights z0, z1 and

z2. All scanned points can be represented as P = {pi}
and pi = (xi, yi, zi), where i is the point index.
The background is learned in the initial stage before the

target enters into the scene. We take S scans to aver-

age the background information and restore them into the

background points set as Pb = {∑S

s=0
ps/S}. Therefore,

the foreground data Pf can be extracted by comparing the

raw data with Pb with a given threshold.

However, it is possible that the background changes dur-

ing the observation, for example due to moved furniture,

so the background needs to be dynamically updated. In

our strategy, we deal with this case by updating the fore-

ground point set into background data if their position

variations are under a given threshold [12].

2.2 Human Contour Features Extraction

From the foreground data Pf , these useful features can

be extracted which represented as F (c, θ, l), where c is

the cluster center position, θ is the rotation angle and l
is the length of cluster. The information c and θ will be

used to get the pose and l will be used to classify these hu-
man body parts. Nearest neighbor and template matching

these two kinds of segmentation and clustering methods

are used to obtain these needed features.

A. Segmentation by Nearest Neighbor Clustering (NNC)

This segmentation criterion is based on the geometry

relationship between the nearest neighbor points [10]. All

the close enough points will be segmented as one cluster.

The clusters with given conditions will be viewed as the

effective human contour features.

The algorithm for cluster segmentation is as follows:

1. Compute the distances D between each pair of con-

secutive points from the effective human data Ph = {pi}
in LRF data image: Di = ‖pi − pi−1‖.
2. Classify the suitable points into one cluster Cj(P, n)
with vector of points P and the number of points n using

the distance threshold Tc: push pi into Cj if Di < Tc

otherwise create a new cluster.

3. Delete the cluster Cj with index j if its number of

points nCj
is under a number threshold Tn as nCj

< Tn.

4. Computer Cj center position as feature Fk position

information cFk
= (

∑

xCj
/nCj

,
∑

yCj
/nCj

).
5. Compute the rotation and the length of Fk based on

the start and end point (pS , pE) of the cluster Cj : θFk
=
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and lFk
= ‖pS − pE‖.

However, this geometric clustering method fails when

extracting the valid features in two typical situations as

shown in Figure 3:

A. Occlusion appears and occluded template cannot be

estimated from available estimation, e.g. forearm sepa-

rates hip part cluster;

B. The outliers of the template can not be excluded

which will influence the template estimation result, e.g.

when upper arm is within distance threshold Tc to torso.

The final result generated from those estimated clusters

in such situations will contain incorrect features. Con-

sequently, template matching is considered to solve the

problem of segmentation and associate the related infor-

mation for clustering.

B. Segmentation Using Template Matching

Aiming to avoid the above failure situations, a circle

template matching algorithm based on [13] is employed

with the following assumptions: 1) the torso and hip

contour are always scanned; 2) the shapes of torso and

hip sections in terms of the contour information are not

changing.

The torso and hip circle template models are built for

matching, where each template has a different radius

rtorso and rhip , and the circle center has a constant dis-

tance Dt to the center of torso section, as shown in Fig-

ure 4. The rotation angle α can be obtained from the 5th

step of the NNC algorithm in Section 2.2.A. These two

circle models radii are defined as rtorso = 320mm and

rhip = 300mm respectively.

If scanned points can be matched with the circle template,

the points should fulfill the following equation

Dist =
√

(x − x∗)2 + (y − y∗)2 − r = 0. (1)

where (x∗, y∗) is the center of the circle template, r is the
radius and Dist is the distance between the point and its

nearest circle border.

In order to obtain the center position of torso, the cir-

cle center needs to be computed first. Therefore, maxi-

mum likelihood estimation (MLE) is applied here to esti-

mate the center position of circle. Each scanned 2D laser

point is assumed as having an independent error which

can be represented as a Gaussian distribution with zero

mean and standard deviation σ.
As (xi, yi) is the true position of the scanned position

(xi,yi) and n is the number of scanned points used to

matching the circle template, then the likelihood of all

the points can be represented as

L(x, y) =
n

∏

i=1

(
e−

(xi−xi)
2

2σ2

√
2πσ2

e−
(yi−yi)

2

2σ2

√
2πσ2

). (2)

For easier computation, we use − log L to minimize as

L−log = − log(
1

(2πσ2)n
e−

∑

n

i=1
[(xi−xi)

2+(yi−yi)
2]

2σ2 ). (3)

By removing all the constants, which do not contribute to

minimization, we obtain an equivalent formulation opti-

mization problem with the modified cost function

Lcircle =

n
∑

i=1

(xi − xi)
2 + (yi − yi)

2

σ2
. (4)

The Lagrange method of undetermined multipliers are

used including the equality constraint given by Equation

(1). The final equation to be used to get the MLE result is

Lcircle =

n
∑

i=1

[(xi − x∗)2 + (yi − y∗)2 − r2]2

(xi − x∗)2 + (yi − y∗)2
. (5)

Since the r is the parameter of circle template, MLE be-

comes the nonlinear problem of obtaining the parame-

ters (x∗, y∗) for minimizing Equation (5). The Newton-

Raphson (NR) method is adopted here to solve the opti-

mization problem numerically.

In addition, in order to obtain stable and accurate fea-

tures, we propose an Iterative Template Matching for

Clustering (ITMC) method here. This method can esti-

mate the known template and other clusters whenever the

occlusion happens. The pseudocode for ITMC is listed in

Algorithm 1.



Algorithm 1 ITMC for segmentation and clustering

i = 0; //iteration times for ITMC

Toutlier; //distance threshold to segment the outliers

εitmc; //threshold for ITMC

Rcircle //radius of circle template

//initialize circle center position

CE0 = (x∗

0
, y∗

0
) = center of all points P = {pi};

do

i + +;
//circle matching using MLE

CE∗

i
= (x∗

i
, y∗

i
) =MLE(P, CEi−1, Rcircle);

//each point′s distance to the circle

for (j = 1; j <= P.size; j + +){
Dj = abs(‖Pj − CEi‖ − Rcircle);
if Dj > Toutlier push Pj into O; }

//reduce the outliers to update the input data

Pm = all points of O;
P = P − Pm;
//displacement of estimated circle position

ε = ‖CEi − CEi−1‖;
while (ε ≥ εitmc)

//segment and cluster based on NNC

C = {Ci} =NNC(O, CEi) + cluster{P};

cluster 1

cluster 2

mm
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cluster 2 cluster 1

mm

mm
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Fig. 5 Clustering based on ITMC. The final matched

circle is red. Black arrow shows the trace of matched

circle’s center during the iterative steps. (a) use 4

times iteration to get the human hip circle template’s

center, meanwhile segment the forearm clusters; (b)

use 3 times iteration to get the human torso circle

template’s center, meanwhile segment the upper arm

clusters.

The main idea of ITMC is to update the input data ev-

ery time to match the circle and exclude the points which

are not related to the circle template. When the position

of the matched circle becomes stable, NNC is applied to

segment and cluster the excluded points. This algorithm

can greatly improve the accuracy of segmentation and

clustering results also solve the problem of failure situ-

ations shown in Figure 5. Notice that ITMC is employed

on layer 1 and layer 2 which used the torso and hip sec-

tion template, whereas only NNC is applied on layer 0,

since it can achieve these clusters for legs feature extrac-

tion successfully. Subsequently, all human body features

are extracted in real time based on three LRF’s data.

2.3 Human Modeling and Data Association

The above extracted features F (c, θ, l) represent the

2D data at different heights. As the three layered lasers

have the fixed height above the ground plane, the sys-

tem is able to estimate the particular person currently. To

get 3D human joints data, the features need to be associ-

ated with the pre-defined articulated human model (illus-

trated in Figure 6), which has 11 fixed length links with

25 degrees of freedoms. Details of the pre-defined hu-

man model are shown in Table 1. These coefficients and

torso point

hip point

right hipleft hip

left knee right knee

left shoulder right shoulder

left elbow right elbow

left wrist right wrist

Fig. 6 Articulated human model for data association.

Table 1 Parameters of human model.

Link Start Joint End Joint Length(mm) DOFs

1 hip point torso point 490 3

2 torso point left shoulder 210 1

3 torso point right shoulder 210 1

4 left shoulder left elbow 290 3

5 right shoulder right elbow 290 3

6 left elbow left wrist 320 3

7 right elbow right wrist 320 3

8 hip point left hip 200 1

9 hip point right hip 200 1

10 left hip left knee 500 3

11 right hip right knee 500 3

the radii of torso and hip templates mentioned in Section

2.2.B are measured from the people who is proposed mo-

tion estimation target.

The human contour features ftorso and fhip have been

obtained by the proposed ITMC approach, while all the

other features can be classified based on the position rela-

tionship between each layer height, in the particular, right

and left arms are classified depending on clusters cen-

ter position. Classified features then can be associated

with the corresponding parts of human body as Fbody =
{ftorso, fhip, fl−upperarm, fr−upperarm, fl−forearm,
fr−forearm, fl−thigh, fr−thigh}. Each feature just rep-

resents the horizontal sectional center position of asso-

ciated human body part. Note that the position data of

Fbody is a 2D position with fixed height. Consequently,

the next step is to get each related human joint position

in 3D space based on these extracted features and retrieve

the human body motion in real time.

In order to simplify the association of features, the height

of hip in terms of fl−thigh and fr−thigh is fixed, which

is a reasonable approximation as long as the human is

standing or walking only[11]. Furthermore the links 2,3,8

and 9 are approximated to have only one DOF, as we ig-

nore the vertical rotation of the torso and hip. In addition,

the foot joints are also neglected because of the lack of

related height information. With these assumptions, all

associated human body part features Fbody are extended

into related human joint data with hierarchical computa-

tion as shown in Figure 7:

1. Based on the torso and hip features’ information, get

the hip point with the fixed height;

2. Find the torso joint based on the fixed length of torso
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Fig. 7 Hierarchical computation for each joint

and direction with torso and hip features;

3. Compute the rest of the joints hierarchically.

Finally, all predefined human joints positions in 3D space

can be estimated as Pjoints. The position data are filtered

by Kalman filter in order to get smoother result.

3. Experimental Results

The experimental setup consists of 3 SICK LMS-200

laser range scanners from SICK AG4. The set of LRFs

at each layer can scan with distance resolution of 10mm

and angular resolution of 0.5 degree, angular range of

180 degree, and data transmission rate at 500kBps using

the RS-422 interface. In the experiments, the three LRFs

have been fixed to the heights from 590 mm, 950 mm and

1255mm as the vertical distance to the ground plane.

The synchronization of data from the LRFs is not a prob-

lem due to the relatively fast scanning rate and careful

mounting also alleviates the need for additional calibra-

tion. We use the Sick LIDAR Toolbox and the processing

in all estimation steps is done in real time using Matlab

on a Core Duo PC (Linux kernel x86). The processing

time is below 40 ms, which is fast enough to estimate the

human motion. While standing in front of LRFs one hu-

man perform several motions, such as walking, running,

arm waving and moving sideways.

In order to better evaluate proposed system, a Kinect sen-

sor is used as a reference, by running the human pose

tracking software from the Kinect middleware. The ex-

perimental results of this 3-layer LRF estimation system

and tracking system by Kinect are shown Figure 10. The

results show that, our proposed system achieves accurate

full body motion, while in the effective range of Kinect,

the system performs very close to the results obtained

with Kinect. But one thing should be noted, Kinect sen-

sors angular range is only 60 degree, while 3-layer LRF

systems is 180 degree. As shown in Figure 8, our esti-

mation system still can perform quite well in the location

with larger angle, while the Kinect sensor does not pro-

vide any results anymore. Furthermore, the speed of our

proposed method is 25Hz while Kinect’s is 13Hz. All in

all, despite of the fewer data information of LRF, a rela-

tively good estimation result could be obtained within the

area of half circle (180 degrees) with 4m radius.

For the data accuracy evaluation, a Phoenix Technolo-

gies Incorporated VZ-4000 3D position motion sensing

4http://www.sick.com
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laser scanners.
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Fig. 9 Measured and estimated pose of right arm dur-

ing dynamic motion-back-forth swinging of the arm.

Pose is described with wrist position (x, y, z) , the

angle β and the angle γ. Estimated data using laser

scans is shown with full blue line and reference data

using PTI is shown with red dashed line.

system5(PTI) is used to capture the joint’s position as

ground truth. Because of the limitation of the tracking

area of this system, only the right arm’s motion are an-

alyzed here, which is described by the right wrist’s 3D

position pr−wrist = (x, y, z), the angle β between the

torso and upper arm and the angle γ between upper arm

and forearm. These data can fully describe the pose of

the right arm. The estimation is evaluated during dy-

namic motions. The performance of position and angle

are shown in Figure 9. Table 2 gives the evaluation of

root mean square deviation (RMSD) during the experi-

ment. As is obvious from the results, the estimated arm

pose is very close to the measurement data from PTI. The

errors in z dimension and in the estimated arm angles are

somewhat larger, which is mainly due to the redundancy

of the model and the approximate model parameters. The

jumps during the estimation are the result of occasional

mismatching of features in the scan.

4. Conclusion and Future Work

In this paper, we propose a real time human body mo-

tion estimation system based on 3-layer laser range finder

scans. To solve the problems of segmentation and cluster-

ing in some problematic poses, we used iterative template

matching for clustering method (ITMC) to get robust ex-

5http://www.ptiphoenix.com/



Fig. 10 Human body motion estimation using OpenNI user tracker from Kinect (middle figure) and using the proposed

3-layer LRFs (bottom row). The top row shows the image reference.

Table 2 RMSD for the right arm pose

position error (mm) angle error(degree)
x y z β γ

21.63 22.79 33.43 6.12 11.84

traction of body parts. In our experiment, the result is

based on the particular human model because of the lim-

itation of the source data and the fixed height of sensors.

For the single specific human pose estimation, our ap-

proach cannot only retrieve the human motion but also

the accurate 3D position of human joints.

Future work will focus on the multiple person motion es-

timation with different articulated human models.
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