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ABSTRACT

Nowadays, many embedded systems consist of a mix of control
applications and soft real-time tasks. This paper studies how to
ensure the worst-case quality of control for control applications
under disturbances while providing maximal resource to soft real-
time tasks. To solve this problem, we propose a mixed-criticality
control system model in which the tasks can switch between
two operating modes, LO and HI, according to controlled plant
states. In HI mode, the worst-case qualities of control to plants
are guaranteed, while in LO mode, system resources are balanced
between two classes of tasks. We compare our approach with other
two approaches in the literature. Case study results demonstrate the
effectiveness of our system model.

1. INTRODUCTION

Recently, more and more embedded systems comprise a mix of
control applications with requirements for control performance as
well as robustness, and soft real-time applications. The control
applications are usually crucial for the safety of embedded systems.
Failing to meet their performance or robustness requirements
could cause catastrophes, even human lives. The soft real-time
applications are non-crucial for the system safety, and temporal
violations of their deadlines only degrade the QOS (Quality
of Service) of the system, so-called soft real-time applications.
Both classes of tasks together form a mixed-criticality system
(MCS) where applications with different levels of criticality are
implemented and compete for available resources in the system.

The main concern of the MCS is how to guarantee the quality
of control (QOC) of control applications, where QOC is a short
term for the control cost and apparent phase margin introduced
in section 2. This problem is, however, non-trivial. The reason
is, in reality, it is difficult to accurately model and predict the
actual environment of the system. The controlled plants may
occasionally work in unsafe states due to unexpected disturbances
from the environment. A design taking the worst-case scenario
into consideration can prevent the plants from failure. However,
this can lead to an inefficient utilization of system resources
because significant amount of resource is reserved for the worst-
case scenario, which rarely happens. Therefore, it is a challenging
problem to design an efficient system model and the scheduling
scheme so that they not only guarantee the required worst-case
Qo0C (WC-Qo0C) to plants but also provide sufficient service to
soft real-time tasks in normal cases.

In this paper, we propose a mixed-criticality control system
(MCCS) model that has two operation modes, LO (low) and HI
(high), to solve this problem. Although MCS is not new in the
literature, directly using classical MC models and methods [5] in
this context is not applicable due to following reasons:

e Classical MCSs are deployed to strictly guarantee the timing
correctness of high-criticality tasks. Therefore, the system

changes to HI model once the execution time of any high
critical task exceeds the worst-case execution time (WCET)
in LO mode [5]. However, only considering the time
correctness is not enough to guarantee the QOC of a control
application, as it is influenced by many factors, including
the sampling period, control-law, sampling-actuator delay,
etc [2,3,7].

e Inclassical MCS models, the periods of high-criticality tasks
are the same in both modes. As mentioned above, the
QOoOC of a control application is influenced by the periods.
Therefore, the sampling periods of control applications may
need to be adjusted in order to provide the required WC-
QoC.

In summary, to ensure the WC-QOC of control applications,
our mixed-criticality control system model needs to consider a set
of new features, compared with classical MCS: (1) Our system
switches between two operation modes depending on plant states,
i.e., if any plant is in a critical state. (2) To provide the necessary
QoC, the period configurations in LO and HI modes could be
different. (3) In HI mode, the control-laws are also changed so that
it is optimal for the period configuration in HI mode. 4) Moreover,
the corresponding WCETs could also be different, depending on
the control-laws.

The MCCS starts with its mode being LO. In LO mode, the
control applications have the optimal QOC under the deadline
constraints of soft real-time tasks. Once one or more plant is in
its unsafe states, the MCCS switches to HI mode. In HI mode,
control applications are guaranteed with pre-designed performance
and robustness for the safety operation. Generally, the periods in
HI mode need to be decreased for higher QOC. Meanwhile, the
periods of soft real-time tasks are amplified by a common factor
so that the control applications are still schedulable during mode
change as well as in HI mode. In this way, the WC-Qo0C of
control applications are ensured in HI mode while the soft real-
time tasks only suffer a temporary but graceful service degradation.
The contributions of this paper can be summarized as:

e We propose a WC-QOoOC-guaranteed system model for the
mixed-criticality systems composing of control and real-time
tasks. This model can guarantee the control applications
pre-given QOC so that the plants work safely in worst-case
scenarios in which unexpected disturbance is applied.

e An approach is proposed to determine the allocation of
system resources in HI mode so that soft real-time tasks can
obtain the maximal resources while constraints of control
applications are met.

o The stability of controlled plants are discussed to ensure the
stability of plants during mode changes under environment
disturbances.



Related Work There is little work on the joint scheduling of a
system comprising control and soft real-time tasks. Goswami and
et al. proposed an approach that optimizes control performance
and respects the timing requirements of the real-time applications
in [9]. They assume the system has only one operation mode in
the work, which could restrict the quality of control for control
applications in worst cases. There has been some work on
multi-mode or multi-frequency controllers. In [8], Liu and et
al. presented a software fault tolerance architecture for real-time
control systems named On-demand Real-TimE GuArd (ORTEGA).
Buttazzo and et al. proposed an elastic model in [6] for controllers
in which task periods are treated as springs. The stability of
systems to switch between multi-mode has also been studied [17].
Wang and et al. proposed an approach offering optimal switching
laws for periodic switching systems in [21]. While having made
great contribution is this field, the aforementioned work doesn’t
consider the effect of disturbance and sampling noises to plants.
Moreover, the control laws are also not investigated. In this work,
the LQG controller is adopted to handle the disturbance and noises.
The control laws in HI mode are also investigated so that the
stability during mode change as well as control performance and
robustness are ensured. Plenty of work can be found on the control
scheduling synthesis for merely control applications [1,2, 12, 13,
15, 19]. While achieving considerable progress in improving the
control performance, their work doesn’t consider the co-scheduling
problem of control and soft real-time tasks, which is one of the
contributions of this work.

The rest of this paper is organized as follows. Section 2 intro-
duces system models and the operation mode change mechanism.
Section 3 demonstrates the motivation. Section 4 introduces the
background of our approach and defines the problem. Section 5
discuss the algorithm for system re-configuration. Section 6 and
section 7 investigate the stability and the schedulability of the
system during mode change, respectively. The proposed approach
is evaluated in section 8 and section 9 concludes.

2. SYSTEM MODELS
2.1 Plant Model

A set of plants P is considered in our system. The number of
plants is denoted as m. Each plant P; is modeled as a continuous-
time linear time-invariant (LTI) system which is described by

X = Aix;+Bju;+v;

yi = Cixi+e; (1)
where X;, u;, and y; are the plant state, control signal and the
continuous-time output, respectively. The control signal is updated
periodically and held constant until the next signal. v; denotes
the process noise and unexpected environmental disturbance. The
plant output is sampled periodically with the measurement noise
e;, which is discrete-time Gaussian white-noise. We assume the
process and sample noises are both zero-mean white-noise and
modeled by given covariance matrices. The matrices A; and
B; indicate how the plant state evolves with the current state
and control signal. The matrix C; models the physical sensors
measuring the plant state. Moreover, a control-law is required to
calculate the control signal u; from the output of the plant.

Due to the sample and process noises, it is very hard to get
the actual state of plants. Therefore, each plant is controlled by
a LQG controller, which comprises a Kalman filter [3] offering
the estimation of current state, X;, to compute the control signal.
Besides, a prediction of next state X; is also provided by the Kalman
filter, which is utilized in following content.

In this paper, two types of workspace are defined for each

plant P;: safe workspace W/ and critical workspace W¢. The
safe workspace of a plant is defined as the workspace in which it
behaves in an expected normal manner. However, in the real world,
due to unexpected disturbance or system faults, a plant may jump
out of its safe workspace to the critical workspace. The critical
workspace is defined as the workspace in which the plant behaves
unsafely in an unexpected manner or is going to be unstable.
Without a loss of generality, a state-checking function, F Y (%;) is
defined to indicate whether P; is in its safe workspace or critical
space. The function is assumed to have only two scalar values: 0
and 1, where O represents the critical space while 1 represents the
saft space. The specific definitions of f fv (%;) are determined by the
designer, depending on the specific requirements of the plant.

2.2 Platform and Application Model

We consider a uniprocessor MCCS scheduled by fixed-priority,
preemptive scheduling in this paper. The MCCS has two
operation modes, LO and HI, and executes a dual-criticality task
set containing m control applications for plants P, and n soft
real-time tasks (SRTT). Each plant P; is controlled by a control
application A; which comprises a control law for the plant and a
task T; running in the system. Then, the whole task set is defined
as T = {11,%, -+ ,Tmyn}. For clarity, task set @ = {t, - . Ty}
and Y = {Ty41, -, Tmtn} denote the tasks corresponding to the m
control applications and the n soft real-time tasks, respectively. We
consider all control tasks as HI criticality and soft real-time tasks
as LO (low) criticality.

In this paper, we assume the deadline of a task T; € T equals
the period. Then, the control application A; can be abstracted by a
tuple: {[H;(HI),C;(HI),x;(HI)], [H;(LO),C;(LO),%;i(LO)]}, where

H;(\) € RT is the arrival period of task T; in mode A
e Ci(A
o %i(h

Moreover, during runtime, each task T; is assigned an unique
priority p;(LO) (or p;(HI)) if the MCCS is in LO (or HI) mode.
In this paper, the priorities of tasks are ordered in the way that a
smaller value indicates a higher priority. For brevity, we define the
execution configuration of a control task 7;:

config;(LO) = {H;(L0).C;(L0),%i(LO),pi(LO)}  (2)

config;(RI) = {H;(HI),C;(HI),%i(HI), pi(HI)}  (3)
Similarly, the execution configuration of a soft real-time task T; can
be specified by definition (2) and (3) without ;.

In LO mode, all tasks run at their config(LO) configuration,
which can be obtained by solving the problem of optimizing the
control performance of control applications under the deadline
constraints of soft real-time tasks. An existing solution for this
problem can be found in [9]. In HI mode, the main difference is
that we regulate the priorities of control applications higher than
those of soft real-time tasks so that control applications provide
better QOC. Besides, we also let H;(HI) < H;(LO) for the same
purpose. It is worth noting that in HI mode, soft real-time tasks
are guaranteed with degraded service parameters (longer periods
and lower priorities) instead of being abandoned. The periods and
deadlines of tasks in Y are scaled by a scaling factor x (x > 1).

In conclusion, the following conditions are satisfied:

H;(HI) < H;(1O), | < p;(HI)<m if1,€0® 4)
H;(HI) = xH;(LO), C;(HI) =C;(10O) if 1, € Y 5)

2.3 Operation Mode Change

Our system architecture is illustrated in Fig. 1. After sampling
the states of a plant, our system runs the decision module, which

) € RT is the WCET of task 7; in mode A
)i

is the control law of plant P; in mode A
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Figure 1: System architecture. Note that for simplicity, notation ctrl task indicates
control task and notation soft r-t task means soft real-time task.

evaluates the states of the sampled plant and decides whether
to switch the system to HI or LO mode. If a mode change
decision is made, the system switches to the target mode with
the corresponding configuration, which is pre-calculated in design
phase. As aforementioned, the configuration in LO mode can
be obtained using existing approaches. How to calculate the
configurations for HI mode is discussed in section 5. Then, the
system resources are distributed according to the configuration and
computes control commands for the plants based on the control-
law. Finally, the control commands are sent to the plants.

The mode change decision is made based on the state-checking
functions and stability functions /3. The stability function /¢ of a
plant P; is given to ensure the stability during mode change. It also
has two scalar values: 0 and 1. Value 0 means the current mode
is LO and the future states of the plant will go outside the stability
region defined in section 6.2. MCCS needs to change to HI mode
immediately to handle the case. In HI mode, f § gives value 1 if the
the plants are stable and stay in their equilibrium points for a certain
time length. This time length is an auxiliary parameter defined by
the designer to prevent the system from frequently changing the
operation mode. When /7 have value 1, MCCS can determine
whether to switch back to LO according to state-checking functions.

In conclusion, MCCS immediately transits from LO mode to HI
mode once the following condition holds:

N<i<m, FY(x)FI=0 (6)
MCCS transits back to LO mode if all the plants have been in their
safe workspaces as well as equilibrium points:

Vi<i<m, FYx)Fi=1 @)

Once Eq. 6 is satisfied, the system switches to HI operation
mode. The current LO mode control-laws are replaced by HI mode
control-laws immediately. The already sampled plant states will be
dropped. New HI control tasks with different priorities are released
at the same time [8]. According the the priority, new control
tasks samples the state of the plants again and compute control
commands according to HI mode control-laws. The execution of
LO soft real-time tasks is paused. Their periods and deadlines are
scaled by a scaling factor x to ensure system schedulability during
mode change.

Switching from HI to LO operation mode is a similar procedure
except there is a delay in making the real action of mode change.
After the decision is made, MCCS keeps operation in HI mode
for a period of time until all of the control tasks currently being

Lo HI

Figure 2: An example of mode change from LO to HI. Down arrows indicate task
arrivals. Specified as the dashed line, ¢, is the time instance when the mode change
takes place. Gray blocks and red blocks suggest the execution of tasks arriving before
and after #,,, respectively.

executed are finished. Since we consider the deadlines of a control
task equal the period, the schedulability test ensures no new control
tasks arrive in this delay interval. Moreover, the current soft real-
time tasks also keep their periods H(HI) until the next arrivals.

Figure 2 shows an example of a mode change from LO to HI of a
system having two control tasks (t; and T;) and two soft real-time
tasks (T3 and t4). In LO mode, the priorities of T to T4 are assigned
as [1,3,2,4]. At the transition time #,, i.e., after sampling the states
of P and evaluating Eq. 6, all tasks switch from LO to HI mode.
The control tasks, T; and Tp, release HI mode jobs immediately
to replace their LO mode jobs. The unfinished jobs of T3 and 14,
however, are not abandoned. Their current deadlines as well as
periods are increased by multiplying the same factor 1.5 to save
CPU times for control tasks. In HI mode, the priorities of the tasks
are reassigned to [2,1,4,3]. Either 1| or T, has a higher priority
than both 3 and 14.

3. MOTIVATION EXAMPLE

Let’s consider a system running one control application
associated with an inverted pendulum and four soft real-time tasks.
The periods and WCETs of the soft real-time tasks are given
as [25,10,30,60]ms, and [5,1.5,4.5,12]ms, respectively. Their
deadlines are supposed to be same with periods. We consider the
inverted pendulum may suffer impulse disturbances up to 0.6N - sec
at some unknown time. We also regulate the control signal, i.e., the
force, is less than 30N. Given two control applications A4 and Ap
whose sampling periods are 10ms and 2ms respectively, our goal
is to design the system so that the peak vertical pendulum angle
is minimized. The WCET of the control application is given as a
constant 1ms. For demonstration purposes, we exert a 0.6N - sec
impulse to the pendulum at time # = 1s.

Let’s first consider the classical approach that our system runs
in a single operation mode. Since the utilization of soft real-
time tasks is 0.7, application Ap cannot be applied, otherwise the
total utilization will be 1.2, indicating our system is unschedulable.
Therefore, the solution of control application has to be Ay.
However, as shown in Fig. 3, the pendulum becomes unstable after
the impulse is applied, which means this solution is infeasible.

Now, we use our two-operation-mode system model to control
the inverted pendulum. Control applications A4 and Ap are applied
in LO mode and HI mode, respectively. The system switches to HI
mode to implement Ap once the absolute number of the pendulum
angle is larger than 5 degrees. The soft real-time tasks run at longer
periods in this mode to make the system schedulable. Moreover,
the system can switch back to LO mode with A4 if the angle has
been in [—5,5] degrees for one second, returning CPU time back to
real-time tasks so that they can provide normal service.

After simulating the system in MATLAB Simulink, we report
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Figure 3: How the angle of the inverted pendulum evolves in two systems: one-
operation-mode system and two-operation-mode system.

how the pendulum angle varies in the two cases in Fig. 3. In the
simulation, the control application is assigned the highest priority
in both modes. From Fig. 3, one can observe that the pendulum is
still stable after the impulse in our approach, because the pendulum
is controlled by Ap after the impulse. Application Ap offers much
better QOC since its sampling period is smaller. Although the
soft real-time tasks suffer service penalty from about t = ls to
t = 5s, our approach makes the system work safely with unexpected
disturbance, which motivates us to apply the method of mode
change to mixed-criticality systems including control and soft real-
time tasks.

4. BASIC DEFINITIONS
4.1 Delay and Jitter

In this paper, we assume a control task is activated periodically.
The corresponding plant is sampled when the task is released. The
output signal is applied to the plant once the task is finished as we
assume no communication delay between the controller and plant.

Due to interferences from high-priority tasks and the execution
of itself, each control task experiences a delay from sampling
to actuation, namely the input-output delay. This delay could
be divided into nominal sensor-actuator delay, sensor jitter, and
actuator jitter, as an example [2]. In order to simplify the problem,
we restrict ourselves to divide the input-output delay into only two
parts: a constant delay (L) and a time-varying part, namely the
jitter (K) [7]. Fig. 4 graphically illustrates the definition of these
two parameters. The delay from sampling and actuation is hence
located in the interval [L, L+ K]. These two parameters of a control
task T; can be obtained by implementing response-time analysis:

L =R ®)

K; = RV —R? 9)
where Rib and R}" are the best and worst-case response time of task
T;. They can be calculated by applying classical response time
analysis for fixed-priority [18].

We shall also consider the influence from mode change to the
delay and jitter in HI mode. Let Ar denote the minimal interval
between the sampling of a LO mode task and the mode change.
This interval is the necessary time needed from sampling data to
making a decision on mode change. Then, the best and worst-case
response times during mode change are:

RV(HI) = At +R? (10)

RY(HI) = H;(LO)+RY} (1
The revised response times should be used to calculate the L; and
K; in HI mode so that mode change effect is considered.

4.2 Expected Control Performance
The standard quadratic cost function [3] is used to capture the

sampling
L . K

| | |
I 1 L 1
actuation

kH (k+1)H

Figure 4: The constant input-output delay and input-output jitter

expected performance of a control application A;:

T T .

JileiEL%lE{/o hl} Q,[E]dt}. (12)
where E{e} indicates the expected value, and Q; is a positive semi-
definite weight matrix given by the designer. A lower value of J;
indicates a better control quality. For a given plant and its control
law, the expected cost J; can be computed by the toolbox Jitterbug,
as long as the input-output (sensor-actuator) delay distribution is
known [10].

It is worth noting that the above cost function cannot provide a
hard guarantee of stability in the worst case [2]. The next section
presents how to obtain robustness or stability results that are valid
in the worst case.

4.3 Worst-Case Robustness

Since the expected cost function cannot ensure the worst-
case stability of a control application, we introduce the apparent
phase margin (APM) to qualify the robustness as well as stability
performance of a system. Apparent phase margin is similar to
the phase margin in classical control theory. The advantage of
(APM) is the influence of the constant delay L; and the jitter K;
to the stability are taken in account. This makes it suitable for
digital control systems. Let notation ¢} denote the apparent phase
margin of a control application. The stability of plant P; cannot be
guaranteed if @} < 0. A larger value of 7" suggests a higher degree
of robustness. To calculate ¢!, we take the plant model P;, the
control application with corresponding sampling period, the best
(constant) input-output delay L; and the worst-case input-output
jitter K; as inputs. Therefore, the apparent phase margin is specified
by a function:

9" = PM(P;, A, Lj, K;). (13)

For the formal definition and details of calculating ", we refer
to [7].

4.4 Control Law Optimizing

For a given plant P;, a sampling period H;, and a constant input-
output delay, one can find the control-law ®; that can provide
the best expected quality of control [3]. However, in our system,
the execution of lower-priority tasks may be preempted by higher-
priority tasks, hence the input-output delay of a task, in reality, is
time-varying. In this paper, we first use our real-time simulation
toolbox to get the input-output delay distribution of a task. Then,
the expected input-output delay can be easily obtained and is
used to calculate the control-law by utilizing the toolbox Jitterbug.
Finally, we get the Linear-Quadratic-Gaussian (LQG) controller,
which is optimal with respect to the expected control performance
(Eq. 12), to compensate for the expected input-output delay.

4.5 Problem Definition

In previous sections, the mixed-criticality control system model
is introduced. Now, the remaining problem is how to determine
the execution configuration in HI mode so that: (1) the control
costs and APMs of all control applications in HI mode meet the
requirements given by designer; (2) MCCS is stable during mode
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change; (3) the service degradation of real-time tasks, i.e., the
factor x, is minimized.

We term the requirements given by designer for HI mode as
control cost constraint set J = {J|,---,J,,} and APM constraint
set @M = {@',---, @I}, respectively. Now the problem can be
formulated as:

minimize scaling factor x (14)
subjectto Vi€ {1,---,m} J;(HI)<J; and ¢}'(HI)> ¢
outputs config(HI) = {config;(HI)|i € {1,--- ,m}}

Note that since we assume the system configuration in LO mode
is already known, this problem can be solved in early design phase.
When the system switches from LO mode to HI mode in run-
time, it directly uses the pre-computed configuration to allocate the
resources. Next, an approach and an algorithm are presented to
solve this problem.

5. SYSTEM RE-CONFIGURATION

The overall procedure to obtain the execution configuration
for HI mode is illustrated in Fig. 5. The part surrounded by
dashed lines is the loop to optimize controllers’ HI mode periods
(section 5.1). In each iteration, each control application is given
a period chosen by the period optimization loop from the given
period set fli. Then, we check whether a priority assignment for
control tasks exists so that their control quality and robustness
constraints (14) can be guaranteed (section 5.2). The optimal
control law for each application is also designed in this step and
then the HI mode LQG controller is checked by the stability
constraint (24) in section 6.2. If a feasible priority assignment
can be found, periods and priority assignments for soft real-time
tasks are performed to find the period scaling factor x. Finally, the
controller period optimization loop determines whether or not the
loop should be stopped according to terminating conditions.

5.1 Control Tasks Periods Optimization

The controller periods optimization is accomplished based on
the coordinate search method [22] and pattern search method [11].
The optimization is carried out in two steps. Firstly, we utilize
the coordinate search to find a promising region for the minimal
scaling factor x in the search space. The searching starts from
the point where each application has the smallest period in the
set. Since a smaller controller period usually leads to a larger x,
at each iteration step we allocate a larger period to the controller
that currently has the smallest period if its control quality and
robustness constraints (14) are met. Note that once x cannot
be further minimized by coordinate search, the pattern search
is adopted to get the promising point based on the information

obtained in the first step. The optimization toolbox in MATLAB
is utilized to implement the pattern search.

5.2 Control Tasks Priority Assignment

After a period set is chosen for control tasks, algorithm 1 shows
whether one can find a priority assignment for control tasks so
that constraint (14) is satisfied. The algorithm is recursive and
guided by two parameters, the set of remained plants RP and the
number of remaining plants Ny,. At the first call, we assign them
as P and m, respectively. Moreover, it also takes the plant models,
number of plants m, WCETS, J and @™ as inputs. The basic idea
is to find a plant that can be assigned the lowest priority while
its HI mode constraint (14) is still satisfied (line 13). If no plant
is found, the algorithm returns an error indicating current control
periods are unfeasible (line 11). Otherwise, we recursively call
this algorithm with the remaining plants (line 19). Once each
control task is assigned a unique priority (line 1), a final check is
performed to correct the expected input-output delays calculated
in previous steps (line 3), which may be inaccurate in the final
priority assignment. With the revised expected input-output delays,
new control laws are designed to compensate for the delay (line 5)
and the constraint (14) is finally tested (line 6). The algorithm
terminates once a feasible priority assignment is found (line 20)
or all the possible assignments are checked.

Algorithm 1 Function: ControlPriority(RP, N;,)

Input: plants P, m, controller periods ﬁ,WCETs, I, (an
Output: feasible flag F, A = {config;(HI)|ic {1,--- ,m}}
1: if RP == o then
2: F=True, A=o
3: simulation to get expected input-output delays L¢ of all
control applications

4: for i=1tom do
5: get the optimal control law for P;, calculate J,; and @7
6: if J5, > Ja, or @' < @ then F = False, A = @ break
7: else A =AJconfig;(HI)
8: end if
9: end for

10: else

11: F = False, A = &
12: for all P, €« RP do

13: pi(HI) < N

14: calculate constant delay L;(HI) and jitter K;(HI)
15: simulation to get expected input-output delay L{
16: get the optimal control law for P;.

17: calculate J, and @

18: if J5, < Jj, and @7 > @ then

19: (F,A) = ControlPriority(RP\ P;, N, — 1).
20: if F == True then break

21: end if

22: end if

23: end for

24: end if

In fact, algorithm 1 solves a decision problem, the maximal
times of evaluation (control costs, APM, stability) could be m +
(m—1)+,---,4+1 = (m*> +m)/2. Therefore, the time complexity
of algorithm 1 is O(m?).

5.3 Configuration For Soft Real-Time Tasks

In this section, we discuss how to determine the minimal period
scaling factor x and HI mode priority assignment for real-time
tasks. As the control tasks get shorter periods and higher priorities



in HI mode, the periods of soft real-time tasks should be properly
extended, otherwise some low priorities tasks may always be
preempted by higher priority task and never have a chance to
execute. Thus, we propose a scheduablity test in Section 7 to check
if a task can complete before its next arrival. The minimal scaling
factor x is chosen such that all tasks can pass the scheduablity test.

Since the configuration is computed in offline phase, we can
directly search the feasible x in its region. The basic idea is
increasing x from 1 to x;,, With a given step size €. The maximal
feasible x;,4; and € are given by the designer as a tradeoff between
time complexity and quality. Given the factor x, a recursive
procedure (discussed in next paragraph) is executed to find the
priority assignment for real-time tasks such that the system is
schedulable. Once a feasible priority assignment is found, the
searching for the minimal x stops and the current x is returned as
the minimal period scaling factor x.

The recursive procedure of priority assignment is similar to
algorithm 1 except the calculation of control costs and apparent
phase margin is replaced by the calculation of response-times, and
scheduablity tests take the place of the control quality test (line 6).
It’s worth noting that soft real-time tasks are assigned priorities
from m+ 1 to m+n and control tasks are assigned priorities from
1 to m.

6. STABILITY DURING MODE CHANGE

The stability of plants when MCCS switches from LO mode
to HI mode is discussed in this section. For the switch-back
procedure, the problem is simple since MCCS switches back when
the plant is at equilibrium point. We first present the formal
representation of the closed-loop system, which is a linear system
with input.

For each plant P;, the closed-loop system comprises P; and a
discrete-time LQG controller (the one in HI mode). We transform
the continuous-time system model (1) into a sampled model.
According to [3], the closed-loop system model can be described
as':

Xi(k+1) = FXi(k) + [L,1)vi(k) + [-TiM;, K 'e;(k)  (15)
where X;(k) = [x;(k),%;(k)]’, and X;(k) denotes the error between
actual state x;(k) and the estimated state provided by the Kalman
filter built-in LQG controller. Constant matrices F;, I';, K;, M; are
calculated based on the plant and controller model. The derivation
of these matrices can be found in [3].

The model (15) can be transformed to a linear system with input:

Xi(k+ 1) = F;X;(k) + GU;(k) (16)

where G — {’ ‘FiMl] and Uj (k) = [vi(k), e (K)]'.

1 K;

6.1 Stability Without u; (k)

The U;(k) in (16) comprises noises and environmental distur-
bances, which hampers the stability. It is necessary to discuss the
stability in ideal cases that U;(k) = O before the actual scenarios
are considered. Let F;(L0) and F;(HI) denote the dynamic matrix
F; of the closed-loop system in LO and HI mode, respectively. It
is worth noting that we assume all the eigenvalues of both F;(L0)
and F;(HI) have magnitudes less than 1, i.e., the system is stable
in each mode.

Without Uj;(k), the system (16) is in fact a two-mode switching
system, whose stability during mode change can be guaranteed if a
common quadratic Lyapunov function (CQLF) can be found.

DEF. 1 (CQLF). Function V(x) = x'Px is a common
quadratic Lyapunov function for system (16), if P is a symmetric

ISee Section 11.4 of [3]

and positive definite matrix satisfying:
F;(z0)"P+PF;(L0) = —Q;(Z0) a7
F;(HI)"P+PF;(HI) = —Q;(HI) (18)

where Q;(LO) and Q;(HI) are symmetric and positive definite.
There has been lots of work on the necessary and sufficient

condition of the existence of a CQLF function [20]. Now, for

further analysis, we assume a CQLF of (16) is already found.

6.2 Stability With u;(x)

Since U;(k) is composed of random noise and disturbance, it is
impossible to analyze the stability if we do not give any constraints
to it. In this paper, the following regulations are adopted.

e The disturbance applied to plant P; is bound by db; while the
applied time is no longer than ti‘”’ .

e The interval between two consecutive disturbances is lower
bounded by /"

e The process and the sample noise could be ignored compared
to the magnitude of the disturbance.

We analyze the stability of plant P; under the above admissible
inputs based on the stability region. We first introduce the definition
of nominal maximal stability region.

DEF. 2 (NOMINAL MAXIMAL STABILITY REGION). The nom-

inal maximal stability region NMSR; of plant P; is defined as the
maximal stability region of system:
X;(k+1) =F;(HI)X;(k) (19)

Based on Lyapunov’s second method, NMSR; is the set of state
{X|X"WX < 1}, where W can be found by solving the following
MAXDET problem [4, 14].
maximize log detW™! (20)
subject to W > 0, and F;(HI)" WF;(HI) - W < 0
The nominal maximal stability region NMSR; introduced here
is the stability region of the HI mode application without
environment disturbances. Now, we define the stability region of
P; in HI mode considering the disturbances.

DEF. 3 (STABILITY REGION). The stability region (SR;) of
plant P; is defined as a subset of its NMSR; so that if its closed-
loop system (16) in HI mode starts from any state within SR; with
the maximal disturbance, the future states will always stay within
the NMSR;.

According to its definition, the formal representation of SR; can
be given as:

SRi = {X|f(X;.N)"Wf(Xi.N) < LYN € 1. N*} - (21)
where f(X;,N) is the state that N sampling periods later than X;
under the maximal disturbance:

fXiN) = FY (BDX; + (FY B+, +D[LIdb - (22)
Integer Ni‘”’ is the number of periods of the longest disturbance in
HI mode, which is

N = [ /Hi(L0)] 23)
With the stability region, we discuss how to make plant P; stable
during mode change from LO to HI. In LO mode, the prediction of
the next state of (16) is made by the Kalman filter at each period.
Then we check if the predicted state X; stays inside the stability
region of plant P;. If not, stability function /¥ is set to O to trigger a
mode change to HI mode so that the HI mode LQG controller can
control the plant before it has the chance to be unstable under the
maximal disturbance.



Note that after the disturbance, if the plant is already outside its
stability region, it should return to SR; before the next disturbance
is applied. Otherwise the plant may be unstable under two
consecutive disturbances. Hence, we have the following constraint:

Ri(X)) (SR #0. VX[ WX; =1 (24)
where R;(X;) is the reachable set of system (19) starting from state
X; under no disturbance within 7/ time units. Denoting MV as
[tV /H;(HI)], we have:

Ri(X;) = {Xi(M)[Xi(M) = F} (BRT)X;, M = {1,--- ,M{"}} (25)

The stability region and R; can be efficiently calculated in
offline manner by using the approach of computing reachable set
discussed in [16]. We also claim that by reversely using the
constraint (24) and the stability region, we can determine to what
extent disturbance can be tolerated by MCCS in HI mode.

7. SCHEDULABILITY ANALYSIS

In this section, we present the following schedulability tests for
our mixed-criticality system to determine whether it is schedulable
in both modes as well as during mode change. We refer the modes
before and after mode change as the old mode and new mode,
respectively.

(I) schedulability test without mode change (steady mode).
(II) schedulability test of old mode jobs.
(III) schedulability test of new mode jobs.

The first test can be performed easily by using existing response
time analysis [18]. The last two tests are adopted to determine if a
task is schedulable during mode change. Response-time analyses
of all tasks are performed offline in all the tests, considering the
interference from the mode change overhead.

For clean demonstration, we show the analysis of the procedure
changing from LO mode to HI mode. The switch-back action
follows the similar procedure and can be analyzed similarly. We
denote the worst-case response-time of a task 7; in two steady
modes as R;(LO) and R;(HI), respectively.

7.1 Test of .o Mode Jobs When Change to uz

Abandoned after the mode change, the old control tasks in LO
mode can be safely removed from this test. Therefore, we only
need to discuss the soft real-time tasks released in LO mode in this
test. The response time of a LO mode task T; during mode change
can be affected by tasks grouped as:

(A) LO mode control tasks having higher priorities.

(B) All HI mode control tasks released upon mode change.

(C) Softreal-time tasks only having higher priorities in LO mode.
(D) Softreal-time tasks only having higher priorities in HI mode.
(E) Soft real-time tasks having higher priorities in both modes.

We suppose the activation of task T; occurs z time units before
the mode change. A corresponding temporal window w;(z) is also
defined as the interval between the activation and completion of ;.
Fig. 2 shows a specific example of z and w;(z).

Now, we discuss the interferences that T; receives from the five
groups of tasks.

Group A and C First, one can figure out that group A
and C both affect task T; only before the mode change. Thus the

interferences from them are similar in calculation. The interference
from a task 7T; in either group can be captured as:

FJAC(Z) — {Hj(ZLO)J C;(LO)+min (z— {ﬁ

J Hj(Lo),Cj(Lo))
(26)

Then, summing them up results in the interferences from both
groups:
FR= Y FW) @7)
jeAlUcC
Group B Tasks in group B are released after mode change,
the worst-case interference from this group is:
0
wi(z) —z
FB(z) = {’7} C;(HI) (28)
| Hj(HI) J
where [a]° £ max([a],0).
Group D Tasks in group D only affect 1; in HI mode. Thus,
the worst-case interference from this group is:

0
FP(>) = C:(HI [M—‘ C:(HI 29
Group E The interferences from this group last in the whole
temporal window w;(z). Since the WCETs of soft real-time tasks
are the same in both modes, the interference can be obtained as:

FE)=), <’VHJ~(ZLO)—‘ * Fﬁi{;)ﬁ) CEy e

JEE

Summing up all the interferences from the five groups and the
WCET of itself, the width of the temporal window yields:

wi(z) = G(LO)+F () + F(z)+ FP(2) + FE(z) (31
This equation can be solved by carrying out a standard recurrence
calculation on w;(z) until the result becomes stable.

Finally, varying z from 0 to the worst-case response time R;(LO),
the worst-case response-time of LO mode task T; can be obtained
as the largest w;(z):

R} = max(w;(z)),Vz € [0,R;(LO)). 32)

7.2 Test of ux Mode Jobs When Change to s

We discuss this test with the assumption that previous tests have
been passed. In HI mode, control tasks are newly released at
the mode change and assigned higher priorities than soft real-time
tasks. Thus the schedulability of new control task set is not affected
and has already been checked in the steady mode tests.

Now we consider the newly released soft real-time tasks in HI
mode. A HI mode task 7; could be influenced by high-priority tasks
grouped as:

(A) All HI mode control tasks released upon mode change.
(B) Real-time tasks having higher priorities in both modes.

(C) Real-time tasks only having higher priorities in HI mode.

Similar to above section, we use w; to denote the interval between
the activation and completion of T;.
Group A Since all control tasks are newly released, the
interferences from them could be simply calculated:
FA = [Lw Cj(m1 33
]'GZA H;(HI) j(HD) 39
Group B Task 7; is released after mode change, indicating
its pre-release is finished as its deadline equals period in both
modes. Therefore, one can conclude that any task in group B
that is released in LO mode should complete its execution before
the new release of 7;. The reason is that tasks in this group have
higher priorities in both modes, and the completions of their pre-
releases certainly require the completions of higher-priority tasks.
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Figure 6: Relative results of the inverted pendulum for different J,,,,. The results when
Jimax > 0.27 are not plotted since the system is unstable.

In summary, task T; is only affected by newly released tasks in
group B and the worst-case interference is:

FB= [7% -‘C HI 34

jGZB Hj (HI) j( ) Gd

Group C In the worst-case, the interference from a task in group

C to task T; may contain two parts: the interference from tasks

released (a) before mode change and (b) after mode change. Taking
both parts into account, the interference from group C yields:

c _ W,‘—Cj(HI)-‘O '

F ch (CJ(HI) + [ 7,(HT) c,(nx)) (35)

Again, summing up all the interferences from the three groups

and the WCET of itself, we have:

wi = C;(HI) + FA + FB 4 FC (36)

Then w; can be obtained by standard recurrence calculation. Finally
the response time for task T; which is released in HI mode is:

RY = max(w;,R;(HI)). (37)

8. CASE STUDIES

In this section, we evaluate the effectiveness of our proposed
system model (MCCS). All the studies are performed in a
computer with an Intel I7 CPU and 16 GB memory.

Firstly, we study the inverted pendulum system presented in
the motivation example (Section 3). We implemented our system
architecture in MATLAB Simulink combined with the TrueTime
toolbox for a time length T = 20s. The constraint @ is set as 10.
Let Jyqx denote the constraint of the expected control cost in HI
mode. The simulation result is analyzed in three aspects: (1) The
peak angle derivation from vertical 8,. (2) The local control cost
Jioe calculated from the definition 12 for 7 = 20s. (3) The service
degradation of soft real-time tasks, which is calculated as: SRV, =
(Un — Uavg) /Uy x 100%, where U, is the default utilization and
Uavg is the average utilization of them in the simulation.

We vary Jyq, from 0.15 to 0.27 with a step of 0.01 and report
the results in Fig. 6. Note that all the results have been scaled
by the results from scenario J,;4x = 0.27 for clear demonstration.
The results when Jyqc = 0.27 are listed as 0, = 58.5 degrees,
Jioc = 1744, and SRV, = 19.0%. When Jy,, > 0.27, the inverted
pendulum is unstable after the impulse; therefore, the results are not
reported. The HI mode periods of the control application H (HI)
and the scaling factor x are listed in Table 1.

From Fig. 6 and Tab. 1, we make these observations: (1) As the
Jmax Increases, the sampling period becomes larger and the control
quality generally worse. When Jy,4y 18 larger than a certain value,
the system becomes unstable. This is because the QOC decreases
as Jypax becoming larger. (2) The service of soft real-time tasks
is degraded on average about 19% to 32.2% while their periods
may be 1.5X to 2.8X longer in HI mode. (3) Overall, the degree
of service degradation decreases as Jy,y becomes bigger. This
is expected since the sampling period of the pendulum becomes
larger as Jyqy increases. Therefore, soft real-time tasks can receive

Table 1: HI mode periods and scaling factor x for different J,,q,

Tonae 0.15 ] 0.16 | 0.17 | 0.18 | 0.19 | 0.20 | 0.21

HEI)(ms) || 15 | 17 | 19 | 21 | 21 | 23 | 25

X 28 | 23 | 21 | 19 | 19 | 1.9 | 1.7
T 022023024 025026027 -
H(EI)(ms) || 27 | 29 | 31 | 33 | 35 | 37 | -
X 17 | 17 | 17 | 1.7 | 15 | 15 | -

more service. However, SRV, is not a strictly decreasing function
of Jmax, for example, when J,,,x = 0.21. The reason is that the
service degradation is also influenced by the mode change time
points chosen by pendulum state and changing conditions. The
conditions are unchanged during case studies, but the pendulum
state changes dynamically due to sampling and actuation noise.

Next, we compare MCCS with other two approaches in the
literature for a set of ten plants. The first approach is called
Elastic Task Model (ETM) [6]. This approach gives each task an
elastic coefficient and treats task periods as springs. The periods
of some tasks can be compressed or decompressed to provide
different Quality of Service. The periods of other task can change
automatically to prevent the system from overload. The second
approach is single-mode approach that is based on a variant of the
approach presented in [2]. The approach optimizes the control
cost for a set of control tasks and soft real-time tasks under the
constraint of system schedulability and robustness requirements of
control tasks. We term the second approach OCC.

The set of plants are chosen from [3], including servo, pendulum,
motor, water tank and etc. These plants cover a wide range of
control properties, such as bandwidth, and thus are considered
to be representative. The soft real-time tasks are five periodic
tasks whose periods and WCETs are [40,30,30,55,65]ms and
[6,3,2,6.5,7]ms, respectively. The available period sets of the
plants are chosen based on the below rules of thumb in [3].

0.2<m,xh<0.6

where )y, is the bandwidth of the closed-loop system. We assume
the plants have the same elastic coefficients in the the elastic model.
We vary the number of plants m from 2 to 10 and compare the
results. When m € [2,9], ten plants are randomly selected from the
set as the evaluated plants. We compare the optimal control cost
that the three approaches can provide in the worst cases. We also
restrict the apparent phase margin to be positive, that is, all plants
must be stable. Table 2 displays the improvements achieved by our
approach compared to ETM and OCC in each scenario.

From the results, we make following observations. (1)
Compared to OCC, MCCS can improve the control cost about
28.1% on average and up to 38.1% in the 10-plant case. This is
expected since the WC-QOC provided by OCC is restricted by
soft real-time tasks while in MCCS, the system can relax this limit
by temporarily adjusting the periods of soft real-time tasks. (2)
Compared to ETM, the control performance in MCCS is 27.4%
better on average 2. The reason is the elastic coefficients in elastic
model are fixed parameters. Therefore, when we re-assign the
periods of the plant tasks, they should meet the rigid constraints
placed by the fixed elastic coefficients, i.e., the periods are adjusted
in the same pace. (3) In general, the performance of ETM
becomes worse when the number of control tasks increases. This
further strengthens the previous observation since the rigidness
introduced by the elastic coefficients is amplified when more plants

2ETM offers an unstable solution for one task-set in the five-plants
scenario. However, to give a feasible result, this solution is not
considered when calculating the control performance.



Table 2: Improvement in control cost for scenarios from 2 to 10 plants

m improves compared to ETM | improves compared to OCC
2 0.6% 12.6%
3 19.4% 25.8%
4 14.4% 29.2%
5 32.6 % 35.4%
6 22.7% 28.6%
7 34.9% 25.4%
8 34.5% 34.7%
9 42.4% 23.4%
10 45.8% 38.1%
average 27.4% 28.1%

are taken in account. In the scenario of two plants, ETM offers a
close result with MCCS because the two control tasks can obtain
enough resources in both approaches when soft real-time tasks are
compressed .

In conclusion, the case study results demonstrates that plants can
be guaranteed higher quality of control in MCCS to recover from a
critical workspace to a safe workspace at the cost of slight service
degradations of low-criticality tasks. Considering the improvement
in control quality of much more important control tasks, our
proposed system architecture qualifies as a useful scheme.

9. CONCLUSION

In this paper, we present a novel system model for the mixed-
criticality system that comprises both control and soft real-time
applications. The system can switch from LO to HI mode
according to the plants’ states to ensure the safety and performance
in worst-cases, i.e., unexpected disturbances are applied. In LO
mode, the system resources are allocated gracefully between two
classes of tasks so that they both receive necessary service. A
stability constraint is presented to determine if the system is
stable under certain disturbances during mode change. A new
approach is also presented to find the optimal system execution
configuration in HI mode so that the HI mode constraints for
control applications are met and the service degradation of soft
real-time task is minimized. We implement our system model
and scheduling approach to an inverted pendulum and test it with
different HI mode constraints. We also compare our approach
with two approaches in the literature for a representative control
plant set. Case study results demonstrate the effectiveness of our
approach.
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