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Abstract. This paper presents Recurrent Policy Gradients, a model-
free reinforcement learning (RL) method creating limited-memory sto-
chastic policies for partially observable Markov decision problems (POMDPs)
that require long-term memories of past observations. The approach
involves approximating a policy gradient for a Recurrent Neural Net-
work (RNN) by backpropagating return-weighted characteristic eligibili-
ties through time. Using a “Long Short-Term Memory” architecture, we
are able to outperform other RL methods on two important benchmark
tasks. Furthermore, we show promising results on a complex car driving
simulation task.

1 Introduction

Policy gradient (PG) methods have been among the few successful algorithms for
solving real world Reinforcement Learning (RL) tasks (e.g. see [1-5]) as they can
deal with continuous states and actions. After being introduced by Williams [6]
and Gullapalli [7], they have recently been extended to deal more efficiently [8]
with complex high-dimensional tasks [9]. Although sensitive to local minima in
policy representation space, an attractive property of this class of algorithms is
that they are guaranteed to converge to at least a locally optimal policy, even
using function approximators such as neural networks [10]. Furthermore, un-
like most regular RL approaches, they provide a natural framework for learning
policies with continuous, high-dimensional actions. Provided the choice of pol-
icy representation is powerful enough, PGs can tackle arbitrary RL problems.
Unfortunately, most PG approaches have only been used to train policy represen-
tations of, typically, a few dozen parameters at most. Surprisingly, the obvious
combination with standard backpropagation techniques has not been extensively
investigated (a notable exception being the SRV algorithm [7, 11]). In this paper,
we address this shortcoming, and show how PGs can be naturally combined with
backpropagation, and BackPropagation Through Time (BPTT) [12] in particu-
lar, to form a powerful RL algorithm capable of training complex neural networks
with large numbers of parameters.

RL tasks in realistic environments typically need to deal with incomplete
and noisy state information resulting from partial observability such as encoun-
tered in POMDPs. Furthermore, they often need to deal with non-Markovian



problems where there are dependencies onto significantly earlier states. Both
POMDPs and non-Markovian problems largely defy traditional value function
based approaches and require complex state estimators with internal memory
based on accurate knowledge of the system. In reinforcement learning, we can
rarely assume a good memory-based state estimator as the underlying system is
usually unknown.

A naive alternative to using memory is learning reactive stochastic poli-
cies [13] which simply map observations to probabilities of actions. The un-
derlying assumption is that state-information does not play a crucial role during
most parts of the problem and that using random actions can prevent the ac-
tor from getting stuck in an endless loop for ambiguous observations (e.g., the
scenario of a blind robot rolling forever against the wall would only happen for
a stationary, deterministic reactive policy). In general, this strategy is clearly
suboptimal, and instead algorithms that use some form of memory still seem
essential.

However, if we cannot assume a perfect model and a precisely estimated state,
an optimal policy needs to be both stochastic and memory-based for realistic
environments. As the memory is always an abstraction or imperfect, i.e., limited,
we will focus on learning what we define as limited-memory stochastic policies,
that is, policies that map limited memory states to probability distributions on
actions. Work on policy gradient methods with memory has been scarce so far,
largely limited to finite state controllers [14, 15]. In this paper, we extend this
approach to more sophisticated policy representations capable of representing
memory using an RNN architecture called Long Short-Term Memory (LSTM),
see [16]. We develop a new reinforcement learning algorithm that can effectively
learn memory-based policies for deep memory POMDPs. We present Recur-
rent Policy Gradients (RPG), an algorithm which backpropagates the estimated
return-weighted eligibilities backwards in time through recurrent connections in
the RNN. As a result, policy updates can become a function of any event in the
history. We show that the presented method outperforms other RL methods on
two important RL benchmark tasks with different properties: continuous control
in a non-Markovian double pole balancing environment, and discrete control on
the deep memory T-maze [17] task. Moreover, we show promising results in a
complex car driving simulation.

The structure of the paper is as follows. The next section describes the Re-
current Policy Gradient algorithm. The subsequent sections describe our exper-
imental results using RPGs with memory and conclude with a discussion.

2 Recurrent Policy Gradients

In this section we describe our basic algorithm for using memory in a policy
gradient setting. First, we briefly summarize reinforcement learning terminology,
then we briefly review the policy gradient framework. Next, we describe the
particular type of recurrent neural network architecture used in this paper, Long



Short-Term Memory. Subsequently, we show how the methods can be combined
to form Recurrent Policy Gradients.

2.1 Reinforcement Learning — Generalized Problem Statement

First let us introduce the RL framework used in this paper and the corresponding
notation. The environment produces a state g; at every time step. Transitions
from state to state are governed by a probability function p(g;+1|ai.¢,g1.¢+) un-
known to the agent but dependent upon all previous actions ai.; executed by the
agent and all previous states g.; of the system. Note that most reinforcement
learning papers need to assume Markovian environments — we will later see that
we do not need to for policy gradient methods with an internal memory. Let r;
be the reward assigned to the agent at time ¢, and let o; be the corresponding
observation produced by the environment. We assume that both quantities are
governed by fixed distributions p(o|g) and p(r|g), solely dependent on state g.

In the more general reinforcement setting, we require that the agent has a
memory of the generated experience consisting of finite episodes. Such episodes
are generated by the agent’s operations on the (stochastic) environment, exe-
cuting action a; at every time step t, after observing observation o; and special
‘observation’ r; (the reward) which both depend solely on g;. We define the 0b-
served history® h; as the string or vector of observations and actions up to mo-
ment ¢ since the beginning of the episode: hy = (09, ag, 01,01, ..,01—1,0t—1,0¢).
The complete history H includes the unobserved states and is given by Hp =
(hr,go.r). At any time ¢, the actor optimizes Ry = (1 — ) 2> 2, mpy! = F 1
which is the return at at time ¢t where 0 < v < 1 denotes a discount factor.

The expectation of this return R; at time ¢ = 0 is also the measure of quality
of our policy and, thus, the objective of reinforcement learning is to determine a

policy which is optimal with respect to the expected future discounted rewards or

expected return J = F [Rg] = (1—7) !lim7_ o E [ZtT:_Ol ytrt} . For the average

-1

reward case where v — 1 or, equivalently, (1—v) ™ — oo, this expression remains

true analytically but needs to be replaced by J = limp_, E[ZtT:_O1 r+/T) in order
to be numerically feasible.

An optimal or near-optimal policy in a non-Markovian or partially observable
Markovian environment requires that the action a; is taken depending on the
entire preceding history. However, in most cases, we will not need to store the
whole string of events but only sufficient statistics T'(h;) of the events which
we call the limited memory of the agents past. Thus, a stochastic policy 7 can
be defined as w(alht) = p(a|T(h:t);0), implemented as an RNN with weights
# and stochastically interpretable output neurons. This produces a probability
distribution over actions, from which actions a; are drawn a; ~ 7(a|h;).

! Note that such histories are also called path or trajectory in the literature.



2.2 The Policy Gradient Framework

The type of RL algorithm we employ in this paper falls in the class of policy
gradient algorithms, which, unlike many other (notably TD) methods, update
the agent’s policy-defining parameters 6 directly by estimating a gradient in the
direction of higher (average or discounted) reward.

Now, let R(H) be some measure of the total reward accrued during a history
(e.g., R(H) could be the average of the rewards for the average reward case or
the discounted sum for the discounted case), and let p(H|0) be the probability of
a history given policy-defining weights @, then the quantity the algorithm should
be optimizing is J = [}, p(H|0)R(H)dH. This, in essence, indicates the expected
reward over all possible histories, weighted by their probabilities under 7. Using
gradient ascent to update parameters 6 of policy m, we can write

Vol = [Vupen Rt [ ig))%p(H)R(H)dH — [ s log e e aH

using the “likelihood-ratio trick” and the fact that VyR(H) = 0 for a single,
fixed H. Taking the sample average as Monte Carlo (MC) approximation of this
expectation by taking N trial histories we get

N
Vo = By [ Vo logp(H)R(H)| ~ < 3" Vo logp(H")R(H").

n=1

which is a fast approximation of the policy gradient for the current policy with
the convergence speed of O(N~1/2) to the true gradient independent of the
number of parameters of the policy (i.e., number of elements of the gradient).

Probabilities of histories p(H) are dependent on an unknown initial state
distribution, on unknown observation probabilities per state, and on unknown
state transition function p(ge+1|ai.t, g1:¢). But at least the agent knows its own
action probabilities, so the log derivative for agent parameters 6 in Vg logp(h)
can be acquired by first realizing that the probability of a particular history is
the product of all actions and observations given subhistories:

T
p(Hr) = p({00, 90)) [ [ (0t 90) | hi—1, ar—1, go-t) w(as—1]he—1)
=1

Taking the log-derivative results into transforming this large product into a sum
logp(H7) = (const) + Z?:o log 7(a¢|ht): where most parts are not affected by 6,
i.e., are constant. Thus, when taking the derivative of this term, we obtain

T

Vologp(Hr) = ZV@ log 7(az|ht).
t=0

Substituting this term into our MC approximation results in a gradient estimator
which only requires observed variables. However, if we make use of the fact that



future actions do not depend on past rewards, we can show that these terms can
be omitted from the gradient estimate (see [5] for details). Thus, an unbiased
gradient estimator is given by

N T
VoJ ~ — ZZ Vo logm(as|hy )R}
n=1t=0

which yields the desired gradient estimator which only has observable variables.

Nevertheless, an important problem with this Monte Carlo approach is the
often high variance in the gradient estimate. For example, if R(h) = 1 for all
h, the variance can be given by o2 = E[ZtT:O(Vg log 7(a¢|h}))?] which grows
linearly with 7. One way to tackle such problems and reduce this variance is
to include a baseline b (first introduced by Williams [6]) into the gradient es-
timate VgJ ~ 4 ij:l Vo logp(h)(RY — b) where b is typically the expected
average reward or some kind of value function. Due to the likelihood-ratio trick
Jp(H)Vglogp(H)R(H)dH = V¢ [p(H)bdH = Vg1 = 0, we can guarantee that

[anl Vo logp(H{*)b] = 0 and, thus, the baseline can only reduce the variance
but not bias the gradient in any way [6].

Another way to reduce the variance of the gradient is to reduce the planning
horizon of the agent, i.e., the episode length can be truncated or we can use a dis-
count factor 4 which is lower than the true 7 as in the GPOMDP algorithm [18]
where 0 < 4 < ~. Unfortunately, here can be a big trade-off as 4 < 7 biases
the gradient, but when 4 — ~, this bias vanishes while the gradient estimate
variance can increase significantly.

2.3 LSTM Recurrent Function Approximators

RNNs have attracted some attention in the past decade because of their sim-
plicity and potential power. However, though powerful in theory, they turn out
to be quite limited in practice due to their inability to capture long-term time
dependencies — they suffer from the problem of vanishing gradient [19], the fact
that the gradient signal vanishes as the error signal is propagated back through
time. Because of this, events more than 10 time steps apart can typically not be
related.

One method purposely designed to avoid this problem is Long Short-Term
Memory (LSTM [16]), which constitutes a special RNN architecture capable of
capturing long term time dependencies. The defining feature of this architecture
is that it consists of a number of memory cells, which can be used to store
activations arbitrarily long. Access to the memory cell is gated by units that
learn to open or close depending on the context.

LSTM networks have been shown to outperform other RNNs on numerous
time series requiring the use of deep memory [20]. Therefore, they seem well-
suited for usage in PG algorithms for complex, deep memory requiring tasks.
Whereas RNNs are usually used to predict, we use them to control an agent
directly, to represent a controller’s policy receiving observations and producing
action probabilities at every time step.



2.4 Introducing the Recurrency in Recurrent Policy Gradients

Typically, PG algorithms learn to map observations to action probabilities, i.e.
they learn stochastic reactive policies. As noted before, this is clearly suboptimal
for all but the simplest partial observability problems. We would like to equip
our algorithm with adaptable memory, using LSTM to map histories or memory
states to action probabilities. Unlike earlier methods, our method makes full use
of the backpropagation technique while doing this: whereas most if not all pub-
lished and experimentally tested PG methods (as far as the authors are aware)
estimate parameters 6 individually, we use eligibility-backpropagation through
time (as opposed to standard error-backpropagation or BPTT [12]) to update
all parameters conjunctively, yielding solutions that better generalize over com-
plex histories. Using this method, we can map histories to actions instead of
observations to actions.

In order to estimate the gradient for a history-based approach, we map his-
tories h; to action probabilities by using LSTM’s internal state representation.
Backpropagating return-weighted eligibilities [6] affects the policy such that it
makes histories that were better than other histories (in terms of reward) more
likely by reinforcing the probabilities of taking similar actions for similar histo-
ries.

Recurrent Policy Gradients are architecturally equal to supervised RNNs,
however, the output neurons are interpreted as a probability distribution. It
takes, at every time step during the forward pass of BPTT, as input observation
o and reward ;. Together with the recurrent connections, these produce outputs
7 (h), representing the probability distribution on actions.

Only the output part of the neural network is interpreted stochastically.
This allows us, during the backward pass, to only estimate the eligibilities of
the output units at every time step. The gradient on the other parameters 6
can be derived efficiently via eligibility backpropagation through time, treating
output eligibilities like we would treat normal errors (‘deltas’) in an RNN trained
with gradient descent. Also, by having only stochastic output units, we do not
have to compute complicated gradients on stochastic internal (belief) states such
as is done in [14,15] — eligibility backpropagation through time disambiguates
relevant hidden state automatically, when possible.

3 Experiments

We carried out experiments on three fundamentally different problem domains.
The first task, double pole balancing with incomplete state information, is a
continuous control task that has been a benchmark in the RL community for
many years. The second task, the T-maze, is a difficult discrete control task that
requires remembering its initial observation until the end of the episode. The
third task involves a complex car racing simulator, called Torcs.

All experiments were carried out with 10-cell LSTMs. The baseline estimator
used was simply a moving average of the return received at any time step.



3.1 Continuous Control: (PO)MDP (Double) Pole Balancing

Markov |non-Markov

B, 1 pole | 863 £ 213 | 1893 + 527

| F | 2 poles|4981 + 1386|5649 + 1548
-+

Fig. 1. The non-Markov double pole balancing task. The results show the mean and
standard deviation of the number of evaluations until the success criterion.

This task involves trying to balance a pole hinged on a cart that moves on a
finite track (see Figure 1). The single control consists of the force F' applied to
the cart (in Newtons), and observations usually include the cart’s position , the
pole’s angle 6 and velocities & and 6. It provides a perfect testbed for algorithms
focussing on learning fine control in continuous state and action spaces. However,
recent successes in the RL field have made the standard pole balancing setup too
easy and therefore obsolete. To make the task more challenging, we (1) remove
velocity information # and 6 such that the problem becomes non-Markov, and
(2) add a second pole to the same cart, of length 1/10th of the original one. This
yields non-Markovian double pole balancing [21], a truly challenging task that
has not been solved by any other single agent RL method but RPGs.

We applied RPGs to the pole balancing task, using a Gaussian output struc-
ture, consisting of a mean p (which was interpreted linearly) and a standard
deviation o (which was scaled with the logistic function in order to prevent vari-
ances from being negative) where eligibilities were calculated according to [6].
We use a learning rate ao? (as suggested by Williams [6]) and a = 0.001,
momentum = 0.9 and v = 0.99. Initial parameters § were initialized randomly
between —0.01 and 0.01. Reward was always 0.0, except for the last time step
when one of the poles falls over, where it is —1.0.

A run was considered a success when the pole(s) did not fall over for 10,000
time steps. Figure 1 shows results averaged over 20 runs. RPGs clearly outper-
form earlier PG methods, even by orders of magnitude (compare [15]’s finite
state controller).

3.2 Discrete Control: the Long Term Dependency T-maze

The second experiment was carried out on the T-maze [17] (see Figure 2). De-
signed to test an RL algorithm’s ability to correlate events far apart in history,
it involves having to learn to remember the observation from the first time step
until the episode ends. At the first time step, it starts at position S and perceives
the X either north or south — meaning that the goal state G is in the north or



Fig. 2. The T-maze task. In this example, N, the length of the alley, is 35.

south part of the T-junction, respectively. Additionally, the agent perceives its
immediate surroundings. The agent has four possible actions: North, East, South
and West. These discrete actions are represented in the network as a softmax
layer. When the agent makes the correct decision at the T-junction, i.e. go south
if the X was south and north otherwise, it receives a reward of 4.0, otherwise
a reward of -0.1. In both cases, this ends the episode. Note that the corridor
length N can be increased to make the problem more difficult, since the agent
has to learn to remember the initial ‘road sign’ for IV + 1 time steps. In Figure 2
we see an example T-maze with corridor length 35.

Corridor length N was systematically varied from 10 to 100, and for each
length 10 runs were performed. Training was performed in batches of 20 normal-
izing the gradient to length 0.3. Discount factor v = 0.98 was used. In Figure 3
the results are displayed, in addition to other algorithms’ results taken from [17].
We can see that RPGs clearly outperform the value-based methods. This might
be due to the difference in complexity of a simple policy versus an unnecessarily
complex value function.
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Fig. 3. T-maze results. The left chart shows the number of successful runs for N =
10, ...,100. Recurrent Policy Gradients’ performance starts to degrade at length N =
100. The right plot shows the number of average iterations required to solve the task,
averaged over the successful runs. RPGs clearly outperform other RL methods on this
task, to the best of the authors’ knowledge. (The results for the Value Iteration based
algorithms are taken from [17]).



4 The TORCS Car Racing Simulator

Fig. 4. The TORCS racing car simulator.

In order to test our algorithm’s performance on a more complicated environment,
we carried out experiments on the TORCS [22] car racing simulator. Observa-
tions are speed, steering angle, position and look-ahead-distance. The agent has
to learn to drive and stay on the road while maintaining high speed. Its reward
consists of the speed, but it gets punished for getting off the track. Maximum
speed starts off with 10 km/h, and is gradually increased.

Our current experiments, on 5 trials, show the agent can consistently learn
to steer and stay on the road after just under 2 minutes of real-time behavior.
The agent can learn to drive safely — not getting off track — up to 70 km/h, after
which its behavior destabilizes. The fastest lap time is just under 3 minutes,
which is still twice as slow as a trained human player or our preprogrammed
agent.

5 Discussion

We introduced a new policy gradient method equipped with memory capable
of memorizing events from arbitrarily far in the past. The approach involves
computing and backpropagating a policy gradient through time with LSTM
representing memory, thus updating a policy which maps event histories to action
probabilities. The approach outperformed other RL methods on two important
benchmarks. We think Recurrent Policy Gradients constitute one of the most
efficient RL algorithms to date on difficult non-Markovian tasks.
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