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Abstract

We presenta self-valuing learningtechniquewhichis capable
of learninghow to graspunfamiliar objectsandgeneralizeéhe
learnedabilities. Thelearningsystemconsistf two learners
which distinguishbetweenocal andglobal graspingcriteria.
Thelocal criteria are not objectspecificwhile the global cri-
teria cover physical propertiesof eachobject. The systemis
self-valuing, i.e. it ratesits actionsby evaluatingsensoryin-
formationandthe usageof imageprocessingechniques.An
experimentalsetupconsistingof a PUMA-260 manipulator
equippedwith a hand-cameranda force/torquesensorwas
usedto testthis scheme.The systemhasshownn the ability to
graspa wide rangeof objectsandto apply previously learned
knowledgeto new objects.

1 Intr oduction

In a wide rangeof robotic systemsgraspingis a basicskill
thatis crucial to manipulationtasksandinteractionwith the
ernvironment. In mostindustrial applicationsthe problemof
graspingis solved via teacing-by-doingor static programs.
However, sensotbasednotionslik e visual servoingarerarely
implementedin theseindustrial robotic systems. But when
thinking of recentresearcHields, e.g. servicerobotsor hu-
manoidsaspect®f sensobasedyraspingwill playaveryim-
portantrole. New techniquesnustbedevelopedfor therobots
to operatein unchartecandunknawn territories. They should
considerelementf humanlearningabilitieswhenconstruct-
ing arobotic graspingsystem.Suchan approachs presented
in this paper

2 RelatedReseach

A lot of work hasbeendonein the field of robot grasping.
[1] gives a brief overview of the field over the last two
decades. Most works deal with analytical approacheghat
try to computeoptimal grips accordingto specialheuristics
(e.g. in [2] and[3]). In thesecasesone haseither a fully
specifiedmodel of the object and its massdistribution or
one hasto usethe centerof areaof the object, extractedvia
imageprocessingto “approximate”the real centerof gravity.
The first caseis very difficult to obtainvia external sensors
and without ary previous knowvledge. One would have to
gain a complete3D representatiorof the object via image
processingand additionally try to examine things like the
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material of the object. However, a hiddeninternalinhomo-
geneougamassdistribution can never be found with suchan
approach.The latter caseof usingthe centerof the object’s
areais certainly only a kind of approximation. This works
fine if the centerof gravity coincideswith the objects center
of area,but this approachcannotdeal with inhomogeneity
too. However, relatively few efforts handlethe problem of
learninghow to grasp.In [4] a systemis presentedhatlearns
how to graspobjectswith a parallel-jav gripper Two main
subproblemsare learned: to choosegraspingpoints and to
predictthe quality of a given grasp. The disadwantageof this
systemis that only local criteria are usedto store grasping
configurations. Without global criteria it is for example
impossibleto learn how to graspan objectwhich centerof
gravity doesnot coincidewith the centerof its imagearea.
Without self-valuing learningtechniquest is not possibleto
handlethe real physical propertiesof anobject. [5] presented
a learningsystemfor visual guidedgrasping,constructedf
two learners.This systemis not self-valuing,i.e. the optimal
grasppoint hasto be giveninitially to thelearner Therefore,
the two learnersare also not generalizableo newv objects.
In [6] an uncalibratedvision-guidedsystemwas developed
for manipulatingobjectsthat may be placedarnywherein the
robot’s 3-D workspaceeven thoughnot visible in the initial
fieldsof view of thecameras.

3 Learning Scheme

To constructa robotic learningsystem,it is usefulto inves-
tigate elementsof humanlearningabilities. No enlightening
work existsthatdealswith thelearningtheoryof humangrasp-
ing. Whendiscussinghis problem,of coursethehumanhand
with its five fingersis consideredwhich is muchmorecom-
plex thana parallel-jav gripperasusedin this setup. There-
fore,in thispaperanapproachs suggestethatis basecnour

supposechumanlearningabilities when graspingan object.
Although no well studiedhumanlearningabilities are taken

to constructa robotic learningsystem,the systemis usedto

shav thatthe proposedearningabilitiesin thefield of grasp-
ing couldin factbeassupposedor ahuman.

3.1 Local and Global Grasp Criteria

Our work is basedon our obsenation that when humans
intend to graspan unfamiliar object, they mainly consider
two criteria on how to chooseoptimal grasppoints. These



two criteriaarefurtherreferredto aslocal graspcriteria and
global graspcriteria. Thesetwo criteriaform thebasisfor the
underlyinglearningsystemdesign.

Local Grasp Criteria: A local graspcriterion is mostly in-
dependentf a specialshapeandthereforeof globalas-
pectslik e the distribution of massof an object. There-
fore, it canbe appliedin the sameway to ary kind of
object. Local criteriaare consideredirst whenonede-
cidesto graspan unfamiliar object. Sucha criterionis
for exampleto choosea grasppointattwo oppositepar
allel edges.

Global Grasp Criteria: Global grasp criteria, by contrast
to the local ones, are strongly interconnectedvith a
special object and thereforeseldomto be appliedto
different kinds. They are consideredafter the local
criteria to find the optimal grasppoint. Thesecriteria
consideraspectslike the distribution of massof an
object,e.g.graspinganobjectnearits centerof gravity.

The termslocal and global needsomemore specifications.

The local criteria refer to local ervironmentalfeaturesnear
thegrasppoint whereaghe global criteriadescribethe global
propertiesof the position of a grasppoint within an object.
Therefore,it canbe shawvn that the local criteria are univer-
sally valid andthe global onesare mostly restrictedto a spe-
cial object.

Technicallyspeakingthelocal criteriadefineanaxisonwhich
the grasppoint can be searchedo further meetthe global
criteria. For example, the graspconfigurationcomputedin
Fig. 1(right) could be determinedfrom the searchdirection
proposedy grasppoint 3 in Fig. 1(left). In the learningpro-
cesghesecriteriaarerepeatedlyconsidereaneaftertheother
for afinite numberof stepsuntil a goodgrasppointis found.
Thenumberof stepsvarieswith theskill of thelearnerandthe
habit of the object. For a familiar type of object, the global
andlocal criteriaareconsideredn only onestep.

In fact,sincethe samdocal criteriacanbeappliedto ary kind
of object,asmentionedabove, they arefully learnedprior to
the global criteria which will be learnedto graspunfamiliar
objects.

3.2 Optimality
A grasppointis optimalaccordingto the local criteriaif:

o thefingerscancoverthe objectatthis grasppoint,and
e nofriction occursbetweerthefingersandthe object.

It is consideredo be optimal accordingto the global criteria
if:
e no torqueoccursbetweenthe fingersgraspingthe ob-
ject,and
o theobjectdoesnotslip out of thefingers,and

e thegraspis stable,i.e. the objectdoesnot slip between
thefingers.

Somesamplegraspconfigurationsareshavn in Fig. 1.
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Figure 1: Localandglobalgraspcriteria. Left: someexamplegrasp

configurationswhich are optimal accordingto the local

graspcriteria. Right: thegrasppointis optimalaccording
to bothcriteria.

3.3 Higher Level Criteria

An additionaland higher level criterion for humangraspsis
the role of the grip, i.e. therole it playsin orderto do fur-
theroperationse.g.graspingacupatits bail in orderto drink
somethingor asledgeatits handleto banga nail into thewall?.
Otherhigherlevel criteriaarefor examplethe materialor sur
faceof anobject. To considerthesecriteriaadditionalsensors
or sophisticatedmageprocessingechnique®ughtto beinte-
grated. However, this is beyond the scopeof this work. Our
objective is to emulatethe abilities of an infantwho justin-
tendsto gethold of anobjectasgoodaspossible.

4 Two-Learner System

The criteria mentionedabove suggest systemconsistingof
two learners,one for the local and the other for the global
graspcriteria. The statesfor the first learneronly provide
the local featuress = (fi,,..., fi,,). The learnertries to
map them to actions consistingof a rotational component
a = ¢. Thesecondearnertriesto map statesof global fea-
turess = (fg,,-.., fq,) t0 actionsof translationalcompo-
nents:a = (z,y). Becausehelocal criteriaaremainly cov-
eredfrom therelative orientationof the gripper the responsi-
blelearneris calledorientationlearner. Theglobalcriteriaare
determinedy the positionof the grasppointin the objectand
thereforethe properlearneris further referredto as position
learner. Thesetwo learnersoperateight aftereachother(Al-
gorithm 1), asa humanbeingis supposedo. Thelocal and

Algorithm 1 Algorithm for learninganoptimalgrasppoint
chooseaninitial grasppoint configuration
steps < 0
repeat
steps < steps + 1
repeat
learnwith theorientationlearner
until [the grasppoint is optimal accordingto orientationOR
numberof episodegxceedsa givenvalue]
repeat
learnwith the positionlearner
until [the grasppointis optimalaccordingto the positionin the
objectOR numberof episodegxceedsa givenvalue]
until [the optimalgrasppointis foundOR steps > stepsmaz]

global featuresusedin our systemareshavn in Fig. 2. The

LFor this higherlevel criteria, aspectsf optimality like reducingtorque
mustpossiblybe shehed.
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Figure 2: Statecoding for the learners. The orientationlearner
useslength L andangles®s, . .., ©4 while the position
learnerintegrateshedistanceD betweerthecenterof the
grasp-lineandthe centerof areaof the objectsimage.

first componenbf the statevectorof the orientationlearneris
the length L of the grasp-line. With this feature,good grasp
points are distinguishedfrom thosewhich are not adequate
becausehe gripper cannotcover the object. The remaining
featuresarethecorrespondin@gngles®q, ..., ©, betweerthe
grasp-lineandthe flanking straightline segmentsgainedby a
simplecontourtrackingprocess.The featuredor the position
learnerarethedistanceD betweerthe centerof thegrasp-line
andthe centerof areaof the objects imageandthetorqueT
aroundthe normalvector# of the gripper Dueto thelearner
separatiornthelocal criterianeednot belearnedfor every new
object. The orientationlearneris a universallearner which
meanghatthe samelearnercanbe usedfor every object. So
thislearnemwill for examplelearnto graspobjectsat opposite
parallelor concae edges.

In principle,atwo-learnesystemidesignis notanew approach
[5]. Thenew aspecbf thiswork is theintentionfor the useof
thesetwo learners As describedibove this designwaschosen
in respecto the local andglobal criteriaandtheir generaliza-
tion properties.

5 Self-Valuation

Thepresentedystenis self-valuing,amethodto gain estima-
tion for the learningalgorithms. Self-valuationis donevia a

force/torquesensorandseveral imageprocessingechniques.
It is importantto mentionthat no optimal grasppoint is pre-

known. The systemfindsits own grasppointstakinginto ac-

countthe optimality conditions.

5.1 Orientation Learner

Thebestestimationof agoodgrasp,determinedy the orien-
tationlearneris obtainedby the secondoptimality condition,
i.e. nofriction atthefingersof the parallel-jav gripper When
anobjectslips betweeror out of the fingersat the momentof
closingthe gripper the selectedgraspconfigurationwas not
optimalaccordingto thelocal criteria. Someexisting systems
(e.g. [2]) try to determinethe friction occurringwithin the
gripper analytically i.e. by computingthe friction conevia
geometricalfeatures. Here, several graspconfigurationsare
tried out with the real robot that valuesthe succes®r failure
of the performedgraspthereafter- like humanswho do not
analyticallycomputetheir optimal grips, but learnby success
and failure. Becausea parallel-jav gripper asusedin this
work, is very rigid anddoesnot slip like humanfingersat the
objectssurface friction appeargitherasarotationor asadis-

placemenbf the objectitself. Sothe valuationsignalfor the
orientationlearneris basicallyobsened by imageprocessing.
A penaltyfor selfvaluationis computedasfollows:

if grip wassuccessful

p— —(Ogitt + Daitr)
otherwise

_PCOHSt

where@ygjr is theanglebetweertheinitial andtheleastinertia
axis after the performedgrasp, Dgiss the displacementf the
centerof areaand Peqnsta high constanpenalty Fig. 3 shavs
a graspconfigurationwhich resultsin a rotationof the object
itself. If a grasphastotally failed and so the first optimality

Figure 3: Friction of thefingersresultin rotationof the object.

conditioncannotbe met, a predefinedpenaltyis given. The

decisionif somethings in thegripperafteraperformedgrasp
is madewith the helpof theforcesensosignals.Fig. 4 showvs

thattheforcein directionof theapproaclvectorrisessuddenly
while lifting up theobject.
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Figure 4: Forceprofilesduringthelift-up procesf anobjectasin
Fig. 5(right).

5.2 Position Learner

While thevaluationtechniquéor theorientationlearneris pri-

marily basedon processingmagesfrom the camerasensors,

the self-valuationof the positionlearneris primarily gained

via the force/torquesensor The three points for optimality
s i)

L.

Figure5: Gripsthataresuboptimahccordingo theoptimality con-
ditions.

of the global graspcriteria, mentionedabove, are taken into
accounftfor self-valuationin thefollowing fashion:

2This occurseitherwhenthe orientationof the gripperdoesnot permitto
cover the objector the objectslipsout of thefingerswhile closingthem.



Stable Grasp: Thegrip is stable,accordingto the optimality
conditions|f thegraspedbjectdoesnot move between
thefingersof the gripper This occursespeciallywhen
a heavy objectis graspedfar away from its centerof
gravity. Thegripperis perhapsot strongenoughto fix
the object at this position. Sucha situationis shavn
in Fig. 5(left). Thislift-up movementof the manipula-
tor resultsin forcesshowvn in Fig. 6. Nearlyduringthe
wholelift-up movementtheforcein thedirectionof the
approactvectora is approximatelyconstantin themo-
mentwhentheobjectlosescontactwith thetable(in this
exampleat4s) theforcerisesto ahighervalue. This at-
titude canbe evaluatedandusedwithin thelearner e.g.
this situationis valuedwith a predefinechigh penaltyto
expressthatsuchgripsarenotdesired.
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Figure 6: Force profileswhen the grip is not stableas shovn in
Fig. 5(left).

Slipping: Slippingof anobjectout of thefingersof the grip-
peris undesirable.This effect mostly occursasa con-
sequencef an unstablegraspas describedabove. In
sucha situationthe forcein directionof @ suddenlyre-
ducedo zeroandthegraspcanbethoughtto havefailed.
Sucha graspis totally undesirable. Therefore,a con-
stantpenaltyis givento preventthe systemfrom taking
this grip in thefuture.

Reducingtorque: The goal of the position learneris to
reduce torque within the fingers of the gripper
Fig. 5(right) shavs an exampleof a grip that produces
alargetorque. Thetorqueprofilesareshavn in Fig. 7.
Immediatelyafter the beginning of the lift-up process,
the torquearoundthe normal vector 7 risesto a value
preciselydifferentfrom zero and staysconstantwhile
the object is being held. This torque is computed,
negated and directly used with the position learner
Here, no constantpenaltyis given because grip with
large torqueis not necessarilypbad. The systemmust
have the possibility to distinguishbetweergrasppoints
with differenttorquesandchoosethe bestamongthem.

6 Generalization

The orientationlearneris fully applicableto ary kind of ob-
ject, i.e. it providesa total generalizatiorpotential. In other
work, wherethe learningprocesss not dividedinto two sep-
aratelearnersthe generalizatioris only partial. This results
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Figure 7: Torqueprofilesof thegrip in Fig. 5(right)

in slower learningphasedor newv objects. Propositiondike
“graspingat parallel edgesis always good” cannotbe made
by suchsystemsat all. Here,oncethe orientationlearnerhas
learnedseveral graspingsituations,it can be usedwith ary
kind of new objecttherobotis facedwith.

The caseof the position learneris more complicated. Be-
causeof differentshape®f objectsthe global positionsof the
learnedgrasppointscannotbe appliedto every object. Three
mainsubproblemsnustbe solved:

1. In which situation can a previously learnedposition
learnerbefully adoptedo anew object?

2. Whencana previously learnedpositionlearnerbe used
asa basisfor anew object?

3. Whenmusta completelynew positionlearnerbe initi-
ated?

The idea to be studiedis the object hierarcly. This is a
challengingtask,but canimprove generalizatioriunctionality
amongdifferentkinds of objects. Whatwe areexaminingis,

if onehasfoundsuitablefeaturedor describingsub-objectsa
complex aggrejatecanbe codedin a tree consistingof these
sub-objectsThen,atreedistancemodel,asfor examplepro-
posedn [7] and[8], canbeusedio compareseveralobjects.In

this mannerone can determinethe “most similar” objectout
of the setof previously learnedaggrejatesfor a new object.
The three subproblemsnentionedabove canthen be solved
for exampleasfollows:

Let £L; = {(0s, ;)| = 1...n} bethesetof tuplesof n pre-
viously storedobjectso; in tree notation,togetherwith their
storedpositionlearnerd;, anddist(o;, ox) the distanceof the
treesaccordingto adistancaneasureThen,

1. a previously learnedpositionlearner!’ of an objecto’
can be fully adoptedto a new objecto, if ¥(o0;,1;) €
L\, 1'):

dist(0',0) < dist(0;,0) < Dpin;

2. apreviously learnedpositionlearner!’ of an objecto’
canbe usedasbasisfor a new objecto , if ¥(0;,1;) €
L\(,1'):

Diyae > dist(0',0) < dist(0;,0) > Dpin;

3. acompletelynew positionlearneris initiated for a new

objecto, if V(0;,1;) € L
dist(0;,0) > Dz,



whereD,, ., andD,,;, areadequateéhresholdgor accepting
andrefusinganobjectto beequal respectiely.

7 SystemOverview

7.1 Hardware Configuration
The physical set-upof this systemconsistsof the following
components:

Main actuator: One6 d.o.f. PUMA-260 manipulatoris in-
stalledoverheadin a stationaryassemblycell. On the
wrist of the manipulatoy a pneumatigaw-gripperwith
integratedforce/torquesensorand“self-viewing” hand-
eye system(local sensorsjs mounted.Therobotis con-
trolled by RCCL (RobotControl C Library).

Objects: Mostkind of objectsareconstructedrom Baufixel-
ementswoodentoys for childrencontainingpartslike
scravs, ledgesand cubes. Therefore theseobjectsare
alsoreferredto asaggregates An adwantageof these
partsis that one canconstructvery quickly several ag-
gregatesthatcanbetestedwith the system.

The learningwas implementedusing a CMAC function ap-
proximator[9]. [10] shavedthatit is a very goodandrobust
techniqudor dealingwith continuousstateandactionspaces.

7.2 Accumulating Trails

A practicalproblemthat arisesis that the systemwill learn
a pathfrom aninitial state,i.e initial graspingconfiguration,
up to a final state,i.e. a successfugrip. To overcomethis
sideeffectin systemsvherethe goal stateandnot the trajec-
tory leadingto it is the mostimportantoutcome we propose
an easynew approachfor increasingperformanceof sucha
learningsystem calledaccumulatingrails. Whena learning
systemmearnsatypeof pathfrom aninitial stateto afinal state,
i.e. by applyinga setof actionsay, . . . a,, 10 s andits succes-
sors,it is sometimegossibleto getto the samegoal stateif
applyingasetof actionsay, . . . a,, to thestates andits succes-
sors,wherem < n. Thatis to say thatonewould reachthe
goalstaten — m stepsearlier

Let ¢ denotethe function applyingan actiona to a states,

denotedy : A — (S — S), where A, S arethe total sets
of actionsandstatesrespectiely. The outcomeof this func-
tion, applyingit to anaction,is afunctionon the statespaceS

calledactionexecutionfunction

Usingthe definitionabove, eachlearningepisodecanbe con-
sideredasa compositionof functions(4 : S — S)

A(s) = 1p(an) 0 P(an—1) o+ 0 Y(ao)(s)

wheres is the startingstateof theepisodeanda; is theaction
appliedin time stepi. This function compositionis further
referredto assequence

A sequenceB of actionexecutiongy (b,,, ) o- - -o9)(by) is called
asub-sequencef sequencel = ¥ (ay,)o- - -0tp(ao), if A(s) =

B(s):
P(an) o0 (ao)(s) = 9(bm) 0 -~ 0 P(bo)(s), m <n

wheres is thestartingstate.Then,sequencel is calledsubsti-
tutablethroughB. The sub-sequenc® alwaysproduceghe
sameresultingstateasthesequenced. Thatmeansif starting
in states it makesno differencewhetherto “follow” sequence
B or sequenced. The stateat the endof the sequencés al-
waysthe same. If a sequenced is not substitutablehrough
ary othersequenceB, it is calledfinal. Whenthe agentsin-
tentionis to reachthe goal statesas soonas possible,asfor
examplein thiswork?, thelearningalgorithmshouldconverge
to a situationof only final sequencesAn accumulatiorfunc-
tion on actionexecutionds definedas

B: (=28 x(E=8)=>(S—=9).

A sequenced = 9(ay) o --- 0 P(ag) Of actionsexecutionss
accumulableif

w(an) D 'l/}(a'n—l) D---b ’l/)(a()) = B,

whereB is subsequencef A. Theaccumulatiorfunctionde-
scribeshow to combineaction executionsto produceshorter
sequencesThis function hasto be definedaccordingto the
learningsystemone wantsto develop. The accumulationis
definedon action executionsand not solely on actions, be-
causet dependn the statesf suchanaccumulatiorcanbe
performed. In somesituationsthe accumulationfunction is
definedasfollows:

1) Y(ax) @ Y(ar) = P(ax o ar),

wheres is afunctiono : A x A — A.

In mostsituations,the accumulatiorfunction mustinclude a
kind of modelof the ernvironmentandthis is only possibleby
alsotakinginto accounthe stategatherthanonly the actions
as supposedy Eqgn. (1). The agentmust“know” in which
situationst is possibleto accumulatectionexecutionsandin

which situationit is not. However, for sometasksEqn. (1) is

aneasyandsufficient definition.

As anexample,for applicationwithin the orientationlearner
theaccumulatiorfunction¢ is definedas:

ar + a; if —90<ag+a <90
aroa; = ag + a; + 180 if ax+a <-90
ag +a; — 180 if ar+a;>90

assumingthat the actionsof the orientationlearnerare rota-
tional movementdrom theintenal [—90, . . ., 90].

8 Experimental Results

To geta uniform andmatchableview of the objects,the sys-
temlearnsto grasp the manipulatoiinitially movesitself over
the objectsothatthe z-axis of the camerasoordinatesystem
appeargarallelto the axis of leastinertia of the objectand

3|t is desirableto find anoptimal grasppoint assoonaspossible.



the centerof areain the right side of the image. The center
of the object’s boundingbox coincideswith the centerof the
image.An additionaltool-transformatioris performed sothat
the camerds movedin directionto theworking surface.

Severalobjectswereusedto testthe performancef thewhole
system. Someof themare showvn in Fig. 8. The robot has

2 ) 3
=

Figure 8: Sampleobjects.

found a good and stablegrasppoint for eachobjectthat ful-
fills the optimality conditionsgiven abose, mosttimes near
theobjects centerof gravity. Two specialresultsof agrasping
operationareshownn in Fig. 9. In Fig. 9(left) the manipulator
graspedhe objectat a point differentfrom the centerof area
but nearthe centerof massof the object. Fig. 9(right) showvs
a successfugraspat a corvex edgeof a differentobject. To

— —~

Figure 9: Successfullyperformedgraspingoperations.

shav thegeneralizatiombility of theorientatiorlearnerit was

firstappliedto anew objectuntil adefinednumberof epoches.

Thereafterthe samelearnerwasusedon a differentobjectto

shawv thatthe averagestepsuntil the goal statedecreasenuch
faster Theresultis shovn in Fig. 10. In the secondpart of

theexperimentthe orientationlearnerdid not startat the aver-

agestepsof 3 wheretheinitially performedorientationlearner
ended. This is dueto the factthatin thefirst cycle a simple
ledgewasusedandthelearnerstill not corvergedwhile in the
seconccycle amorecomple objectwasused.However, one
canseethatin the secondcycle the orientationlearnerwas
quicker. Only new stateghatdo notoccuronthesimpleledge
have to belearnedadditionally
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Figure 10: Generalizatiorof the orientationlearner

9 Discussionand Futur e Work

We presented self-valuinglearningsystemthatis capableof
graspingvariouskind of objects. Our systemconsistsof two
learnerdasedn localandglobalgraspingeriteria. Thesecri-
teria are supposedo imitate humanlearningabilities in the
field of grasping.While the orientationlearneris applicableto
arbitraryobjectsandthereforefully generalizebetweerthem,
the position learneris mostly dependenbn a specialobject
andits physical properties. The systemshaws the ability to
graspseveralkind of objectsandto generalizéhelearnedac-
ultiesto new ones.An interestingfuture work is to adoptthe
presentedystemto a multi-fingeredrobothand. With sucha
handa single grasppoint is muchmore comple thanwith a
parallel-jav gripper Furthermorethe possibleactionsof the
learnersaremorechallenging However, the basicprinciple of
two learnersbasedon local andglobal criteria, andthe self-
valuingapproactcould be maintained.
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