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Establishing consensus is a key problem in multi-agenesys{MASS). This thesis
proposes a novel methodology based on convex optimizatitimei form of linear
matrix inequalities (LMIs) for establishing consensusireér and nonlinear MAS
in the presence of model uncertainties, i.e., robust causen

Firstly, this thesis investigates robust consensus foedaimn MAS with linear
dynamics. Specifically, itis supposed that the system isrde=d by a weighted ad-
jacency matrix whose entries are generic polynomial fumstiof an uncertain vec-
tor constrained in a set described by generic polynomigjuaéties. For continuous-
time dynamics, necessary and sufficient conditions areqsegbto ensure the robust
first-order consensus and the robust second-order corssendaoth cases of pos-
itive and non-positive weighted adjacency matrices. Fecrdite-time dynamics,
necessary and sufficient conditions are provided for robmssensus based on the || ]
existence of a Lyapunov function polynomially dependentlos uncertainty. In
particular, an upper bound on the degree required for arigevecessity is pro-

vided. Furthermore, a necessary and sufficient conditipragided for robust con-

sensus with single integrator and nonnegative weightealcadcy matrices based



on the zeros of a polynomial. Lastly, it is shown how theseldwns can be inves-
tigated through convex optimization by exploiting LMISs.

Secondly, local and global consensus are considered in Mi8mrinsic non-
linear dynamics with respect to bounded solutions, likeldaium points, periodic
orbits, and chaotic orbits. For local consensus, a methpdigosed based on the
transformation of the original system into an uncertainyfmpic system and on
the use of homogeneous polynomial Lyapunov functions (HfLFor global con-
sensus, another method is proposed based on the searchuitaltdespolynomial
Lyapunov function (PLF). In addition, robust local consesng MAS is considered
with time-varying parametric uncertainties constrained ipolytope. Also, by us-
ing HPLFs, a new criteria is proposed where the originalesyss suitably approx-
imated by an uncertain polytopic system. Tractable comaktiare hence provided
in terms of LMIs. Then, the polytopic consensus margin pFobls proposed and
investigated via generalized eigenvalue problems (GEVPS)

Lastly, this thesis investigates robust consensus probfgmlynomial nonlin-
ear system affected by time-varying uncertainties on tgyli.e., structured un-
certain parameters constrained in a bounded-rate polyMipepartial contraction
analysis, novel conditions, both for robust exponentialsemsus and for robust
asymptotical consensus, are proposed by using paramegiendent contraction
matrices. In addition, for polynomial nonlinear systemisthaper introduces a
new class of contraction matrix, i.e., homogeneous pamntependent polyno-
mial contraction matrix (HPD-PCM), by which tractable cdiahs of LMIs are
provided via affine space parametrizations. Furthermbeevariant rate margin for
robust asymptotical consensus is proposed and invesligaehandling general-
ized eigenvalue problems (GEVPS).

For each section, a set of representative numerical exanapéepresented to

demonstrate the effectiveness of the proposed results.
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Chapter 1

Introduction

1.1 Background

More than 2000 years is the history of control systems agghehuman soci-
ety. One of the earliest proofs is the water clocks describeditruvius (270
B.C.) [1]. Past several decades have witnessed a fast genefd of this engi-
neering discipline from classical control theory to nowlsisficated modern control
theory. Instead of transformation methods in frequencyalardealing with single-
input-single-output systems, modern control theory usestate-space methods in
time domain for multiple-input-multiple-output systenvith increasingly efficient
methods for matrix computation and growingly powerful roj@rocessor for data
processing, modern control theory is able to handle moreptioated problems
human encountered, like large-scale systems and compéss.

When the corresponding advances come to the technologigeohation trans-
mitting, sensing and processing, they speed up the develofpmhautonomous sys-
tems in uncertain environments, and also give rise to nevordppities and chal-
lenges for studying the cooperative multi-agent system&g{b). In fact, the def-
inition of MASSs is initially investigated by collective bakiors widely occurring
in biology and life science, e.g., bird flocking, fish schagliand bud swarming.
These behaviors gain some properties that single agenttathieve and provide

extra benefits for individuals such as finding food, incregshe speed of flying and

1




escaping from predators. Thus, numerous attentions haredigained for study-
ing this cooperative behavior. One of the famous pioneernadk in this field is
the work of Beynold in which a computer model, called “Boids’used to animate
the cooperative behavior of fish schoals [2]. Also in this kydhree basic rules are
given for this model: cohesion for flock centering, separator collision avoid-
ance and alignment for velocity matching. These propediesdeemed as basic
characteristics of a biological band. After that, based diserete-time approxima-
tion system, Vicsek proposes another multi-agent mode fmoup of autonomous
particles traveling at a certain speed. Then this resulkjgagned and expanded
by Jadbabaie et al. inl[3]. From then on, a general understgnsl established
that coordination of MASSs is a result of biological prin@plwith environmental
information and interactions among individuals in thiswwo

In the field of control systems and computer science, anyiddal that can au-
tonomously behave in its environment is called an agentugh@xtensive debate
is over the meaning of this term, we would like to give follogidefinition similar

with one given in[[4].

Definition 1.1 (agent) An agent is a single system in some environment wthsre
capable of autonomous actions in this environment in ordemeet its designed

objectives.

Owning to the broad nature of above definition, we would likdurther elab-
orate on some of its essential issues. Firstly, agent isderesl as a single system
which may refer to artificial entities, like computer, rob@nd electronic devices,
and may also bear on biological entities, like fishes, birtsects. Moreover, there
IS no specific environment required for MASSs, as it can redex broad range of set-
tings, where autonomous agents behave and interact withaher. Influence of
human or outside intervention is not considered in ordeetpkhe independence.
Finally, an objective is designed for the group of agentsspkcific method is given
by this definition that how the cooperative goal can be a@deCertain objectives

can be very simple and just need reactive agent, such as p gfdlights gather
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at a certain airport, while some objectives are complicatitld sophisticated agent
model, such as a group of flights keep in a certain formatiowdoymunication
with each other. In other words, agent has to execute ing@tidutonomous actions
in a target-oriented manner and vulnerable to its enviraimBifferent with [2],
Jennings proposes three characteristics for each autarmagent to achieve the

designed objectives[[4]:

e Reactivity: the capacity to comprehend their environmeut@mely react to

changes of the environment.

e Proactivity: the capacity to take initiative independgrghd perform goal-

oriented behavior.

e Social ability: the capacity to communicate and influencéwther agents.

Based on the definition adgent it is easy to understand another related defi-
nition multi-agent systemsA great number of biological and artificial systems are
composed of a group of agents interacting for a common goalmiples can be eas-
ily found in World Wide Web, formation control of UAV (Unmaed Air Vehicles),
remote control of AUVs (autonomous underwater vehiclesjworked control of
robotic teams, to name just a few. Multi-agent systems (MAg&e common in

nature and can be explained in a way widely adopted in enginggeas followsl[4]:

Definition 1.2 (Multi-agent System) A MAS is a group of networked agents tha

behave together to achieve common goals.

Currently, various topic of MASs are hot focus for sorts oademic soci-
eties, such as cooperative learning, coordination, degi@liy and fault-tolerance,
whereas the most interesting issue for us is the consenshkepr of MASS.

Consensus problem has been extensively studied in congaty and computer
science in past decades . Meanwhile, kinds of powerful tdigks algebraic graph
theory and contraction theory, have been developed totigate consensus prob-

lem of MASSs, as a beneficial circle, generating growing aygion and attracting
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increasing academic interests and resources in this fiede We give the definition
of consensus which is widely adopted in control systems s€osus means that all
the states of a MAS are able to reach a certain agreementesigely. The states
of MASs for this agreement could be artificial variables lda@mputer virtual state,
logical state, or kinds of physical terms such as energypézature, altitude, posi-
tion, velocity, angle, etc. The mathematical descriptibnansensus phenomenon
with various dynamics will be introduced in the followingaghters. It is worth not-
ing that the consensus problem can be converted to a sggimtiblem of the error
dynamics (or called disagreement system) which is consiiugased on original
dynamics (a typical example of this transformation is gibgrn_emma 3.4). With
a wide applications, consensus has already been emplogegéovith many prac-
tical problems, such as formation control, flocking, rendes problems, attitude

alignment[5£11]. Fig._1]1 gives one application in forroatcontrol.

1.2 Literature Review

In this subsection, past researches on consensus probleteweviewed in dif-
ferent models of MASSs. Firstly, consensus problem of MASthwhear dynamics
will be reviewed in fixed topology and varying topology. Theine past works in
consensus problem with nonlinear dynamics of complex netwil also be stud-

ied.

1.2.1 Consensus in Networks with Fixed Topology

For the pioneering works on this topic, consensus probleMA$s arises and is
investigated in computer science, where academic prigrgiven to computational
algorithm [12[13]. After that, a typical consensus protasstudied on the head-
ings and directions of moving particles with same spéed. [14]3], the average

consensus problem for MASs is investigated in the undicectenmunication net-

work where a sufficient condition is proposed that consewsmsbe achieved as || 1\




(b)

Fig. 1.1: One application of consensus: formation control.




long as each agent is jointly connected to all the othersidutie contiguous time
intervals. In[9], a method of eigenvalue analysis of Laj@daanatrix is proposed
and the connectivity between topological connectivity amighted adjacency ma-
trix are established. It also proposes consensus condifidASs with network
communication constraints and information disturbs. Basethe work[[3], Ren
and Beard investigate the consensus problem in a more dgeasewith directed
information exchange. Also by combining graph theory andrimaheory, they
provide a consensus condition that a spanning tree in conaation network is
a necessary and sufficient condition for consensus. Thenptbthod is extended
to switching topology and asymptotical consensus condisgorovided that con-
sensus of MASs with switching topology can be achieved ifg b spanning tree
frequently enough for communication netwdrk|[15]. Thus)sensus of MASs with
fixed topology has already been extensively investigatelcham-conservative con-
sensus conditions has been provided by checking the topofatetwork based on
employing graph theory.

Linear dynamics of agent is widely adopted in that it can $ynaescribe a real
world phenomenon and give a solution for these mathematicdllems based on
linear algebra. Lots of existing results use this model qaphat in numerous real-
world implementations like unmanned flying vehicles, kinefears and moving
particles[[3,14]. Starting with initial works on linear dgmics, the consensus prob-
lems begin to attract attentions from a number of reseascli@r15]. Especially,
the consensus problem of MASs with first-order dynamicsuslistl extensively
where the agent is driven by the influence of its neighbau<18]. For first-order
consensus, it is shown that the general communicationtateiplays a significant
role for MASs to reach the asymptotical consensus.

Besides the first-order consensus, in order to meet the deofgractical im-
plementations, a more complicated model of MASs with seemader dynamics is
proposed and investigated [19+21]. In this model, not omlyifon state is con-

sidered, but also the velocity state. The second order agnseaequires that both




the position state and the velocity state of each agent tehd same. This kind of
dynamics gives a better approximation of motion in phydiuss triggering a great
academic passion in this field. In_[20], consensus condiborsecond-order dy-
namics is proposed by investigating the topological stmecand the second largest
eigenvalue of Laplacian matrix is deemed as a key role inrscoder consen-
sus. In[21], necessary and sufficient conditions for seamdér consensus are
proposed by eigenvalue analysis and matrix theory.

Furthermore, a more general model, including higher ordesensus proto-
cols, is proposed and considered[in|[22—-24].[In [25], a gdr@otocol for higher
order consensus is considered according to the transvatsiétyg to the manifold
of consensus. This work is originated from the work of syodimation in complex
networks [26]. In[[22], a distributed containment problesnconsidered for net-
worked Lagrangian systems with multiple leaders under ectéd graph. In[24],
the definition of subsystem is introduced and a necessarguaifidient condition
is provided for asymptotical consensus with general higinder dynamics if all
subsystems are proven to be asymptotically stable. Morgthwe work also shows
that for higher-order consensus, the largest number obdisected stable and un-
stable consensus regions are provided and consensus of 64A®e achieved if the
nonzero eigenvalues of the Laplacian matrix locate in thblstconsensus regions.

Not merely consensus problems with continuous-time dyoarare investi-
gated, but also the problems with discrete-time dynamibgredifference equation
is used to describe the dynamics of MASs|[27, 28] In [27]¢cdite-time dynamics
is considered for MASs with time-varying delays and a cldsffective consensus
protocols are provided to solve consensus problems wittasiseamption that the
agent can merely use delayed information of themselves28h poth the cases
of leaderless consensus and leader-follower consensusoastdered for linear
discrete-time MASs. By using state feedback protocolseaheo consensus prob-
lems can be tackled, provided that the dynamic graph remainy connected.

In [29], a distributed algorithm for average-consensu$discrete-time dynamics




is proposed based on a formal matrix limit notation of averagnsensus, which
can be achieved if at every instant the network topology lartteed and the union

of graphs over every time interval is connected.

1.2.2 Consensus in Networks with Changing Topology

For consensus problem of MASs with fixed topology, non-corege/e results can
be given based on graph theory and matrix theory. But for éise of network with
varying topology, the situation is the same. As we all knosrtgrbations and dis-
turbances are brimming over this world. For a straightfedsastance in electrical
power grid, the parameters of power transmission lined) asdhe values of resis-
tance and capacitance, are fairly vulnerable to alter umdensistent temperature
and air pressure. Thus, numerous attentions have recesgly tasted on robust
consensus problem of MASs with unfixed communication togyplo

Firstly, the interaction topology between agents is assutode dynamically
changing and can be described by a set of directed graph$/IE130]. Vicseck et
al. propose a discrete-time model for MASs with all agentsingin the plane. In
this model, each agent’s heading is driven by a local infeiona from each agent’s
information and its own [14]. This nearest neighbour rulstigdied and extended
to a more general case in which possible changes in neaiigstooers are taken
into account over time_[3]. A collection of simple graphs orvertices is used
to describe all possible neighbour relationships. Thusyigcked linear system
is established to present the Vicseck model. Consensustioonid provided that
a common steady state of each agent can be obtained if alisagenlinked with
their neighbours with sufficiently large frequency. [Inl[3®dme model of switching
topology is studied and a common Lyapunov function of disagrent dynamics
is established for this hybrid system. Based on same swicsirategy, in[[27],
time-varying delays and switching communication topolagy considered, where
network topology switches amongst a group of graphs alr&adyn. A class of

effective consensus protocols are provided by using thes sdate information at




double time-steps. 1N [28], via state feedback controlguols, consensus problems
of both the leaderless and leader-following cases are tigetsd.

Secondly, networks with time-varying topology can be foand used in a great
number of academic fields, like engineering, biological andial systems. This
kind of network topology has successfully described thefhistate of communica-
tion links, the loss in data transmitting, the variationsagfological parameters and
the reconfiguration of formations in flocking problem. Thiirsie-varying topology
of MASs is investigated in recent yealrs [31+34]. Consenenditions are provided
for MASs with time-varying topology without any time-delay stochastic distur-
bances[32,33]. In[31], a time-varying topology with distited stochastic approx-
imation is used for describing the communication noisedficsnt conditions are
provided for mean square average consensus and sufficiedition is also given
for almost sure consensus. In[34], asynchronous consensbkem of MASs with
second-order dynamics is considered. Each agent can gsitiopoand velocity
information from others at each sampling-time. Sufficieamdition is proposed for
consensus of MASs with intermittent information transnassand asynchronous
data update. In_[35], the consensus problem of MASs withreorder dynam-
ics in discrete-time is considered where the interactiguolagy is time-varying.
By applying Lyapunov direct method, a consensus contradletfesigned for any
bounded time-delays.

Furthermore, another effective way to model the time-vagyietworks is by us-
ing stochastic switching networks [36-+40]. In]41], a blimgmodel of small-world
network is proposed for nonlinear consensus and for thisaiactonnection graph
stability method is used for synchronization problems. Byng the same method,

in [36], a new changing topology is considered where bothdfiX& -nearest neigh-

bor coupling and time-dependent on-off coupling are stlidhethis work. In [37], =1 5
-
each agent is deemed as a random walker and location chahggeris in the =
I
lattices is used to model the random changes of network wégeat can obtain | f,jifjl'r'«
| T
information only from other agents in the same lattice. [18][3y employing ariru
_Eranes)




stochastic Lyapunov stability theory, sufficient condigaare provided for global
synchronization with a high frequency and random switcimatyvork. In [39] 40],
another stochastically blinking topology is consideredimch coupling parameters
of network randomly switch within a collection of values atextain interval.
Lastly, topological uncertainties are also used to mocdelithe-varying topol-
ogy of MASs. By introducing this kind of uncertainty, netwsrwith parametric
uncertainty on topology can be effectively approximatedniany real-life appli-
cations [42]. Especially for consensus problem, successiplementations are
existing in a wide range of academic societies and indwss{d&-+45]. In [43],
consensus problem with linear dynamics is considered wdthti@e uncertainty.
In [44], robust synchronization problem is investigatedevehthe network is dis-
turbed by relative-attitude error. In_[45], 2-D synchraatinn problem is analyzed
where the control gains are under the disturbs of squargraitée bounded and
time-varying uncertainty. Ir_[46], robust synchronizatjgroblem is considered by
using contraction theory. The time-invariant parametnicartainty is used to model
the structural disturbances. For this kind of uncertaiatypnstant contraction ma-

trix is introduced to solve the robust synchronization peai

1.2.3 Consensus in Networks with Nonlinear Dynamics

In various phenomenons, autonomous agents are ususakyrggal by intrinsic
nonlinear dynamics where a comparatively rich complex biela can be exhib-
ited, like periodic circles, bifurcation and chaotic matdf. Another definition: syn-
chronization is defined to investigate these phenomengmsh®onization problem
is a key issue in engineering, biology, physics and sociahse. It usually con-
siders the agent with nonlinear dynamics in complex netaoActually, the syn-
chronization and consensus with nonlinear dynamics arsdhe thing but with
different names in corresponding societies| [26, 47]. Jex&mples can be eas-
ily found in World Wide Web, social science, biological Metdism and power

grids [26/47551]. A great number of methods have been idvaied developed
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both for nonlinear consensus of MASs and for chaotic synabkegion [11,52]. We
will use consensus with nonlinear dynamics instead of ssorghation in the rest
of this thesis.

Firstly, local consensus with nonlinear dynamics is extetg investigated in
past decade from the pioneering work of Pecora and Calrr8]l [Specifically, for
uncertain coupling matrix, master stability function medh(MSF) is applied for
local consensus with nonlinear dynamics in which a maximyapunov exponent
of differential equation for nonlinear network is calca@dt[49]. This method has
been proven to solve the local consensus with nonlinearrdigsasuccessfully by
linearizing the nonlinear intrinsic function. Particulaterest in local synchroniza-
tion is triggered by this method and lots of works extend thethod to various
specific implementations such as kinds of clustering coeffts, sorts of coupling
strength and different consensus protocols [54]. Beshiesiethods of eigenvalue
analysis on the coupling matrix, another interesting amdwgating thought, named
as Connection Graph Stability, is proposed by combing Lyapuirected method
with graph theory and applying this method to stochastiaawng network[[55].
Local consensus problems are also considered in timengippology. In[[56],
a consensus criteria is given for fast switching networkhvétsufficiently large
switching rate.[[57], by using a time-average topology tpragimate the time-
varying topology, consensus conditions are provided ti@titne-varying topology
and the time-average topology are actually the same for agmgiLaplacians.

In addition, a growing number of researches have been stgdlye global con-
sensus problem of MASs with intrinsic nonlinear dynamics{# [58=68]. In[[47],
global consensus in complex networks is considered. By idgfegeneralized al-
gebraic connectivity, the global convergence propertiesbtaining consensus are
analyzed in strongly connected networks. [Inl[58], many amions have been
obtained under the assumption that the network is weightéaghbed, and a dis-
tributed algorithms is proposed by non-smooth analysigb0j, A necessary and

sufficient condition on convergence of a multiplicative sexace of reducible row-
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stochastic matrices is proposed and an overall closed lggipra is constructed to
exhibit cooperative behaviors. For MAS with intrinsic nioiar dynamics, Lya-
punov methods are successfully applied to derive conseuswltions[47,59, 62].
Particularly, quadratic Lyapunov function is a main apgtoaidely employed to
guarantee the consensability of MASs.

For a more sophisticated case of global consensus withrrearlidynamics and
time-varying network, Lyapunov stability method, espégithe quadratic stabil-
ity, is used to generate consensus conditions[[43—45, 64¢oring to uncertain
adjacency matrix, MSF and eigenvalue analysis, or releglarivative tools, can
hardly be used, making Lyapunov stability theory as a mesast method for ro-
bust consensus with nonlinear dynamics. [Inl [65], impuls@asensus criteria is
proposed for uncertain dynamical network with nonline#imsic dynamics where
the network coupling functions is assumed to be unknown ganted, provided
that Lipschitz-like conditions are satisfied both for theimsic nonlinearity and for
the coupling nonlinearity.

Consensus problem with nonlinear dynamics is also widehsictered under
the influence of topological uncertaintieés [43H46, 64]./48][ robust consensus of
MASSs is investigated with additive uncertainty and conssreondition in terms of
Linear Matrix Inequalities (LMIs) is provided by using miattheory. Furthermore,
a feedback controller is designed for robust consensusruraended perturba-
tions based on Riccati equations. [n[[44], provided thatesysdynamics is under
the disturb of a relative-attitude error, a robust globalsensus problem is ana-
lyzed with a decentralized hybrid feedback control schemd45], by searching
a Quadratic Lyapunov Functions (QLF), the robust 2-D cosssmwith nonlinear
dynamics is guaranteed with time-invariant parametriceutainties restricted in a
polytope. In[64], also by using the method of QLF, robustsarsus conditions are
proposed for uncertain system where system control gasmpenturbed by time-

varying uncertainties with square integrable bound .[Ir],[é6ntraction theory is

introduced and applied to complex network with polynomihlnearity and time-
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invariant uncertainty. Robust stability condition forghiind of system is proposed

by searching a parameter-independent polynomial cordrastatrix.

1.3 Mathematical Preliminaries

1.3.1 Algebraic Graph Theory

In graph theory, a weighted directed gragh= (<7, &, G) of order N can be
described by a set of nodeg = { A, ..., Ay}, a set of directed edgesbelonging
to &/ x o/ and a weighted adjacency matiix = (G;;)nxn. Provided that an
information can be transmitted from thieh node to the-th node, a directed edge
e;j € & is denoted, i.e. a directed edge < & if and only if G;; # 0. Meanwhile,
A, is called parent node and; is called child node.G is denoted to be positive
if G;; > 0 for all 7, j, otherwiseG is said to be non-positive. It is useful to give

following definitions.

Definition 1.3 (Directed path and simple path) A directed path from naidéo A,
is a sequence of directed edges (41),(Ai1, Ai2),....,(Au, A;). A pathis called a

simple path if it has no repeated vertices.

Definition 1.4 (Strongly connected graph) A directed netw@fks strongly con-
nected if there is a directed path between any pair of disthutes A, and A;,

i,j =1,...,n,then¥ is denoted as a strongly connected graph.

Definition 1.5 (Reducible matrix) In a directed netwo¥k a matrixG is reducible
if there exists a permutation matrix € RY and an integern with1 < m < N —1
satisfying
PTGP = Cj” Y
G21 G22
whereG,, € R™™ Gy € R=mxm and Gy, € R-mx(=m)  Otherwised is

an irreducible matrix.
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Definition 1.6 An undirected graph is defined to be a tree if for any two vesin
this graph are connected by exactly one simple path. A dicetee is a directed
graph if the underlying graph is a tree provided that the diren of network is
ignored. A directed graph is defined to be a directed rooted tf at least one root
r has the property that, for any nodedifferent fromr, there is a unique directed
path fromr to v. A spanning tree is a directed rooted tree containing all tioeles

of 4.

We say that a graph contains a spanning tree if a subset ofrépd dorms
a spanning tree. From the coupling matfi;;) v« n, We can obtain a Laplacian

matrix defined by

Lij = =Gy, Vi#j
Lii = _E?:Lj;éi[’ij'

It is worthy to note that the the Laplacian matrix satisfiesdiffusion property that

(1.1)

d Li=0Vi=1,..n (1.2)
j=1

Thus,1y is a right vector of Laplacian matrix corresponding to eiggue 0.

Lemma 1.1 A matrix G is an irreducible matrix if and only if its corresponding

directed graph is strongly connected.

Lemma 1.2 The directed grapl/ has a spanning tree if and only if the Laplacian
matrix L has a simple eigenvalue 0 and all the other eigenvalues atbearopen

right plane (have positive real parts).

More details and applications of algebraic graph theoryoesfound in [66-68].

1.3.2 Lyapunov Stability Theory

In this subsection, the tools of Lyapunov stability theonif ise reviewed. Firstly,

basic definitions will be introduced and stability theoremils be provided later.
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Consider a dynamical system satisfying
&= f(x,t), x(tp) =0, ,x € R" (1.3)

where standard conditions are satisfied for, ¢) with the existence and unique-
ness of solutions. Then, the definition of stability in th@se of Lyapunov and

asymptotic stability is given as follows
Definition 1.7 The equilibrium pointz* = 0 of (I.3)is said to be stable (in the
sense of Lypunov) at= ¢ if for any e > 0 there is aj(ty, €¢) > 0 such that

lo(to)]| <6 = lim a(t) < e (1.4)

Stability in the sense of Lyapunov is a very mild requiremarthat it just requires
the trajectories starting close to the origin and remaimioge to the origin. The
equilibrium point is calleduniformly stableif §(¢o,¢) > 0 in above definition is

independent of,. In other words, conditiori_(11.4) holds for aj|

Definition 1.8 An equilibrium pointz* = 0 of (1.3) is asymptotically stable at

t = tq if following two conditions are satisfied:
e r* = (is stable.

e 2" = 0 is locally attarctive, i.e., there is &(t,) such that

et <6 = Jim x(t) =0

Based on Definitioh 118, uniformly asymptotic stability da@ given where)
is not a function of, with asymptotical stability satisfied. We say that an eglili
rium point isglobally stableif it is stable for all initial conditionszy, € R™. An

equilibrium point is defined to benstablef it is not stable.
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Definition 1.9 An equilibrium point is said to be an exponentially stabléhiére

are constants:,, a > 0 ande > 0 such that

lz()]] < we™ O la(to)|l, Vilz(to)| < € t > to.

wherea is defined to be the rate of convergence.

Exponential stability is a strong form of stability, imphg uniform and asymptoti-
cal stability.
Lyapunov direct method is proven to be an effective methoithvallows us to

establish the stability of a system. Defie a ball of sizec around the origin:

B.={zeR":||z|| < ¢}

Definition 1.10 A continuous functiofr” : R™ x R, — R is a locally positive def-
inite function (LPDF) if there exist someeand a continuous and strictly increasing

functiona : R, — R such that

V(0,t) =0, V(z,t) > a]|z]), Yz € Be, Vt > 0.

Definition 1.11 A continuous functio : R® x R, — R is a positive definite

function (PDF) if it is a LPDF and satisfies

lim a(s) — oo.
$—00

Definition 1.12 A continuous functiof¥’ : R* x R, — R is called a decrescent

function (DSF) if there exist son@eand a continuous and strictly increasing func-
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tion 5 : R, — R such that

V(z,t) < B(||z]), Vo € B., Vt > 0.

The time derivative of functioir” is obtained along the trajectories of the system:

In what follows, we usé’ instead oﬂ'/|¢:f(m7t). Basic Lyapunov theorems can be

displayed as follows.

Lemma 1.3 LetV be the derivative oV (z, t) along the trajectories of the system,

then

e The origin of the system is locally stabld/ifis a LPDF andV < 0 locally in

x for all ¢.

e The origin of the system is uniformly locally stabl&’ifs a LPDF and is also

a DSF, andV < 0 locally in x for all ¢.

e The origin of the system is uniformly locally asymptotigaitable ifV is a

LPDF and is also a DSF, andV is a LPDF for allt.

e The origin of the system is uniformly globally asymptoticatable ifV is a

LPDF and is also a DSF, andV is a PDF for all+.

This result does not give an explicit rate of convergencewlicg to the solutions
of equilibrium. Thus, it is useful to be modified in the caseegponential stability

as follows.

Lemma 1.4 The origin is an exponentially stable equilibrium point idaonly if
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there are some positive constants a,, as, ay and ae > 0 such that

ay[z]] < V(x,t) < asllx]],

V < —as|all,
ov

15, (@ Ol < aull]

where||z|| < e.

More details can be found in standard texts as[[69-72].

1.3.3 Square Matrix Representation

Whether a polynomial is semi-positive can be establishied&fely by determining
whether it is a SOS polynomial via an LMI feasibility test.deed, letf(0) be a

polynomial of degre@dy in § € R”. Then,f(#) can be expressed as

F(8) = (%) (F + L(6))dpol (0, do) (1.5)

whereg,.i (0, dg) € Rlrei(@de) is called power vector containing all monomials of

degree less or equal th,

B (a + dg)'
lpol((l, d@) = ngl (16)
L(6) is a linear parameterization of the affine space
Lot ={L=L": (x)"L(0)ppoi(0,dy) = 0, V0 € R*} (1.7)

in which § € Rwei(ed) js a vector of free parameters whose length is given by

1 1=

Npol(aa d@) = §lpol(a'7 d@)(lpol(aa dG) + 1) - lpol(a'a 2d9) (18) == fe2)

e |

e

The representatio (1.5) is known as Gram matrix method apdu® Matrix .Fa-i"J'-';;'—l‘ '-

Representation (SMR) [73]. This technique allows one temeine whether poly- ||/ i:--f!"._-ji
i
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nomial f(6) is a SOS. In particularf(#) is SOS if and only if there exists@asuch
that

F+ L) >0 (1.9)

which is a LMI feasibility test, and hence it is a convex op#ation problem.
Next we will discuss the case of homogeneous polynomiatidedarly, f(0) is
a homogeneous polynomial of degizg in 6 € R®. Then, f(#) can be expressed

as

F(0) = ()" (F + L(8)) brom (0, do) (1.10)

where ¢pom (0, dy) € Rhom(®do) js @ power vector containing all homogeneous

monomials of degred,,

(a+d9 — 1)'

lhom<a7 de) = m-

(1.11)
L(0) is a linear parameterization of the affine space

Lrom ={L=L": (*)"L(0)dnom (0, dg) = 0, V0 € R*} (1.12)
in which§ € Rrom(:do) js @ vector of free parameters whose length is given by

1
Mhom(au dG) - élhom<a7 d€><lhom(a7 dG) + 1) - lhom<a7 2d€) (113)

A simple example is given here to illustrate the SMR techaig@onsider polyno-

mial f(z) = 2z* + 32% + 4z + 5, one hasl, = 2, a = 1. Then,f(x) can be written

as follows
x? 2 00 0 0 =6
bpoi(0ide) = = |, F=|03 2 [,CO=| 0 20 0
1 0 2 5 -6 0 0
This method can also extended to matrix polynomials. L&t) € R"*" be ? [ ‘[_ jE
| -h G |
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a matrix polynomial of degregd, in # € R®. Then, one can expresg(0) in the

following form

M(@) = (I)(M + N(5)7 gbpol(ea d0)7 n) (114)

and®(M + N(6), ¢pa(0, dg), n) denotes the expression
(I)(M + N(5)7 gbpol(ea d9)7 n) = (*)T(M + N(d))(gbpol(ea d@) ® ]n) (115)

whereM € Rrlpol(ado)xnlpalads) js g suitable matrix andV(6) is the linear param-

eterization of the affine space
N ={N = NT g Rwatledo)nlar(edo) . @ (N (5), ppoi(0, dg),n) =0} (1.16)
whose dimension is
ppor(a, dg,n) = %n(lpol(a, do)((nlpor(a, dg) + 1) — (n+ 1)ly0i(a, 2dy))). (1.17)

The expression in the forrh (1]14) is used to establish whetimeatrix polynomial
is SOS via an LMI feasibility test. Indeedy/(0) is a SOS if there are matrix
polynomialsi/, (0), Mx(6), . .. such that

M(6) =) Mi(6)" Mi(6) (1.18)

and this condition holds if and only if there isyasuch that the following condition
holds:
M + N(8) > 0. (1.19)

Similar results can be obtained for homogeneous polynamaailix by using[(1.110).
We omit it here.
It is useful to note that SOS polynomials have been invetgdiza optimization

over polynomials for a long time. The survey [74] and refeemtherein provide

more details and algorithms about SOS polynomials.
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1.4 Problem Statements

This thesis is concerned with the consensus problem of MASstapological un-
certainty. Since autonomous agent can be simply descnbkueiar dynamics and
the communication between agent is affected by noise (ations, environmen-
tal fluctuations and parametric variations, it is naturagitee a model of uncertain
MASSs considering these uncertainties. Furthermore, bas¢lde matrix theory and
graph theory, the consensus problem of MASs with linear dyos has already
been solved. A topological condition is proposed that cossg with fixed topol-
ogy can be achieved if and only if the directed graph assediatith MAS has a
spanning tree. Nevertheless, it is still an open questianuthder what kind of con-
dition robust consensus can be achieved with the topolbgnezertainties. In addi-
tion, Lyapunov stability theory, especially quadratic pyaov function, is widely
used to construct robust consensus conditions and a nurhbeswts have been
proposed. However, quadratic Lyapunov function geneaaservatisms in many
ways. In order to decrease the conservatism, one useful sv@ydonstruct more
complex Lyapunov function with higher degrees. Thus, agotjuestion arises nat-
urally what is the maximum degree of Lyapunov function fdvsw robust consen-
sus problem. Besides that, Lyapunov direct method alsanesgan error dynamics
which can not easily be obtained for MASs with nonlinear dyits, additionally
increasing the conservatism by using this widely-adoptethod. This stimulates
the researchers to implement other advanced methods facteservative results.
Finally, polytopic parametric uncertainty is a typical nebtbr topological disturbs.
A key problem for this kind of uncertainty is to calculate thegest bound where
the robust consensability remains, giving special académérests to the robust
consensus margin for topological uncertainty.

Indeed, following research problems are of great interests

e For MASs with linear dynamics and topological uncertastieonstruct ro-
bust consensus conditions both for first-order consenstifoasecond-order

consensus.
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e For robust consensus problem with nonlinear dynamicsbksitiaboth local
and global consensus conditions under which the local avtabgjfobust con-

sensus can be achieved respectively.

e For robust consensus with nonlinear dynamics, provide aenadvanced
method relaxed from global Lipchitz condition and withosing the error-
dynamics, and reduce the conservatism comparing with gtiadtyapunov

method.

e Given an uncertain MAS with polytopic uncertainties, corgpthe upper
bound of uncertainty where the robust consensability resjaand give a

solvable condition for calculating this problem.

e For nonlinear inequality conditions for robust consensalse advantages of
SMR technique, parameterise corresponding affine spaceamnetrt these

problems to convex optimization problems.

1.5 Contributions

This section briefly summarizes the main contributions of thesis as follows:

e Robust Consensus

Robust consensus conditions are provided for the uncdvtaiis with var-
ious consensus protocols. Specifically, the topologicaktainties are as-
sumed to exist in the communication network, which makeffiidilt to check
the consensability. By using parameter-dependent Lyapfurations, both

for first-order and second-order consensus, robust condgi provided re-

spectively. Moreover, consensus problems with contintone and discrete- | ‘__E, xrl" '
time dynamics are investigated and corresponding robustersus condi- | :f_il
tion is given respectively. With regards to these consensaslitions with E-—JL?:;-—L
topological uncertainties, solvable conditions built bypoying the SMR f , E. J
technique are constructed and original problems can beftraned to some v .':’.;"'.'
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optimization problems in terms of LMIs, which can be verifieg standard

softwares.

Degree Bound of Lyapunov Function

For robust consensus problem of MASs with linear dynamiastapolog-
ical uncertainties, consensability can be guaranteed pio#ixng a polyno-
mial parameter-dependent Lyapunov function. Necessatsafficient con-
ditions can be provided to ensure the consensability, aadufiper bound
degree of Lyapunov function can be given both for first-omisensus and
for second-order consensus. It shows that this upper beumat only related
to the degree of coupling matrix, but also related to the remab agents,
which means for a large-scale system, a comparatively higbgree Lya-
punov function can be constructed to ensure the conseitgaifiMAS and
decrease the conservatism with respect to the resultsajeddry quadratic
Lyapunov functions. Similarly, upper bound degree of Lyagpufunction
could also be found for consensus problem of MASs with neairdynam-

ics, but only sufficient condition can be provided currently

Robust Uncertainty Margin Robust consensus problems can be solved by
using Lyapunov stability theory, and robust consensgbdédn be guaran-
teed with regards to topological uncertainties constihinea certain semi-
algebraic set or a polytope. Firstly, by exploiting a HPLIE tlobust local
consensus problem of MASs with nonlinear dynamics can besfioamed
to a robust stability problem. Using SMR technique, the sblmonsensus
margin can be calculated by solving a GEVP. On the other hbpdjs-
ing contraction theory, the robust global consensus caml@sensured via
constructing a parameter-dependent contraction matase8 on this robust
consensus condition, the maximum polytopic uncertaintylmchecked for
globally asymptotically consensus, which is a convex oation problem

consisting of GEVPs. By using this margin, a comparison ketwproposed
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method with quadratic Lyapunov function and a parametee@ndent con-

traction matrix can be launched.

e Contraction Analysis

Contraction theory is introduced in robust analysis of emssis control, and
a new type of contraction matrix, the homogeneous parardef@endent
polynomial contraction matrix, is built in order to handtEbust consensus
problem of MASs with nonlinear dynamics. Indeed, a paramdg¢pendent
contraction matrix is introduced and robust consensusitionds proposed
for MASs with topological uncertainties via using the palrtontraction and
constructing an auxiliary system. Furthermore, with rdgao the polyno-
mial nonlinearity, HPD-PCM is established to ensure theusbltonsensus
with topological uncertainties. It shows that this new tygfecontraction
matrix displays obvious advantages comparing to affinerparar-dependent
quadratic Lyapunov function and parameter-independdghpmial contrac-

tion matrix.

1.6 Thesis Outline

This thesis is organised as follows:

e Chapter 2 investigates robust consensus for uncertain MASs witlaliioky-
namics. Specifically, it is assumed that the communicatadnsetwork is
described by a weighted adjacency matrix whose entrieseaarerig polyno-

mial functions of a vector constrained in a set depicted mege polynomial

inequalities. For this uncertain structure, necessarysaifftctient conditions

are given to guarantee the robust first-order and robushsesaler consen- | ‘__E. xrlﬁ'
sus, also in both cases of positive and non-positive cogplion the other | :r_il
hand, robust consensus is also investigated for MASs watréie-time dy- E-—JL?:;-—L
namics. Both considering systems with single and doubkgiators, nec- i , [_ J
essary and sufficient conditions are proposed for robustesmsus based on el
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the existence of a polynomial parameter-dependent Lyapturection. In

particular, for achieving necessity, an upper bound on¢lgeiired degree of
Lyapunov function is given. Based on the zeros of a polyngraiaecessary
and sufficient condition is given for ensuring the robustssarsus with single

integrator and nonnegative coupling matrices .

Chapter 3 considers local and global consensus of MASs with nonlinear
dynamics, regarding to limited solution manifold. For Ibcansensus, the
original system is firstly transformed to a polytopic systeihen, a suffi-
cient condition is provided based on the use of HPLF. Foralobnsensus,
another method is provided via searching for a proper PLBoAlhe pro-
posed methods use more complex Lyapunov functions than @bk can
be deemed as a special case of proposed method. In additisrchiapter
also investigates robust local consensus in MASs with tirarging topologi-
cal uncertainties constrained in a polytope. In contragtditional methods
with non-convex conditions via using QLF, a novel critersagiven based
on using HPLFs where the original system is properly appnaxed by an
uncertain polytopic system. Moreover, correspondingaaky conditions in
terms of LMIs have been given by using SMR technique. Thelytpoic
consensus margin problem is introduced and investigatedaekling with

GEVPs.

Chapter 4 concerns robust global consensus problem of polynomi&ksys
disturbed by time-varying uncertainties on topology. Inticalar, structured
parameters is assumed to be in a bounded-rate polytope. | Nomsen-
sus conditions are proposed by using parameter-dependetraction ma-
trices for robust exponential consensus and for robust psytinal consen-
sus. Moreover, for polynomial intrinsic function, by inthacing a new class
of contraction matrix, i.e., HPD-PCM, tractable condigan terms of LMIs

are provided via some suitable affine space parametenigati;m addition,

the variant rate margin for robust asymptotical consensigvien by han-
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dling GEVPs. Moore-Greitzer jet engines and a six agenesgystre used to

demonstrate the effectiveness of proposed methods.

e Chapter 5 concludes this thesis by showing final remarks and pointurng o

our future works.
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Chapter 2

Robust Consensus for Uncertain and

Linear Dynamics

2.1 Introduction

This chapter considers MASs with linear dynamics and tagiokd uncertainties,
both for continuous-time consensus protocol and for diseliene consensus pro-
tocol. Specifically, it is under the assumption that theieatof weighted adja-
cency matrix are generic polynomial functions of a vectoun€ertain parameter
constrained in a semi-algebraic set. Firstly, necessadysaifficient conditions
are provided to ensure the robust first-order and robustnskecoler consensus
for continuous-time consensus protocols, and for bothscaé@ositive and non-
positive weighted adjacency matrices. Moreover, it shows these conditions can
be transformed and checked by convex optimization progragumOn the other
hand, robust consensus problem with discrete-time dyrarmsialso investigated.
Necessary and sufficient conditions are given for robussensus based on finding
a polynomial parameter-dependent Lyapunov function. tteoto achieve neces-
sity, it is proposed an upper bound on the degree that caedigapunov function
requires. Through checking the zeros of a constructed patyal, a necessary and

sufficient condition is provided for robust first-order census with nonnegative
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network weights. Lastly, it is also shown how these condgioan be transformed
to convex optimization problems by SOS technique. NumEexamples illustrate
the usefulness of proposed methods.

This chapter is organized as follows. Secfiod 2.2 formsléte problems. Sec-
tion[2.3 proposes conditions both for robust first-order@afdist second-order con-
sensus of MASs with continuous-time protocols. With regdacddiscrete-time pro-
tocols, Sectiom 2]4 proposes consensus conditions botiolwst first-order and
robust second-order consensus. Sedtioh 2.5 illustrageprtiposed methods with

numeral examples. SectibnP.6 concludes this chapter witteginal remarks.

2.2 Problem Formulation

In this chapter, uncertain MASs are considered where thghted adjacency ma-
trix is disturbed by an uncertain vector. Let such a matrixie) ¢ RV where

N is the number of agents of MAS add= R” is an uncertain vector satisfying

CRSHY) (2.1)
where
Q={0ecR*: s(0)>0Vi=1,...,h} (2.2)
for some functionsy, ..., s, : R — R. Therein after we will assume that the en-
tries of G(0) ands;(0), . . ., s,(0) are polynomial functions. In addition, we denote

thatG(0) is positive if G;;(6) > 0 for all 7, j and for all§ € €, otherwiseG(0) is
said to be non-positive.
For robust first-order consensus, we concern with the coatis-time uncertain

MASSs described by

Bi(t) = Y Gyl0)(w;(t) —wi(t), i=1,...,N (2.3)

J=1, j#i

wherez; is the state of the-th node, and~(#) could be either positive or non-
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positive. Thus, here we can propose the robust first-ordesestsus problem as

follows.

Problem 2.1 To establish if the uncertain MAYZ.3) achieves robust first-order

consensus for all uncertain parameters and for any inittates, i.e.

lim x;(t) — x;(t) =0 Vi, j V0 € Q. (2.4)

t—o00

Aims to address above problem, we would like to rewrite theeutain MASs

(2.3) as
#(t) = —L(0)a(t) (2.5)

wherex = (z1,...,2,) € R"is called the state vector, addf) = (L;;(0))nxn IS

said the uncertain Laplacian matrix satisfying

Li;(0) = —Gy(0)Vi#j
Li(0) = — Z?:L j#i Lij(e)'

(2.6)

It is worthy to point out that the uncertain Laplacian mattiefined above has the

diffusion property that
d L) =0Vi=1,...n (2.7)

For robust second-order consensus problem, the followongjrruous-time un-
certain MASs is considered

zi(t) = pilt)

n

pilt) = D aGy(0)(x(t) — wi(t)

j=L, i#i =9
+ D BGyO0)(ps(t) — pilt))
j=1, j#i
| i: |
in whichz; € R is the position state of theth node,p; € R is the velocity state of | r :Z-"[_ J1
thei-th node, andy, 5 € R are constants. We also denote tG4#f) in this case can I h .'1 =
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be either positive or non-positive matrix. Thus, the rolsgstond-order consensus

problem can be proposed as follows.

Problem 2.2 To establish if the uncertain MA%2.8) achieves robust second-order

consensus for any initial state, i.e.

tlim zi(t) —xi(t) = 0
e Vi, j VO € €. (2.9)

lim p(t) = p;(t) = 0

For the sake of addressing this problem, we would like to itevihe uncertain

MASs (2.8) as

#i(t) = pi(t)
pi(t) = —ZaLij(H)xj(t) — > BLy;(0)p;(1) (249

Jj=1

wherex € R"™ is the position state vector apde R” is the velocity state vector.
We define the global state vectorps- (27, p7)T € R*". Then, a compact form of

system[(Z.100) can be intrduced as

y(t) = L(0)y(t) (2.11)
Wherez(e) is called the uncertain extended Laplacian matrix provioed

~ 0 I
L(6) = . (2.12)
—aL(§) —BL(6)

2.3 Continuous-time Dynamics

This section provides both the robust first-order and se@vddr consensus condi-

tions.
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2.3.1 First-order Consensus

Lyapunov stability theory is broadly adopted to investigidie properties of dynam-
ical system. By associating the robust consensus with Lyapstability theory,
we propose a new condition for establishing robust firsebmbnsensus based on

LMIs. Specifically, first we define a matri, ¢ R™*"~! satisfying
img(V,) = ker(1}) (2.13)

wherel,, is a column vector of dimensianwith every entry being.

Then the transformed uncertain Laplacian matrix is intoedlas:
L(0) = VI L(O)V;. (2.14)

Theorem 2.1 With either positive or non-positive weights, robust fostder con-
sensus for uncertain MAS can be obtained if and only if theigt®a polynomial

matrix P, : R* — R*~*"»~1 gych that

Vo € Q. (2.15)

ProofLet us observe that, is an eigenvector of.(f) corresponding to the eigen-
value zero. In addition, one can also observe Yhat.(6)V; has the same eigenval-
ues ofL(#) while the algebraic multiplicity of the eigenvalue zero bagn reduced

by one. i.e.

spdZ(6)) U {0} = spdZ(0)) (2.16)

Define a dynamical system as follows.

z(t) = —L(0)i(t). (2.17)



One can observe that = ~1,, is the equilibrium point of (217, € R. Thus
(2.17) is asymptotically stable is equivalent to the staenthat the robust first-
order consensus can be obtained. With respetttol(2.16harid/apunov stability
theorem, one necessary and sufficient condition fhatl(2s1a9ymptotically stable
for all 0 € Q is that L(0) has exactly one simple eigenval0eand all the other
eigenvalues locate in the open right plane. Based on Lyapstability theorem
for linear systems, this is equivalent to saying that ther?, (¢) such that[(2.15)
holds for allf € Q2. Thus, this theorem holds O
In order to check the condition of Theordml2.1, one useful Bayp exploit
SOS matrix polynomials. Indeed, |1€%(0) andGy;(0),i = 1,..., h, be symmetric

matrix polynomials to be determined, and let
R N h
Ry(0) = Pi(8)L() + L(6)" P (0) — Z G1i(8)s1i(0). (2.18)
i=1

It is obvious to obtain thaf(2.15) holds if there exists 0 such that

Pi(#) —I,_, is SOS (2.19)
R1(9) —cl,_q is SOS

Actually, as long as the constraints [n (2.19) hold with- 0, for anyf € €, it
directly follows thatG,;(6) > 0, P (¢) > 0 and

(2.20)

AN
~
=
E)
=
_I_
/§>
=

~
~
=

|
o
7

< P(0)L(6) + L(6)" Py (6)

i.e. (2.1I5) holds.

The condition[(2.19) can be established via a convex opéititia problem with
LMI constraints by exploiting the representation of mapolynomials reported in

Sectior’I.3B. Specifically, I&m, be the degree of/1;(), 2m be the degree of
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P, (0), and2m, be the degree aR, (/) — cI. Here we introduce the representations

Gu(0) = (G, ppor(,mi),n — 1)

Gu(@)s1:(0) = @(Uu(Gui), Ppar(0,m0),n = 1) (2.21)
Pl(‘g) = q)(plu(bpol(evm)vn_ 1)
Rl(e) = (I)(F1+D1(5)7¢p01(07m0)7n_ 1)

whereGy;, Uy;(Gy;), P, Fy and D, () are symmetric matrices. Moreover, let us

define

*

"= sup c
c,éll7pl,5
G >0
(2.22)

S.t. P > I,

h
Fy + Dy(6) — cl,, — Z Ui(Gri) >0
i1

\

in which s; ands, give the sizes of?, and F}, respectively. Then, it follows that

(2.1I3) holds ifc* > 0.

Remark 2.1 It is worth noting the relationship between conditio@s158) (2.19)
and (2.22) One can use conditiof®.19)to check the feasibility 0{2.13) while
(2.19)is only a sufficient condition for robust first-order consasis In addition,

condition(2.19)in terms of SOS is equivalent to the LMI condit{@22)

For a network topology with positive coupling weights buthvaut parametric
uncertainties, it has been proved that the structure oforitplays a key role to de-
termines whether the consensus can be obtained. The fotiowsult extends to the
case of uncertain MASs existing conditions obtained forcthee of MASs without

uncertainty[[15], and gives a further condition based onzeif a polynomial.

Theorem 2.2 For a givenL(0) in (2.68) and a directed networl¢ = (<, &, G(6))

=]
with a positive weights, i.ede;; € & if and only ifG;;(6) > 0, the statements as ||+ 3
1

H:
follows are equivalent. i 2 it
AU
lL"*" Al |

a) Robust first-order consensus can be achieved.
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b) VO € Q, L(6) has exactly one simple eigenvaluand all the other eigenval-

ues locate in the open right half plane.
c) VO € Q, the directed networl has a spanning tree.

d) VO €, q(8) # 0, where

d
q(8) = ﬁl()\,e) - (2.23)
and
[(A,0) = det(A — L(0)). (2.24)

Proof Assume the Laplacian matrik(0) is given by [2.6). Then, the first three
statements can be proved to be equivalent which followstyr&om the analogous
ones obtained for the case of MASs without uncertainty [1Hjom Lemma 3.3
in [15], one can obtain thak(\;(L(#))) > 0, Vi = 1,2...,n, V0 € Q. In addition,
statement d) implies thdt(#) has exactly one zero eigenvali®, € (2. Therefore,
statements b) and d) are also equivalent, which completepithof. O
One effective way to check the condition of Theofen 2.2 sirgif exploiting

SOS polynomials which amounts to solving an LMI problem. ded, let us first

define
¢ = sup ¢
Cvgi(e)
g:(0) is SOS (2.25)
s.t. h

(—1)5q(8) —c = > gi(6)5ui(0) is SOS

i=1

wherek € {0, 1} is defined as

)0 ifa) >0 2.26)

1 otherwise

andd, is any vectord in 2 which can be arbitrarily chosen. Then, condition of -

Theoren 2.2 holds if* > 0.
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Indeed, it turns out that* is a lower bound ofy(0) for 6 € Q if ¢(6y) >
0, otherwisec* is a lower bound of-¢(0) for 6 € Q. Actually, as long as the

constraints in[(2.25) hold, for artye 2 it follows that

h

0 —1k 0)—c— Z’HSQZ‘G
< (=1)%q(0) ;9() (6) 2.27)

< (=1)¥q(8) — ¢

i.e. cis alower bound of—1)*q(0) for 6 € Q.

c* in (2.28) can be obtained by solving an LMI problem by using riepresen-
tation of polynomials given in Subsection 1J3.3. Indeetl2te, and2m, be the
degree ofy;(#) and(—1)*q() —c— Zle 9i(0)s9;(0) respectively. Let us introduce

the following representations

gi(0) = (x)TGagpo(6,m;),
) ‘9 7 9 - * TU@' G ) o 97 )
9:(0)3a(0) = ()7 Un(Gar)pa0, mo) 228)
(=Dkq(0) = (*)"(F + C(6))dpa (0, mo),

I = (*)TW(bpol(eva)a
whereGsy;, Uy (Go;), F, C(5) andW are symmetric matrices. Then,
"= sup ¢
c,G2i,0
G; >0 (2.29)

s.t. h

i=1

Let us remark that problerh (2]29) is a convex optimizatiabpem with LMI con-
straints and linear cost function, which can be considesedigenvalue problem

and semidefinite program [75].
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2.3.2 Second-order Consensus

Let us investigate the uncertain expanded Laplacian mﬁ(n%}. Firstly, we will
provide the following result, which extends to the case afartain MASs the con-

dition in [21] for the case where topological uncertaintg aot considered.

Lemma 2.1 Forall § € Q, robust second-order consensus for the uncertain N(AS3$)
can be achieved if and only if the uncertain expanded Laptaiatrix—L(6) has
exactly one zero eigenvalue with algebraic multiplicitptand all the other eigen-

values are in the open right half plane.

Based on this result, we propose a new condition for chectaobgst second-

order consensus based on matrix inequalities. Specifi¢atlys introduce vectors

1n On—l

Let V, € R?*2"~1 andV; € R?"~1x27=2 he matrices satisfying

as

. . T
img(V3) = ker(uf) (2.31)
img(V3) = ker(u?).

Then, let us introduce the transformed uncertain expandgthtian matrix:
L(6) = —Vi Vi  L(6)Va V3. (2.32)

Theorem 2.3 Robust second-order consensus for uncertain MASs witarepths-
itive or non-positive weights can be obtained if and onlyhére is a symmetric

functionP, : R* — R?"~2x2n=2 gych that

SIS

By(0) >0 & Y|
5 y Vo € €. (2.33) = |
Py(0)L(0) + L(6)Py(6) > 0 SN
1+ EH |

Bp |

rEU

lL"*" Al |
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ProofOne can observe that is an eigenvector QE(G) corresponding to the eigen-
value zero. In addition, one can also observe tfféf(@)vg has the same eigenval-
ues on(@) while the algebraic multiplicity of the eigenvalue zero bagn reduced
by one. By a similar way, it follows that? V,7 L(0)V,V; has the same eigenvalues
of Z(@) while the algebraic multiplicity of the eigenvalue zero Ihaen reduced by
two. Hence, from Lemm@a2.1, it directly follows that robustsnd-order consen-
sus can be obtained if and onIerfZ(G) has all the eigenvalues locating in the open
right half plane for alb € ). From Lyapunov stability theorem for linear systems,
this is equivalent to the statement that there i3 @) such that[(2.33) holds for all
0 € Q. Therefore, this proof completes. O
With the purpose of investigating the condition of Theofe}y Bne can employ
SOS matrix polynomials. Indeed, I1€(0) andGs;(0),i = 1,. .., h, be symmetric

matrix polynomials to be determined, and let us define
5 5 h
Ry(6) = Py(0)L(6) + L(6)" Po(0) — Y _ Gi(0)s3i(0). (2.34)
i=1

It is easy to verify that(2.33) holds if there exists- 0 such that

Gsi(0) is SOS
Py(0) — I, is SOS (2.35)
RQ(@) — CIQn_Q is SOS

Actually, as long as the constraints [n_(2.35) hold with- 0, for anyd € Q it
directly follows thatG's;(f) > 0, P»(f) > 0 and

0 < Py(0)L(0) + L(0)" Pa(6) — Y Gi(6)s5:(0)

—cla,
(2.36)
< Py(0)L(0) + L(0)" Py(6) — cloy
< Py(0)L(0) + L(6)" Py(6)




i.e. (2.33) holds.
By using the Gram Matrix Methods reported in Subsediion3l fBie condition

(2.38) can also be formulated as a convex optimization prabh terms of LMIs.
Specifically, le2m;, 2m and2m, be the degree of'5;(0), P,(0) and Ry(0) — ¢l

respectively. Let us introduce the representations

G31(9) = (I)( pol(e,mi),Zn — 2)
G31(0)832(0) = (I)( (ng) gbpol(e mo) 27’L — 2) (237)
Py(0) = ®(Py, ¢ppa(0,m),2n — 2)
Ry(0) = ®(Fy+ Dy(6), ppar(,mg),2n — 2)

whereG;, Us;i(Gs;), Py, F, andD,(8) are symmetric matrices. Then, define

= sup c
¢,G3i,P2,8
( —
Gsi >0
(2.38)

st.d P> 1

h
FQ -+ D2<5) — C[s4 — Z Ugi(égg

\

wheres; ands, are the sizes oP, and F;, respectively. Then, one can obtain that

(2.33) holds ifc* > 0.

2.4 Discrete-time Dynamics

In this section we consider robust consensus for MASs wgbrdie-time dynamics
affected by uncertainty, which describes the presence kfiawn control gains.
Specifically, for MASs with first-order dynamics we consitlee following update
scheme

zi(k+1) = — ZGU ) (k), i=1,...,n (2.39)

Z Gij(0) 7=
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wherezr; € Ris the state of théth nodef € R*is a vector of uncertain parameters,
andG : R* — R™™" is a generic polynomial function. The skt (2.2) constrains

One can rewrite the systein (2139) in compact form as
x(k+1)=D(0)x(k) (2.40)

whereD : R* — R"*™ is given by

Gi;(0)

Di;(0) = ————,
> Gil0)

ij=1,....n. (2.41)

Problem 2.3 To establish whethd2.39)obtains robust consensus, i.e.

lim z;(k) —z;(k) =0 Vi,j=1,...,nVz(0) € R" VO € Q. (2.42)

k—o0

For MASs with double integrator, let us consider the model

zi(k+1) = z;(k) + oi(k)
oi(k+1) = oi(k) +ui(k)

(2.43)

with

wi(k) =k Y Gij(0)(x; (k) — (k) + ko Z Gij(0)(0;(k) — 0i(k))  (2.44)

J=1

wherek, k; € R are positive scalars depicting coupling strengths, and; € R

stand for the position and velocity states of ikt@ agent respectively. Let us use a

compact form to represent the systém (2.43) as

3 = |
==
=

x(k+1) x(k) i =&F ez
:T(H) (2.45) - i‘.._h_-

k+1 k Ly |
...-l-i:.-l']_!l

irirLh

| i
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where

I, I,
NOE (2.46)
—lL(0) I, — ko L(0)

andL(0) € R™" is the uncertain Laplacian matrix given by

Lij(0) = —Gi(0) Yi#j
" (2.47)

Problem 2.4 To establish if(2.43)obtains robust consensus, i.e.

hree Vi,j=1,...,n, ¥z(0), 0(0) € R" VA € Q.
Jim oi(k) —0j(k) = 0

(2.48)
In the follow-up, it is assumed thé&t(0) is well-posed ovef?, i.e.

> Gul(0)#0 Vi=1,....nV0 € Q. (2.49)

k=1

Same with last section, we also denote ¥a#) is nonnegative it7,;;(#) > 0
foralli,j =1,...,nandforalld € Q.

It is useful to borrow the definition of (row) stochastic niatr.e., a nonnegative
matrix with the property that all row sums arg76]. One can observe thax(f) is

a stochastic matrix if(¢) is nonnegative.

2.4.1 First-order Consensus

Let us first introduce the following polynomial

¢(0) =LCM {iGU(G), izl,...,n}. (2.50)
and define
K(0) = ¢(0)D(0) (2.51)

A fTons
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LetV; € R~ satisfy

img(Vi) = ker(1))

(2.52)
Vivi = I,
and define
Dy(0) = V" D(O)V; (2.53)
and
Ki(0) = VK (0)VA. (2.54)

The following result gives a necessary and sufficient caolib determine whether

(2.39) obtains robust consensus.

Theorem 2.4 Let 7 be the degree af(f), and define

p =n(n* —n—2)r. (2.55)

The systerf2.39)obtains robust consensus if and only if there is a symmetaicim
polynomialP(9) € R("~Vx(=1) of degreed < p; such that
P#) >0

Vo € Q. (2.56)
C0)2P(0) — K (0)TP(O)K.(6) > 0

Proof(Sufficiency) Provided that (2.56) holds, based on Lyapustability theorem

for discrete-time linear systems, it provides that

1=2=%

N (K1(0)] < |€(0)] Vi=1,...,n—1V0€Q (2.57) | =) »E:

=)

=Ew

where)\; (K1(0)) is thei-th eigenvalue of<; (). Since 5 ‘El‘ };:l:i
368 |

K41(0) = ¢(0)D1(0) (2.58)
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it hence has thab (9) is Schur for alld € €, i.e.

N (Di(0) <1 Vi=1,....n—1V0€Q. (2.59)

As 1is an eigenvalue ab(6), one can rewrite the characteristic polynomiala®)
as

det (A, — D(0)) = (A — D)E(N, 0). (2.60)

Sincel,, is an eigenvector ab(#) with regard to the eigenvalug it directly follows

that the characteristic polynomial éf; () is provided by

det (M,_y — D1 (6)) = £(), 0) (2.61)

i.e. D;(0) has the same eigenvalues/offd) while the algebraic multiplicity of the
eigenvaluel has been reduced by one. Hence /B8$0) is Schur for alld € €,
one can obtain thaD(f) has exactly one simple eigenvalteand all the other
eigenvalues with magnitude less thafor all # € Q2. From [15] it is equivalent to
saying that consensus is obtained fordadt (2.

(Necessity) Let us assume thiat (2.39) achieves robust ssaseFrom[15] this
directly implies thatD(6) has exactly one simple eigenvaluand all the others are
with a magnitude smaller thainfor all # € (). It is equivalent to saying thdp, ()

is Schur for allé € 2, and hence that the Lyapunov equation

P(6) — Dy(6)" P(6)D1(9) = Q(9) (2.62)

has a unique solutioR(#) which satisfied(d) > 0 for all & € Q2 wheneve)(6) >

0 for all 0 € 2. Since¢(f) # 0 for all & € €2, this equation can be represented as

C(O)*P(0) — K1(0)" P(0)K:1(0) = ¢(0)*Q(0). (2.63)
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Let us gather the(n — 1) /2 free entries ofP(#) andQ(#) into the vectorg(d) and

q(0). One can rewrite the equation above as

E0)p(6) = ¢(0)%q(6). (2.64)

Since the solutior?(¢) exists and it is also unique, it means tii&Y) is invertible

for all @ € 2, and hence

_ adj(E(0)) . o
As the degrees of(0) and K (0) are not greater thanr, it directly follows that
the degree of?(0) is not larger tharzn7, and hence the degree of adj6)) is not

larger than

(5001 —1) 207 = (2.66)

Let us choos&)(0) = ((0)21,_, and define”(0) as(—1)*det(E(0)) P(0) where
ais 0 if det(E£(#)) > 0 for all € Q2 or 1 otherwise. One can obtain th&{(0) is a

matrix polynomial of degree not greater thansatisfying the Lyapunov equation
C(0)°P(0) — K1(0)" P(0)K\(0) = det(E(0)) ], (2.67)

and, hence[(Z.56). O

Remark 2.2 Theoreni 2} supplies a necessary and sufficient conditiomfoist
consensus ofZ2.39)via finding a Lyapunov function polynomially dependent @n th
uncertainty. As a requirement for achieving necessitydggreeu; hinges both on

the degree of7(¢) and on the number of agents

The condition of Theorerh 2.4 can be established via a conpérnzation.

Specifically, letH;(#) andJ;(0),i = 1, ..., h, be some auxiliary symmetric matrix
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polynomials with siz€n — 1) x (n — 1), and

RO) = P(O) - > Hi(0)s:(0)
=1 X (2.68)
) = C(9)2P(9) - Kl(9>TP(9>K1(9) - Z Ji(0)s:(0).

i=1

The following result provides a sufficient condition for @stigating whethef (2.39)

obtains robust consensus based on conditions of LMIs.

Corollary 2.1 The conditior(2.56)satisfies for some symmetric matrix polynomial
P(0) of degreed if ¢* > 0 and¢* is the solution of the optimization problem as

follows.

*

c* = sup c

c,H;,J;, P
4
H.(0) is SOS
(2.69)

Ji(0) is SOS
s.t.

R(0) — I, is SOS

T(0) — cl,_, is SOS

Proof Assume that the constraints [n (2.69) hold. It follows that

p

H;(0) >0

Ji(6) >0
(2.70)
RO)—1,1>0

| T(0) —cl, 1 >0

for all # € R*. Sinces;(#) > 0 andH;(¢#) > 0, from the third inequality one can

obtain

0 < R(O)—1I,
= P(0) = i Hi(0)si(0) — Loy (2.71)
S P(@) - ]n—l
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in which one has that

PO) > I, ¥ € Q. (2.72)

Similarly, from the inequality’(¢) — c¢I,,_; > 0 one gets

C(0)2P(0) — K ()" P(O)K(0) > cl,,_, V0 € Q. (2.73)

Therefore, ifc > 0, it implies that [2.5B) is satisfied, and hence this theoretdsh
U

Corollary[Z2.1 provides how the condition of Theorem 2.4 caestablished via
convex programming by using SOS technique. Specificaltgeschecking whether
a matrix polynomial is SOS can be done through solving prabdé LMIs as re-
ported in Subsection 1.3.3, it directly follows that the dition of Corollary[2.1
amounts to solving an LMI feasibility test. We can also reknidnat the conser-
vatism of the condition of Corollary 2.1 hinges on the degreeP(¢) and of the
multipliers H;(0) and.J;(0).

For network with nonnegative weights, let us represent gtlewing prelimi-
nary result, which can directly extend to the case of unceNBASs the condition

given in [77] for the case of MASs without considering unaerty.

Lemma 2.2 Assume thaz(f) is nonnegative. The following three statements are

equivalent.
a) The systen@.39)obtains robust consensus.

b) forall 8 € 2, D(6) has exactly one simple eigenvaluevhile all the others

satisfy|\| < 1.
c) forall § € Q, the directed grapk?(f) contains a spanning tree. =) 5 |
- .\l' ...
=%
The following result displays how Lemnia®.2 can be used toage¢cessary | ‘F;?;— q |
L
and sufficient condition for robust first-order consensu$wonnegative network r ,[_ J
weights via investigating the zeros of a polynomial. pebies
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Theorem 2.5 Suppose that/(#) is nonnegative. The systehi39)obtains robust

consensus if and only if

qp(0) #0 VO € Q (2.74)
where
dlp(\, 0
qp(9) = % . (2.75)
and
Ip(\, 0) = det(A, — D(0)). (2.76)

Proof Assume that7(0) is nonnegative. Based on Leminal2.2 one gets fhatl(2.39)
obtains robust consensus if and only if, for @l €2, D(0) has exactly one simple
eigenvaluel while all the other eigenvalues with a magnitude smallen tha

Since D(0) is a stochastic matrix with positive diagonal entries, ipiies that
every eigenvalue ab () not equal ta has a magnitude smaller thaysee e.gl[76].
Thus, it just requires to show that the eigenvalug simple.

This is equivalent to getting that the characteristic potyial [, (A, ) of D(6)
can be displayed as

(A, 0) = (A — 1)E(N, 0) (2.77)

where

£(1,0) £ 0 Y0 € Q. (2.78)

This last condition coincides with (2.]74) due to

— = —1)——". 2.7
=+ D=5 @79) ey
Thus, the proof completes. O <SS
Eee
Theorem Zb gives a necessary and sufficient condition fousbfirst-order | T'l:g
i B |
consensus which can be used in the case of nonnegative ketvedghts. This | "'f,]..',rg
I
condition needs to investigate whether the polynomiab) is nonzero ovef). | [T i
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The condition of Theoreh 2.5 can be checked through convérmigation.

Indeed, let us introduce

r(0) = —— . (2.80)
where
Ik (N, 0) = det(A\L, — K(6)). (2.81)
Leta;(0),7 =1,...,h, be auxiliary polynomials, and let us define
h
b(8) = i (Bo)ax (6) — Y _ ai(6)s:(6) (2.82)
=1

whered, can be chosen arbitrarily .

Corollary 2.2 Provided thatG(6) is nonnegative, the conditio®.74)is satisfied

if ¢* > 0, wherec* is the solution of the optimization problem as follows.

c* = supc

a;,c

] a®issos (2.83)
S.1.

b(0) — cis SOS

ProofProvided that the constraints [0 (2183) are satisfied, ifiesghat

(2.84)
b(f) —c>0

for all € R®. Due tos;(#) > 0 anda;(#) > 0, from the second inequality we can

obtain
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which directly implies that

qx(00)qr (0) > ¢ V0 € Q. (2.86)

If ¢ > 0, it follows that g (0y)qx () is positive over2. From the continuity of

gk (0) andf, € 2, we have that

qr(0) #0 V0 € Q. (2.87)
Observe that

qx () = ¢(0)"D(0) (2.88)
and¢(0) # 0 for all # € 2, we conclude thaf{2.74) holds. O

2.4.2 Second-order Consensus

From (2.44) we have that

ur(k) —ui(k) = ki (—Lzz(ﬁ)(ﬂn(k) —ai(k)) + Y (Giy(8) — Gy (0) (ar (k) — xj(@))

j=2

+ko <—Lii(9)(91(k‘) — 0i(k)) + D _(Gi;(0) — G1;(0))(ex (k) — Qj(@))-

It follows that

e

ri(k+1) —zi(k+1) = x(k) — 2i(k) + 01(k) — 0i(k)

o(k+1) = o0i(k+1) = o1(k) —a(k) =k (Z(sz(e) -

j=2

—k (Z(Lij(e) — Ly;(0))(r(k) — 01(@))-

\

Thus, [2.45) can be represented as

w(k + 1) = D()w(k)
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where

w(k) = (21— 2, ....;T1 — Ty, 01 — 02, ., 01 — Qn)T

. 1,4 Iy

r'e) = B B}
—k L(0) 1,1 — koL(0) (2.92)
Loy(0) — L12(0) ... Lon(0) — L1,(0)

L) =
Ln2(0) — Li2(0) ... Lpn(0) — Ly,(0)

The following result directly extends to the case of underbdASs the condi-

tion given in [78] for the case of MASs without uncertainty.

Lemma 2.3 The systen2.43)achieves robust consensus if and only if

Ai<f(9)))<1 Vi=1,. . .2n—2V0€eQ (2.93)

where); (f(@)) is thei-th eigenvalue of (6).

The following result provides a necessary and sufficientldan for checking

whether [[2.4B) achieves robust consensus.

Theorem 2.6 Let 7 be the degree af(6), and define
po = 2n(2n — 3)7. (2.94)

The systerfP.43)obtains robust consensus if and only if there is a symmeticixn

polynomial P(#) € R("=2x(2n=2) of degreed < 1, such that
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for discrete-time linear systems, one has that {2.93) hdidss, from Lemm&2]3,
we can conclude thdt (2.43) obtains robust consensus.
(Necessity) Suppose that (2143) obtains robust consefsam Lemmad 213 it

implies that[(Z.91) holds, which means that the Lyapunowaé&qn
P(6) = T(0)"P(O)L(0) = Q(9) (2.96)

has a unique solutio®(¢) whereP(#) > 0 for all ¢ € 2 as long as)(#) > 0 for

all # € Q2. One can rewrite this equation as
E0)p(0) = q(0) (2.97)

wherep(f) andg(0) have the2n — 1)(2n — 2)/2 free entries of? () andQ(0). As
the solutionP () exists and is unique, it directly follows thak(0) is invertible for

all 0 € 2, and hence
_adj(E(0))

p(0) = mﬂe)- (2.98)

Observe the degree i) is not greater tham, one has that the degree B{f) is

not greater thar, and hence the degree of 88j0)) is not greater than

<%(2n —1)(2n—-2) - 1) 27 = 1s. (2.99)

Let Q(0) = I»,—» and redefineP(0) as (—1)*det(E£(0))P () wherea is 0 if
det(E(0)) > 0forall € Q or 1 otherwise. One has th&t(6) is a matrix polyno-
mial of degree not greater than that satisfied (2.95). O
Theoren 2.4 gives a necessary and sufficient condition farsioconsensus of
(2.43) via finding a Lyapunov function polynomially depenten the uncertainty.

This condition can be checked by convex optimization.

Indeed, letP(6) be as in Theorem 2.4, and let auxiliary symmetric matrix poly | Ly s |

nomialsH;(¢) andJ;(A),i = 1,..., h, inthe size of2n — 2) x (2n — 2), and hence
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we can define

=1 (2.100)

The following result supplies a sufficient condition for chieng whether[(2.43) ob-

tains robust consensus based on LMIs and the proof is anaddgohat of Corollary

21.

Corollary 2.3 The condition(2.95) holds for someP(6) of degreed if ¢* > 0,
wherec* is the solution of(2.69)with R(6) andT'(#) which are replaced by those

in (Z.100)

2.5 Numerical Examples

2.5.1 Example 1

Fig. 2.1: Digraph of a four-agent system

In this example, a four-agent system is considered whichdw/a in Figuré 2.11.
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Suppose that the network is affected by an uncertain paeansgecifically,

1 2—-20 540 2+90

30 1 0 0
G(0) =
0 4 — 30 1 0
2+ 30 0 0 1
and(? is chosen as
Q=10,1].

Hence, one has = 4 anda = 1. Moreover\) can be represented aslin (2.2) with

s1(0) = (1 — 9).

Based on[(2]6), the Laplacian matiix6) is provided by:

9 —2+20 -5—-0 —-2-94
—30 30 0 0
0 4—-30 4-30 0

—2—30 0 0 2430

Observe that all elements of weighted adjacency mét(i are positive. Hence,
for robust first-order consensus, both Theofem 2.1 and Enel@.2 can be ex-
ploited in this example. Firstly, let us use Theoffen 2.1 bglifig a constant matrix
function P, (#) satisfying [2.15). By solvind (2.22) we can gét= +oco, i.e. (2.19)
holds with any positive scalar. Therefore, robust first-order consensus can be
obtained.

In order to investigate whether robust first-order consgmsi be obtained by
this uncertain network with positive weights, we can alse Uikeoreni 2J2. In

particular, the polynomia}(#) in (Z.23) is given by:

q(0) = 186° + 66* — 1120 — 56.
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Based on condition of Theordm .2, robust first-order cosisenan be achieved if
and only ifg(6) # 0 for all & € [0, 1]. In this case, it is easy to get thg®)) has this
property in thaty(0) is an univariate polynomial whose roots 3.0993, 3.1344 and
-6.5670 lie outside0, 1]. Also, let us compute the quantity in (2.29). Sett = 1
and let multiplierg, (9) be degre&, we findc¢* = 56, hence implying that condition
of Theoreni 2.R is satisfied.

Next, let us check whether this uncertain network is ableetorgbust second-
order consensus. We choose

a=p=1

in the systeni(218), and TheorémI2.3 is used by searchingsdardmmatrix function
P5(0) such that[(2.33) holds. By computirig (2.38) we get= +oo, i.e. (2.3b) is
satisfied with any positive scalar Therefore, robust second-order consensus can
be obtained with chosem and 5. In this case, the uncertain extended Laplacian

matrix is provided by

0 0 0 0O 1 O 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 O 1 0
0 0 0 0 0 O 0 1

|nWh|Chl1:2—29,12:5+9,13:2+9,l4:39,l5:4—39,16:2+39

2.5.2 Example 2 4=y
PN

Considering a network shown in Figure12.2, an uncertainagient system is in- | f'j";*j_L

vestigated. In this case, it is assumed that the networKestafl by two uncertain ? [ *[_ )i
] -4 =
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A2

A6 PEE

Fig. 2.2: Digraph of a six-agent system

parameters, i.¢; andf,. IndeedG(0) is given by

3+ 26, 1 0 0 0 0
0 3 — 0, 1 0 20, + 0, 0

0 0 5420, 1 0 0
0 0 0 5 1 3 — 46,
0 3 2—-30, 0 2—0, 1

We choose the sét as

Q=1{0:0] <1}.

Hence, one has = 6 anda = 2. Moreover{2 can be expressed in (2.2) with

s1(0) =1 — 62 — 62,

To investigate whether this uncertain network is able taea@hrobust first-order
consensus, observe that it has an either positive or nativygoseighted adjacency
matrix, let us employ Theorem 2.1 by searching for a consteattix functionP; ()
under condition[(2.15). Via computing (2]122) we can get= +oo, i.e. (2.19)

satisfies with any positive scalar Therefore, robust first-order consensus can be|} . i'.”|

obtained.
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Next, let us establish whether robust second-order consaran be achieved

by this uncertain network. First, we select

a=1,8=06

in the system[(218), and we exploit Theoreml 2.3 by finding a&tat matrix func-
tion P,(0) satisfying [2.3B). By computing (2.B8) we gét= —0.1344, which can
not prove [(2.35). We repeat this procedure by finding a métction P,(9) of
degree2, and for this time we get* = +o0, i.e. (2.3b) satisfies with any positive

scalarc. Therefore, robust second-order consensus can be obhtained

2.5.3 Example 3

) 4
>
[\

Al

Fig. 2.3: Topology of a four-agent system.

For discrete-time dynamics, let us consider a four-agestesy shown in Figure

[2.3 with chosen weighted adjacency matrix

1 0 0 0
1+60 1 0 2
G(0) =
0 1 1 0
34+20 4 0 1
whered is constrained in
Q=[-1,1].
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This set can be expressed[in {2.2) with

81(9) =1- 92.
By employing [2.411) we have
1 0 0 0
146 1 0 2
D(6) = 4+6 4490 4+0
0 0.5 0.5 0
3+ 20 2 0 1
8420 4+6 8+ 20
and, hence,
¢(0) = 8+ 20.

First, let us use Corollafy 2.1 to investigate whether rofitst-order consensus
can be obtained. By solving the LMI problemn (2.69) with a dans symmetric
matrix functionP(#), one can get* = +o00. Hence, from Corollary 21 we can
conclude that robust first-order consensus can be obtained.

The same conclusion can be achieved using Cordllaty 2.2atXt¢) is non-

negative. Particularly, the polynomigk (9) in (2.80) is provided by

qx (0) = 80" + 1166° + 5966° + 12480 + 832.

One can solve the LMI problen (2183) with a multiplier(¢) of degree2, and
findsc¢* = 72. Hence, from Corollary_2]2 one can draw a conclusion thatisbb
first-order consensus can be obtained.

Next, let us exploit Corollary_2]3 to investigate whethebust second-order

consensus can be obtained. Specifically, we condider] (%i8); = 0.021 and : -'_r .
ks = 0.197. By computing the LMI problen(Z.69) with a symmetric matfimc- :-.':1:.';
tion P(0) of degree 1, one can get = +oco. Hence, based on Corolldry 2.3, here | f.-J:'IJr;.—l‘
we conclude that robust second-order consensus can be&dhtai 1';1!:'._“’

56



2.5.4 Example 4

Fig. 2.4: Topology of a six-agent system.

For this example, a six-agent system is considered as shoRigure 2.4 with

1 0 0 0 1 0
3+ 6, 1 0 0 0 0
0 3—91 1 0 91"“92 0
G(0) =
0 0 3+ 6, 1 0 0
0 0 0 14 0.560, 1 0
0 0 0 0 1 1

whered € R? is constrained in

Q={0eR*: |9 <1}. (2.101)

This set can be expressed adin}(2.2) with

Hence, contrasting with Example 3, this network is affedigdwo uncertain pa-

rameters, and;(¢) is not nonnegative.

Firstly, Corollary[2.1 is used to establish whether robustforder consensus
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can be obtained. By solving the LMI problemn (2.69) with a dans symmetric
matrix functionP(#), one gets* = +oo. Hence, based on Corollary 2.1 we can
conclude that robust first-order consensus can be obtaift@d.is also proved by
Figure[2.5, which has shown in Figure12.5(a) a trajectory:@f) for randomly
chosery € Q andz(0), and in Figuré 2J5(b)00 trajectories ofy(k), wherey; (k) =
zi(k) — z1(k),i=2,...,6, for randomly chosefi € Q2 andz(0).

100

(@)
Fig. 2.5: Example 4: some trajectories for robust first-ommsensus.

Next, let us employ Corollafy 2.3 to establish whether rosesond-order con-
sensus can be obtained. Particularly, we conslder](2.4%hbgsingk; = 0.01
andk, = 0.2. Then, we solve the LMI probleni (2.69) with a symmetric matri
function P(6) of degreel, and getc* = +o0c. Hence, based on Corollary 2.3 we
can conclude that robust second-order consensus can beeabtd his is proved
by Figure 2.6, which has shown in Figutes|2[6al-2.6b a t@jectf z(k) ando(k)
for randomly selected € Q andz(0), 0(0), and in Figure§ 2]6(c)=2.6(d))0 tra-
jectories ofy(k) andz(k), wherey; (k) = x;(k) — z1 (k) andz; (k) = 0:(k) — 01(k),

i=2,...,6, for randomly selected € 2 andz(0), 0(0).

2.6 Summary

In this chapter, robust consensus of MASs with linear dyieanaind topological

uncertainties is considered, both for continuous-timéesys and for discrete-time
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(b)
(d)

@
(©)

Fig. 2.6: Example 4: some trajectories for robust secomigoronsensus.
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systems. Firstly, necessary and sufficient conditions eweiged for robust first-
order consensus and for robust second-order consensusen oé positive and
non-positive network weights. In addition, this chaptesoatonsiders robust con-
sensus problem with discrete-time dynamics. Necessansaffidient conditions
are also given for robust consensus via searching a polhaipariameter-dependent
Lyapunov function. It shows that the necessity can be aelidy computing an
upper bound on the degree of candidate Lyapunov functianned) Then, a neces-
sary and sufficient condition is given for robust first-ordensensus with nonneg-
ative weighted adjacency matrices by checking the zerospofiyjmomial. Lastly,
by employing SOS technique, these robust consensus comglitan be tested by
solving convex optimization problems in terms of LMIs. F@xamples are given

to demonstrate the usefulness of proposed results.
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Chapter 3

Consensus for Nonlinear Dynamics

3.1 Introduction

Firstly, this chapter studies local and global consensusiASs with nonlinear
dynamics. For local consensus, by using HPLFs, a methoasdad based on the
transformation from the original system into an polytopistem. In addition, for
global consensus, another method is given by finding fortalsiei PLF. It is shown
that this chapter uses more complex Lyapunov function irtreshwith the QLFs
widely exploited in existing literatures and QLF is demoatd as a special case
of the proposed method.

Furthermore, in this chapter we also consider robust logatensus in MASs
with time-varying parametric uncertainties constraired polytope. In contrast to
existing results with non-convex conditions via explaiti@LF, a novel robust con-
sensus condition is constructed via employing HPLFs, waetencertain polytopic
system is also used to approximate the original systemhé&urore, correspond-
ing solvable conditions in terms of LMIs have been proposadSMR technique.
Finally, polytopic consensus margin problem is introduaed investigated via han-
dling GEVPs. Numerical examples illustrate the effectegnof the proposed re-
sults.

This chapter is organized as follows. Secfiod 3.2 formsléte problems. Sec-

tion[3.3 gives local and global consensus conditions withlinear dynamics. Re-
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garding to MASs with time-varying topological uncertag#j Sectioh 3]4 provides
robust local consensus conditions for MASs with nonlingarainics. It also shows
how the polytopic consensus margin can be obtained via imn@IEVPs. Section

3.3 demonstrates the proposed results with numeral exam@ection 2.6 sum-

marises this chapter.

3.2 Problem Formulation

In this section, we consider MASs as follows
N
#i(t) = f(zi(t)) — Y LyTay(t), i,j=1,...,N (3.1)
j=1

wherez; € R™ denotes the state of thieh agent,V is the number of agents,de-
notes the coupling weight,(z;) € R™is a nonlinear functiorl; = diag(vi, ..., v.) €
R™ ™ is a diagonal matrix wherg; > 0 means an agent is able to communicate
through thei-th state, and.;; stands for the;-th entry of the Laplacian matrix
L € RV*N,

The uncertain MASH (311) can be rewritten in compact form as
i(t) = g(x(t)) — (L@ D)a(t) (3.2)

wherez(t) = (z1 ()T, ..., zx()))T andg(x(t)) = (f(z:(8)T, ..., flan()T)T.

Let s(¢) € R™ be a solution manifold of an isolated node, i.e.

$(t) = f(s(t)). (3.3)

Let us remark that(¢) can exist in various forms like an equilibrium point, a peri- "

odic orbit, or a chaotic orbit. Then, two consensus problaragyiven as follows.

Problem 3.1 To establish if the MA$3.2) achieves local consensus, i.e. for any

e there exist«(e) and 7" > 0 such that||z;(0) — z;(0)|| < k(e) implies||z;(t) — lL*‘ Aries |
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z;(t)|| < eforallt >Tandi,j=1,..., N,

Problem 3.2 To establish if the MA$.2) achieves global consensus, i.e. for any
e there exist” > 0 such thatl|z;(t) — z;(¢)|| < eforallt > T andi,j =1,...,N

(regardless of|z;(0) — x;(0)]).

3.3 Consensus Conditions with Nonlinear Dynamics

3.3.1 Local Consensus Conditions

For local consensus we introduce the following assumptiofi(@; ).

Assumption 3.1 The functionf(x;) is continuously differentiable in the neighbour-

hood ofs(t).

Remark 3.1 This assumption is fairly mild since it only requires tha thist deriva-
tive of the vector field is continuous in a neighbourhood térested solution man-

ifold.

By subtracting[(313) froni(3]1), one has the system
N
Ui(t) = flai(t) — f(s(t) — CZ LiiTy;(t) (3.4)

wherey; = x; —s,i =1,..., N. Then, let us linearize the systelm (3.4) aroufyd

as follows.

(1) = (Un @ Df(s(8)y(t) — (L @ T)y(t) (3.5)

inwhichy(t) = (y. ()7, ..., yn()")T andD f(s(t)) € R™*" is the Jacobian matrix
of f(x;) evaluated forz; = s(t). Letz;, = vy —y;, ¢ = 2,..., N, andz(t) =

()T, ..., 2n(t)T)T. We get a reduced system as

i) = Al)2()

N (3.6)
= (N ®@Df(s(t)) — (L @T))z(t)
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where
L22 - L12 “ee L2N - LlN

Ly —Lia ... Lyn —Lin

The definition of local consensus directly derives the fwifa result.

Lemma 3.1 Suppose that Assumptibn3.1 holds. The local consensustefrsy
(3.2) can be achieved if the systdf8)is asymptotically stable.

ProofBased on the definition qf; one obtains that the local consensus of system
(3.2) can be achieved ji;; — y;| — 0 whenever the initial condition of locates
near the equilibrium characterized py = y; for all 7, j. Sincez; = y; — y;, the
previous condition becomes;| — 0 whenever the initial condition fot locates

in a neighbourhood of the origin. This condition can obviguse ensured if the

system[(3.6) is asymptotically stable in that it is a lingatem. O

Next, it will be shown that((3]16) can be transformed into anartain polytopic

system of following form

A(p(t))2(1)
p(t) € &

N
—~
<~
~—

(3.7)

wherep(t) € R? is an uncertain parameter vecto, is the simplex expressed by

2 =co{pV,... pW}

and A(p(t)) is described by

Alp(t)) = Ao+ _pilt) A

i=1
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for some Ay, A;,..., A, € R¥*k. This can be done by selecting any bounds
bi;, ci; € R satisfying

foralli,7 = 1,..., k. Let us observe that such bounds exist in thai(s(t)) is
continuous. Then, a parameig(t) can be assigned to each entry 4f (¢) by
choosing

A\O,ij = by

A\l,ij = Cij — bij
for the sake of ensuring that the uncertain polytopic systestudes [3.6). Obvi-
ously, for entries of4;;(¢) that are linearly dependent, one can merely introduce
one parametew(t).

Robust stability of[(3]7) can be checked by HPLFs which is@omnservative

class of Lyapunov functions whose construction can be leahitirough LMIs, see
e.g. [79]. In order to provide a LMI condition based on HPLBsIlbcal consensus

of (8.1), the following result is introduced.

Theorem 3.1 Suppose that Assumptioni3.1 holds. The local conseng@shtan

be achieved if there is a homogeneous functior) such that

0<w(z)
Vz # 0 (3.8)
0<—o0i(2) Vi=1,...,w

where

and

(2, p) = (dz(;))T (ﬁ(p)Z> -

Such av(z) is a HPLF for 3.2).
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Proof Suppose thaf(3.8) holds. One can observe that

whered; (p), ..., d,(p) € R satisfy

( w
> dilpp? =p
=1
Z di(p) =1
=1

Hence, from[(3.B), it implies that
0(z,p) <0 Vz#0

i.e. v(z) is a Lyapunov function for (317) for alp € &2, in particular a HPLF.
Therefore,[(3.]7) is robustly asymptotically stable, anchlaconsensus of (3.1) can

be achieved. 0

Let v(z) be a homogeneous polynomial of degPee. One can representz)

via the SMR in[(1.1ID) as

v(2) = (*)"V ¢nom(z, m)

whereV € Rion((N=1nm)xlhan((N=1)n.m) j5 g symmetric matrix. For the purpose of
deriving the LMI condition for local consensus, let us firsiroduce the following

definition.
Definition 3.1 Let A# be a matrix such that

ddnom (2, m) _ OProm(z, m)

Ar — A#
dt 9z Az=A ¢hom<z7m)' (39)
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Thenﬁ# is defined to be apxtended matrixf A.

Lemma 3.2 Let 2™ be them-th Kronecker power of, and ¥, be the matrix with

M = K dnom (2, m). Then,

m—1
A* = (K'K,)) 'K <Z In1-i®A® 1i> K.
=0
Let
Zz‘ = X(P(i))

and fo be the extended matrix o?fl-. The LMI condition for local consensus is

given as follows.

Theorem 3.2 Suppose that Assumption13.1 holds. For amy> 1, let L(J) be
a linear parametrization of the linear subspa&12) (see Subsectidn 1.3.3 for
details). The local consensus @.1)can be achieved if there is a symmetric matrix

Vandé®, ... ™ such that

0 < V
(3.10)

ProofSuppose that (3.10) holds. Via pre- and post-multiplyiregfttst condition in

(B10) bydpom(z, m)T andenew (2, m), respectively, one gets that

0 < (*)TVenom(z,m)
v(2)

Hence, itimplies that(z) is positive definite SiNCeyom (2, m)T dpom (2, m) > 0 for

all z # 0. From [3.9), it directly follows that

0i(2) = (*)"he(VAF) dyom (2, m)
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and from the second LMI condition, one has that) is negative definite. Thus,

from Theoreni:311 it follows that(z) is a HPLF for [3.¥), and hence the local con-

sensus of (3]1) can be achieved. O

Let us remark that one can systematically investigate venetiere is a symmet-
ric matrix V andé®, ..., §® such that[{3.20) holds. Actually, this is a LMI con-
dition, which amounts to handling with a convex optimizatgroblem (for more

details please see [[74] and references therein).

3.3.2 Global Consensus Conditions

In order to establish the global consensug ofl (3[1)] (3.A)bearewritten as

y(t) = ¢(y(0), s(t)) — (L@ D)y(t) (3.11)
where
y) = (@O yv®DT, (3.12)
V(yt),s(t)) = W(w(t),s), ..., ¥lyn(t),s(t)")"
and

(ui(t), s(t)) = fyit) + 5(t)) = f(s(t), i=1,..., N, (3.13)

In this section, we are interested in considerfitg) with following assumption.

Assumption 3.2 The functionf(z;) is polynomial.

Remark 3.2 Sorts of existing results for global consensus like[[478BDare under

the assumption of QUAD condition (or one-side Lipschitdition). Nevertheless,
the QUAD condition is not satisfied for simple nonlineastii&ke quadratic and cu-
bic polynomial functions. By contrast, Assumpfion 3.2udek such nonlinearities,

and also includes famous systems such as Lorenz system amtidtiéan systems.
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In addition, continuous functions can be approximated taalily well by using

their polynomial components, which shows that Assumpi@is3ndeed mild.
The following result is directly froni[63].

Lemma 3.3 Leto = (0y,...,0n5)T Witho; > 0,i =1,...,N,and> ", o; = 1.

The global consensus @8.1) can be achieved if there is a matrix
M= (Iy—1ye")®1I, (3.14)

such that

Jim [[My(t)]| = 0. (3.15)

For ease of description, here we consider first the case wfigrés constant.

Following result can be obtained.

Theorem 3.3 Suppose that Assumptibn13.2 holds. The global consens{BH)f
can be achieved if there arec R, a continuously differentiable functiariy), and

two functionsu; (y) anduy(y) such that

(3.16)
0 < ¢
where
e1(y) = wi(y) —e¢
02(y) = waly) —e¢ (3.17)
e3(y) = v(y) —w(y)| Myl
ea(y) = —0(y) —ua(y)|| Myl®
and
i) = (42) @ -dzomy (318
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Proof Suppose thaf(3.16) holds. From the first conditionifer 3 one can get

v(y) = w(y)||My|]?

and, sinceu, (y) is positive from the first condition far= 1,

v(y) >0 Vy: My #0.

In a similar way, fori = 4 one can obtain that

0(y) <0 Vy: My #0.

Thus,v(y) is positive and its time derivative is negative wheneVgy # 0, which

implies that[(3.1b) holds, and therefore global consen§(@®) can be achieved.

Theoreni 3.B gives a condition for global consensus of (3asgt on finding a
Lyapunov functiorv(y) with (3.13). One can observe that the role of the térm
in the definition ofps(y) andy,(y) is to require thav(y) and—v(y) are positive
as long as consensus is not achieved, which impliesi{gatwill decrease tillM y
vanishes.

In order to establish the condition of Theorem| 3.3 via LMIg, ave also inter-
ested in the case whevéy), u;(y) andus(y) are polynomials. Obviously,(y) has
no constant and linear monomials if it has to satisfy (3.I8us, let us parametrize

v(y), ui(y) andusy(y) as follows.

U(ZJ) = wg¢pol<y72m0>
uz(y) - wz‘Tgbpol(ya 2ml)7 1= 1a 2

(3.19)
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where, for alli = 0, 1, 2, m; is an integer anay; is a vector of proper size. Let us

represent;(y),i =1,...,4 by the SMR as

piy) = (x)" (Ci(e,w) + Li(0:) Gpon(y, m:) (3.20)

wherew = (wl, wl, wl)T,

Theorem 3.4 Suppose that Assumptibn3.2 holds. The global consens{Bh)f
can be achieved if there arg w andd;, i = 1, ..., 4, such that

(3.21)

0 < e

Proof Suppose thaf (3.21) holds. Through pre- and post-multigltfie first condi-

tion in (3.21) byo (2, m;)T ande,. (2, m;), respectively, one can obtain

0 < (*)T (01(5,10)+Li(5i))¢pol(zami)

= oly) VyVi=1,... 4.

As a result,[(3.16) holds, and from Theoréml 3.3 one can cdedat the global

consensus of (3.1) can be achieved. O

Remark 3.3 Theoreni-3M supplies a LMI condition for global consensu3dl).
This condition can be directly extended to the cases whjds a periodic orbit,
a chaotic orbit or other bounded solutions by constructimguamcertain polytopic
system and by using the LMI condition in Theoken 3.4 at thicesrof the polytope.

Hence, the details are omitted here for conciseness.
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3.4 Robust Local Consensus with Time-varying Un-
certainties

In this section, robustness of local consensus is investigar time-varying topo-
logical uncertainties. In particular, itis supposed thatweighted adjacency matrix
G is affected by topological uncertaingyt) € R*, indicating the time-varying dis-

turbs from environment to the system dynamics|([45, 81, 82d &) satisfies
o(t) € Q. (3.22)
In this section, we are interested in following clas$of
Q= co{dW,...,60} (3.23)

for some given vectorg™", ... ) € R* Then, let us introduce the uncertain

MASSs with time-varying uncertainties by

N

#i(t) = flai(t) — e > Li(0())Ta(t), 4,5 =1,...,N  (3.24)

j=1

wherex; € R" denotes the state oth agent,N denotes the number of agentsle-
notes the coupling weight,(z;) € R™is a nonlinear functior; = diag(yi,...,v.) €
R™*™ denotes a diagonal matrix whefg > 0 stands for the agents communicat-
ing through theiri-th states.L;;(6(t)) is theij-th entry of the uncertain Laplacian
matrix L(0(t)) € RY*N given by L;;(6(t)) = —G;;(0(t)) for all i # j and by
Li(0(t) = — Z?LL i Lij (0(2)).

Linear perturbation in network of MASs is widely employediteratures where
G,;(0(t)) is a linear function[45, 64, 83]. Thus, the uncertain Lajalaenatrix can

be represented as

L(O(t)) = Lo + Z 0,(1) L.
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The uncertain MAS(3.24) can be rewritten in a compact form
&(t) = g(2(t)) — c(L(0(t)) @ T)x(t) (3.25)

wherez(t) = (z1 ()7, ..., zx(O)1)T andg(x(t)) = (f(z:(8)7, ..., flan()T)T.

Let s(¢) € R™ be a solution of an isolated node, i.e.

$(t) = f(s(t)). (3.26)

Let us observe that(t) could be an equilibrium point, a periodic orbit, or a chaotic

oscillator, etc. Now, we can propose the robust local caniseproblem as follows.

Problem 3.3 To establish whether the uncertain MA&S28)achieves robust local
consensus, i.e. for arythere exist:(¢) and7’ > 0 such that|z;(0) —z;(0)|| < x(e)

implies||z;(t) — z;(t)|| < eforall §(t) € Q, ¢t >T andi,j=1,...,N.

Another related problem of great academic interests is tmsensus margin

problem, which will be investigated in Subsection 3.4.3.

3.4.1 System Approximation

First, we note thaf (z;) satisfies the Assumptidn 3.1. L&) € 2 be defined by
(E.23).

Remark 3.4 The uncertain parametel(t) denotes a polytopic uncertainty which
is a representative form both for time-varying system amdifice-invariant system

in the area of robust control [83—85].

Let us observe th@j‘i1 L;;(0(t))I's(t) = 0. By subtractingl(3.26) froni_(3.24),

one can get

9i(t) = fz:(t) — f(s(t) — ¢ Z Lij(0(£))Ty;(t) (3.27)
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wherey; = x; — s, i = 1,..., N. For local consensus, the dynamics of the system
can be used locally aboutt) in the case without uncertainty [47,86]87]. For the

uncertain systend (3.27), it can also be displayed as

y(t) = (In @ Df(s(t)))y(t) — c(L(O(1)) @ T)y(t) (3.28)

wherey(t) = (v ()T, ..., yn(t)T)T and D f(s(t)) € R™" is the Jacobian matrix
of f(x;) evaluated for;; = s(t). Observely is the right eigenvector af(6(¢)) with

respect to eigenvalue zero, gt = (n1,...,ny) € RV be the left eigenvector
of L(A(t)) corresponding to eigenvalue zero, aEC!L n;, = 1. A disagreement

variable can be defined as follows:
2(t) = y(t) = (Avn") ® L)y(t) (3.29)
wherez(t) € R™Y has a property that)” ® I,,)z(t) = 0,. Define
M = (Iy —1xn") & I,,. (3.30)

One can observe that mattiX commutes with matriceby® D f (s(t)) andc(L(0(t))®

'), then an uncertain disagreement system can be constrigcteltioavs:

(1) = (Iy ® DF(s(t)) — eL(0(t)) @ D)=(t). (3.31)

Lemma 3.4 Suppose that Assumptidn13.1 holds. The robust local consesfs
systen(3.28)can be achieved if and only if systgfa31)is asymptotically stable.

Proof(Necessity) It is obvious that the robust local consensisystem[(3.218) can
be achieved ify; —y;| — 0, whenever the initial condition fay locates in a neigh-

bourhood of the equilibrium wherg' = y; for all i, j. Assumelim; ., y(t) —
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(r()", ..., 7(t)")" = 1y @ 7(t). One has

lim z(t) = ((In—1yp") ®1,) x (Iy @ 7(t))

= ((Iy — yn")1y) ® 7(t) = O,

(Sufficiency) One can observe that there exist matricesRY* (V-1 and ¥ ¢

RW-DxN gych that

TIT 0 0%71
\\ On_1 Z(0(1))

whereZ ¢ RW-Dx(N=1) js a matrix function ind(¢). For system[(3.28), pre-
T

multiplying by 7 ® I,,, the firstn rows generate that
v

£ = Df(s()E() (3.32)
whereé(t) € R™. Suppose systern (3131) is asymptotically stable, it isamlvihat
y(t) = (€O €0, &) = Iy @ ().

This completes this proof. O
Lemma 3.5 Suppose that AssumptionI3.1 holds. The robust local consefisys-

tem(3.25)can be achieved if asymptotic stability is ensured for feiia polytopic

system.

(333) ||

ne iy

| = L= |

wherep(t) € RY stands for an uncertain parameter vecte?, is the polytope de- :,' %'H_
i Fe Ed |

fined by sl

P =co{pW, ..., pW}
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and A(p(t)) satisfies

andA\Q, A\l, o ,zzl\q e R7*4,

ProoflLet us define

D(t) = Iy @ Df(s(t)).
Any suitable bounds;;, ¢;; € R can be properly chosen such that

foralli,j = 1,...,kandk = nN. Obviously, such bounds always exist in that

Df(s(t)) is continuous. Then, let us defing) € R® such that
ve S =coluW, .. 19}
and for each entry ab;;(t), a parameter;(t) is defined by selecting

Dosj = by

Diij = cij — b

such thatD(¢) is entirely contained in the uncertain polytopic systemis Itlear
that for entries ofD;;(¢) that are linearly dependent, merely one parametey is

required. Then, systern (3131) can be represented as

2(t) = A(Zb:Dibi(t)v i@'@'(ﬂ) z(t) (3.34)
1=1 =1
where functionA is linear on.;(t), for alli = 1,...,b and also linear o#;(¢), for -: x T'
alli = 1,...,a. One can get a new time-varying varialpig) € R*™ constrained | :;‘_EI
in 2 = co{pV, ..., p®} such that systeni{3.84) can be further equivalently dis-g E‘?;TL “
payed as [H<U
(1) = Alp())=(1) ek
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which completes the proof. O

Remark 3.5 In an overwhelming number of existing literatures, locahsensus
conditions are provided based on the solution manitgld, thus leaving it a non-
convex consensus condition which is rarely tractable. Ténsma provides an es-
sential transformation which points out a useful way to medeeditions of robust
local consensus solvable by convex approaches given bip®HECB.3. Neverthe-
less, we have to admit that conservatism arises from the gapden the polytope
# and the manifold(¢). Approaches without utilizing this approximation will als

be discussed in Subsection 314.2.

Based on Lemmia_3.5, robust local consensus problem chamge®bust sta-
bility problem of [3.38), which can be properly establistiyda non-conservative
Lyapunov stability approach, i.e., using HPLFs. Moreovebust local consensus

conditions can be examined by handling a LMI feasibilityt.tes

3.4.2 Conditions via Using HPLF

Let us review the definition of HPLF provided in Theoréml3.4¢d detv(z) be a
HPLF of degree2m for the system[(3.33). Then, following theorem supplies a

robust local consensus condition for systém (3.33).

Theorem 3.5 Under Assumption 1, if there is a continuously differerigaiiomo-

geneous function(z) fulfilling

0 <o) Wz #£0 (3.35)

0<—pi(z) Vi=1,...,v,

where

and




Then, function(z) is a HPLF for (3.33)and the robust local consensus @.24)

can be achieved.

ProofSincep(t) € R?andZ is a polytope described by? = co{p", ..., p},

one can getl;(p), . .., d,(p) € R such that

whered; (p), ..., d,(p) € R satisfy

> dilpp” =p

i=1

w

Zdz’(P) =1

\ =1

Suppose thai (3.85) holds. One has that

i(z,p) = <d2(;))T (Zw:di(p)ﬁ(p(“)2>
= idi(p) (dz—f))T( (p(i))z)
e

)

which yields that
0(z,p) <0 Vz#0

Hence, foralp € &2, v(z) is a HPLF for [3.3B). Thereford, (3133) is asymptotically

robustly stable, and robust local consensu$ of (3.24) catchieved. O

=l |
: i -.If:-" ] |

B

Remark 3.6 For Theoreni 315, it is worth noting that a3 4|
| PI=TAY

R

e Theoreni3J5 gives conditions for robust local consensusijtavoids calcu- | = e

lating the eigenvalues of Laplacian matrix which is needethe literatures.
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In addition, HPLF is used and provides a less conservativeditamn than
QLFs widely adopted by literatures, thus proposing a pdesiay to inves-

tigate topological conditions by graph theory.

e For nonlinear time-varying uncertainties, the approachH®LF can hardly
be used. Nevertheless, provided th4t) is polynomial function of, suffi-
cient conditions can be given by exploiting polynomial paeter-dependent
Homogeneous Lyapunov function (PPD-HLF), i.e., consingch Lyapunov

function which has a polynomial dependence on uncertaiampatero.

e Sufficient conditions can also be provided by PPD-HLF in theecwhere
the transformation is not used in Lemmal3.5. But this appiazm hardly
provide solvable conditions such as LMI conditions sin¢g is involved.
Moreover, for the sake of proposing some solvable conditigarious as-
sumptions are required while the conservatism could beagdely such as

assumings(t)|. < ¢, wherec is a positive constant.

One intuitive yet effective way for checking whether a homiegous polynomial
IS nonnegative consists of examining whether it is a SOSnaotyal, which can be
equivalently represented as a LMI feasibility test (RefeBubsection 1.3 3).

According to Theorem 311, we can display the HRLE) via SMR in [1.10) as
follows

U(Z> = (*)TV@mm(z, m) (3.36)

wherel/ € Rion((N=Dn.m)xton((N=1)n.m) j5 5 symmetric matrix. Based on Definition
3.1 and LemmB&3]2, for matrix fot, one can get the corresponding extended matrix

A#* which is given by

m—1
A* = (K Ky) 'K (Z In1-i ® A® IZ-) K. (3.37)

=0

Let us denote that




and Ietzzfj.éé be the extended matrix (ﬁi. LMI conditions for robust local consensus

can be proposed as follows.

Theorem 3.6 Under Assumption 3.1, the robust local consensuf3dt4)can be

achieved if there exist a symmetric matvixandd™, . .., §) such that

0<V
(3.38)

0>F(V,6D) Vi=1,...,v.

where

F(V, §9) =he (VA?) + (7).

ProofProvided that(3.38) holds, via pre- and post-multiplying first condition in
(B:38) byénom(z, m)T andgnom(z, m), respectively, one can get that

0 < (*)TVénom(z, m)
= v(2)

which directly yields that(z) is positive definite since the square of power vector

Bhom(2, M) T dhom(z, m) > 0 for all z # 0. Moreover, from[(3.9) one has that
pi(z) = (%)F (szlvzéE - (VZ?E)T> Ghom(z, M)
and based on the second LMI condition, one can obtain that
pi(z) < 0.

Thus, by condition{3.38);(z) is verified to be a HPLF fof(3.33). Therefore, from
Theoreni3.b, the robust local consensug of (3.24) can bewaahivhich ends the

proof. O
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Remark 3.7 One can systematically check whether there exist a symomedtrix
VandéW, ... 6" such thai@.38)holds. Actually, this is a LMI condition, which

amounts to tackling with a convex optimization problem.

3.4.3 Polytopic Consensus Margin

Subsection 3.412 has given the answer how the robust locakeosus with poly-
topic uncertainties can be achieved. Another questiorsrnsasonably that what
is the largest level of polytopic uncertainties such thatrtbbustness of local con-
sensus maintains. In order to cope with this problem, letrasliring in following

definitions.

Definition 3.2 ¢! is called2m-HPLF polytopic consensus mardir systen{3.24)
if there is a HPLFv with degree2m for systen{3.24)such that

¢y = sup {C eR:0(t) € CO{CH(U, ...,CH(”)}}.
Of special worth is another denotation which comes from @igpestance of
above definition, considering the polytofdeas the unit,, box.

Definition 3.3 (5° is called 2m-HPLF /, consensus margifor system(3.24) if

m

there exists a HPLR with degree2m for ([3.24)such that

G =sup {C € R 10(1) | < ¢ .

Let us propose the problem of estimatif§, as follows.

Problem 3.4 (2m-HPLF /., consensus margin problem) To search for the lower

bound of¢s° if there exists a HPLR with degree2m for (3.24)

System|[(3.33) can be rewritten witlit) = p(¢) € R* and{2 = & as follows.

(3.39)




Denote the vertices of the urit, ball by ™", ..., v**) and let
Ai - 121\(9(2)) - A\(], Z = 17 ceey 2a’

and[lfé, i = 1,...,2% be the corresponding extended matrixhf(see Definition
[3.3). Following result gives a desirable way which consi$ta quasi-convex opti-

mization to compute th2m-HPLF /., consensus margin.

Theorem 3.7 Define
1

= g 3.40
sz ,19* ( )
where integern > 1, ¥* can be gained from
V" = inf
9, V, 8(0) ... 5(2%)
(
0 < v
0 <V
(3.41)

st.9 0 < —he(VAF) - L(5®)

0 < o -ne(VAr) - ((5<0>.))

L
—he(VAf) _ L(ém) Vi=1,... 20

\

andL(-) is a linear parametrization of. in (I12) Then(® is the lower bound of

S he gy < (5o

Proof Suppose tha{{3.41) holds. By pre- and post-multiplyinggbeond LMI

condition in [3:41) bybnom (2, m)T andgpem (2, m), respectively, one gets that

0< (*)Tnghom(z, m)T
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which impliesv(z) is positive definite SiNC&om (2, m)7 Prom(z,m) > 0 for all

z # 0. In addition, the derivative af(z) for § = ¥~ can be obtained by

5oy = (9The(V(AF + 07147 ) rom (2 m)
- 19*1(*)T<19he<Vﬁ#> + he(m?))gbhom(z,m)
= 01" (9 (ne(VAE) + L(5@))
+he (VA?) + L(5<i>>)¢hom(z, m).

(3.42)

Thus, from the last constraint in_(3]41) one can obtain
0(2)|gey-1,00 <0 Vi=1,...,2%

Based on this, one can also obtain that) is negative definite for alf(¢) in set
{«9(15) e R : (0(1)]|o < 19*1}.

Therefore, one hag® < ¢5°. This proof is thus completed. O

Remark 3.8 Theoreni_ 37 gives a lower bound fam-HPLF /., consensus mar-
gin ¢5°. In specific, one get§®, = ¢5° when(nN, 2m) is in certain sets, e.g.
{(nN,2): nN € N}, {(2,2m) : m € N} and{(3,4)} [88]. These sets are asso-
ciated with the Hilberts 17th problem concerning on the gaprgen SOS polyno-

mials and positive polynomials.

A simple result can be given directly from Theoreml 3.7 whercaesidern = 1

andd € [0,v]. Analogous with(s° , we defineyse, for the case of systeri (3133)

2m?

with scalar uncertainty broadly adopted in literatures.

Corollary 3.1 Let us define
- 1
o = — 3.43
Q7Z)2WL 0* ( )
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where integern > 1, ¥* is the solution of

U =

0 < V

s.t.

and(-) is a linear parametrization of in (I.12) Theny$° is the lower bound of

Vo 1-€. 9050, < Y3,

inf
9, V, 61 ,5(2)

3.5 Numerical Examples

In this section, some examples are provided to illustraggtioposed methods.

3.5.1 Example 1

Let us consider a coupled system as an example for local nensevhere each

agent evolves in a second order dynamics. The nonlineatifum¢(z) in model

(3.1) is given by

X1

f(x:) =

2 2
Ti1 + Tig — Tio(T5 + 25)

wherex; = (14, 15)", i = 1,2. The linear part of[(3]1) is described by the con-

stants

c=1,T=10 G=

One has thaf(33) holds with
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0 < —he(VAF) - r(s0)
0 < o —ne(vVag) - (o))
—he (VA#) . L(5<2>

— Ti0 — xq (2 + x3)

|.-|

|t
| e
L e
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Let us consider the problem of establishing local consefmsuble second solution

of s(t), i.e. for the periodic orbit. The matrik(¢) in (3.8) is given by

—2 —3cos’t —sin’t —1 —2costsint
Alt) =
1 —2costsint —2 —cos’t — 3sin?t
As described in Subsectidn 3.8.1, one can build] (3.6) in aredain polytopic
system. Indeed, by selectipg = cos?t andp, = costsint, it yields thatﬁ(p) in
(3.1) is given by

~ -3 — 2p1 el 2p2
Alp) =
1— 2p2 -5 -+ 2p1

Observe thap, € [0, 1], p» € [—0.5,0.5]. Thus, the polytope” can be expressed
by
1 1 0 0

P = co , , )
0.5 —0.5 0.5 —0.5

One can get that the LMI conditioh (3]10) holds and hencel lomasensus can be
achieved according to Theorém13.2. In particular, a HPLRigd¢ase can be found
easily byv(z) = 25, + 23,23, + 23,

Figure[3.1 shows some simulations for this case. In pagticthe first subfigure
displays the trajectory of(¢) initializing from x(0) = (1,2, -1, —2)7, while the
second subfigure exhibit$)0 trajectories forz(¢) with initial conditions randomly

chosen in—10, 10]*.

3.5.2 Example 2

Let us considei (3]1) as an example for global consensus with

—Ti2
f(x:) =

3
—Li1 T Xy T2
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Entries ofx(t)
o

|
=

entries ofz(t)

12

2 25

Fig. 3.1: Example for local consensus.
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wherez; = (z;1,z:2)T,i = 1,2, and

2 05 —0.5
c=1,T=1, G=

11 —-0.5 0.5

One has tha{{(3l3) holds witf(¢) = (0,0)”. Consider the problem of checking
global consensus for this solution. To this end, the LMI dbad (8.21) is checked
with auxiliary polynomialsu;(y) of degree2. The result shows that this condition
cannot be satisfied by employing quadratic Lyapunov funstidNevertheless, this
condition is feasible with Lyapunov functions of degreen specific the condition
holds withe = 0.5, u;(y) = 1+ yly; andv(y) = yLys + yvlys + (yTy)? +
(yFy2)? — y2,y2, — v&y3,. Therefore, based on Theoréml3.4, global consensus can

be achieved.

3.5.3 Example 3

In this case, a coupled jet engines of Moore-Greitzer madebnsidered for robust
local consensu$ [89) () in (8.21) shows the intrinsic dynamics of each jet engine

as

—0.523 — 1.522 — x4
(i) =

3Ti1 — T2

wherex; = (x;1, )7, i = 1,2. For this case, a no-stall equilibrium is driven to the

origin by following transformation.

Ty = Tjp—1

Tig = Tjp — Teo — 2.
Here, we briefly show the practical meanings of parametgisdenotes the mass .- x ;;:
flow, Z,, denotes the pressure rise angd is a constant. The information exchange "'. IZ—J
between these two jet engines is disturbed by a time-vayiegrtaintyd(t) where : E,_’;?*:,_L
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the uncertain weighted adjacency matid(t)) is chosen as

1 2-0(t)
1 1

NNVN N Y e T

NN NN s
|
S
NN NN
NN NN e

or N
N
o
|
Aa

N NN

S

(@) 0=3.2 (b) 6=3.39

Fig. 3.2: Hopf bifurcation of coupled M-G jet engines.
Around# = 3.392, a Hopf bifurcation occurs as shown in Flg.13.2 and robust
local consensus can not be achieved wihen3.392. Thus let us supposee ) =

co{0,3.0}. Next we will establish whether there is a HPLF such that sbiocal

consensus can be achieved for this chosen range.

(t)

Entries ofz

9 12 15

Fig. 3.3: Trajectories of robust local consensus.
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Computation results show that we can not find a QLF such tHaistolocal
consensus can be achieved where- 1. However, by using a HPLF where = 2,
one has that the LMI$ (3.B8) hold and hence robust local ecmusecan be achieved
from Theoreni.3J6. In specific, a HPLF for this case can be coctstd that(z) =
Bhom (2, 2)T T hnom (2, 2) With m = 2. Figure[3.B exhibits 100 trajectories oft)
with the initial conditionsz(0) randomly chosen id—5, 5], andd(t) randomly

chosen in.

3.5.4 Example 4

In this case, we considdr (3]24) as an example for robustdocsensus withlv =

3,n=1,c=1,T = 1 and nonlinear functiotf (x) is given by

The uncertain weighted adjacency mattix/) is chosen by

1 246 0
GO)=| —2—-6 1 5
0 -3 1

whered(t) € co{0,1}. One can obtain thaf (3.26) holds witt¥) = (0,0)”. By
choosingp, = 6(t), it yields thatA(p) in (3:33) can be built as

—3—=2p1 2+4+p P1
Alp)=| —2—p, —4+p 5

P -3 2-m;

Results show that the LMIE(3.38) hold and hence robust lomagensus can be
achieved according to Theorém]I3.6. In this case, the lowandhobtained by (3.41)

is tight, i.e.,@gfn = 5° . By applying QLFs, i.e.mn = 1, one getg)s® = 8.9458.

In comparison, via solving the GEVP_(3144) and exploiting RLIH, one can find
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that robust consensus margin has been significantly exdaageshown in Table
[3.1. By employing bisection method, we obtain that the makiconsensus margin
iIs 13.000 which means by using a HPLF merely with= 2 one can get a very

desirable result for this case.

Table 3.1: Consensus margin comparison
m=1 m=2 m=3 m=4
Yso 8.9458 12.9397 12.9532 12.9698

3.6 Summary

In this chapter, firstly, we have investigated local and glatbnsensus in MASs
with nonlinear dynamics. For local consensus, a method gas provided based
on the approximation of the original system into an uncenailytopic system and
on the use of HPLFs, while, for global consensus, anothenoadias been provided
based on the pursuit of an appropriate PLF.

In addition, we have considered robust local consensus irBMwith time-
varying parametric uncertainties. A novel convex apprdashbeen provided based
on the transformation from the original system to an unaenpalytopic system.
By using HPLFs, robust local consensus condition can beegaiiMoreover, cor-
responding LMI-based conditions are given by using SMRrepke. Polytopic
consensus margin has also been estimated by a convex agttomizonsisting of

GEVPs.
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Chapter 4

Robust Consensus for Uncertain and

Nonlinear Dynamics

4.1 Introduction

Robust consensus with time-varying uncertainty desirabbets the demand of
practical implementations and has already been succhssiyplied in wireless
sensor networks and neural networks|[90]. In addition, texgsuncertain mod-
els for consensus protocols usually assume that theresdise-invariant uncer-
tainty or slowly time-varying uncertainty, thus making sjg academic interests
in time-varying uncertainty with bounded variation ratee¢SSubsectiof 4.1.2).
Furthermore, for adjacency matrix perturbed by uncertairameters, traditional
approaches like eigenvalue analysis are extremely diffioidpply, while it can be
suitably tackled with parameter-dependent contractientyr Last but not the least,
even comparing with the prevailing approaches, the QLF$atcbr parameter-
dependent Lyapunov method, the parameter-dependentcbatr analysis main-
tains its advantages in that it does not require an errormics&(whose construction
needs additional assumptions or approximations), andnesircumstances makes
the Lyapunov methods as special cases (See Séction 4.2).

This chapter considers robust exponential consensus dngtrasymptotical
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consensus problems affected by time-varying topologiceéttainty with bounded
variation rate via parameter-dependent contraction arglyFor the first time, to
the best of our knowledge, the time-varying topologicalerteinty with bounded
variation rate is considered in robust consensus probleaking the case with time-
invariant uncertainty and the case with time-varying pgbyt uncertainty as special
ones. An approach of parameter-dependent contractionxngproposed by us-
ing a general infinitesimal length, which is less conseveatihan the cases using
constant contraction matrix or Lyapunov-like approach.stidct with nonlinear
inequalities provided by traditional methods, this chaptevides tractable condi-
tions of LMIs for robust consensus problem by employing SNt by parameter-
izing suitable affine spaces. For robust asymptotical amws® the lower bound of
variation rate margin is estimated via handling GEVPs.

This chapter is organized as follows. Section 4.1 introdwsmme basic ideas
of contraction theory, and robust consensus problems of $4i#h rate-bounded
polytopic uncertainty are proposed. In Secfiod 4.2, robassensus conditions are
given both for robust exponential consensus and for robsgnptotical consen-
sus. In Section 413, HPD-PCM is introduced and robust cangeoonditions are
proposed in terms of LMIs. Sectign #.4 investigates the sbbansensus margin.
In Sectior’4.b, some typical examples are given to illustoatr proposed method.

Lastly, Sectio 4]6 summarizes this chapter.

4.1.1 Basics of Contraction Theory

To introduce contraction theory, let us consider a deteigtiadynamical system of

time-dependent ordinary differential equation as follows

T = f(ZC,t), .T(t()) = Xy, t(] > 0 (41)

92



wheref is a nonlinear vector field andis a state vector in a subsetRf. Suppose

that f is continuously differentiable, one can get an exact dffidial relation
0 = J(z,t)0x (4.2)

where J(z,t) = % stands for the Jacobian of the vector figldand dz is an
infinitesimal change evaluated along a trajectaryis also said to be "virtual dis-
placement” which is widely used in classical mechanics anoh&lly deemed as a

linear tangent differential form with respect to timel[92].9

Definition 4.1 (Contraction) Syster@.1)is called contracting if there is some>
0 such that for every two solutiongt) = v(t,0,¢) andy(t) = v(t,0, () of System
(4.1), initializing from different points, converge exponetiyido each other, i.e.

lz(t) — y(t)] < e “|¢ — (| wheref(z,t) is said to be a contracting function.

Similar with above definition, another one is given here fobgl asymptotical

contraction behavior.

Definition 4.2 (Asymptotical Contraction) SystdihT)is called asymptotically con-
tracting if for every two solutions(¢) = v(¢,0,£) andy(t) = v(¢,0, () of System
(4.1), initializing from different points, converge asymptatlg to each other, i.e.
lim; . |z(t) — y(t)| = 0 where f(z,t) is said to be an asymptotically contracting

function.

System [(4.2) can be considered as a linear time-varyingréiftial equation
o0x = J(t)dz whereJ(t) is a fixed function of time. By the Coppel Inequality, one

can get an upper bound for the magnitude of its solutions|asie [93],

182]; < |Saglsel wsINar (4.3) 2}

-r
wherep(J) is the matrix measure of the Jacobian matrixfof Following result E-—JL?:;-—L
gives an essential condition about contracting systemshwtan be tracked down [ ,[_ J
from numerous technical assumptions|[91, 94]. = .':]."'
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Lemma 4.1 The systerfd.1)is contracting if there are some matrix measure/J(z,t))

and a positive constantsuch that

wi(J(z,t)) < —¢ (4.4)

where the scalar; is called the contraction rate of the system correspondong t

vector norm| - |;.

The matrix measurg; corresponding to the induced matrix norfns

1 [ [l

and|| - || can be obtained in real domain [71]91] and in complex don@gj. [
However, for a particular vector norm and its associatedded matrix norm, it is
in general a hard task to get an explicit expression [71]mFn@xt proposition, a
clue will be provided on the relationship amongst differsrattrix measures about

contraction. Firstly, let us introduce following Lemmarind9g].

Lemma 4.2 For any two positive real numbeys > ¢ > 0 and a vector space”
with finite dimensiom with regards to vector norms. |, and| - |,, a relationship
can be given by

|x|p < |x|q < n(l/q_l/p)|x|p- (4.5)

Proposition 4.1 (Equivalence on contraction) For any two positive real nemso
p, g Withp > ¢ > 0, | - |, and]| - |, are two vector norms or’, Systeni 4]1 is
contracting for vector norm - |, with contraction rater,, which implies that it is

also contracting for vector norr |, at the same contraction rate with a time-shift

_ (p=q@)logn
U= (pgeq) €.

8], < [do|,e ). TSR]

L= & )

_ BT

Proof From (4.3), one can obtain that e
iy & |

: Eiﬁ';,l'.iLi

¢ | '-'-lr '::'_:

|5x|q S ‘5$0|q€f0 /J'q(J( ))d . : I. 1I 'l!rl- j

_|L.-+., AT |
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From Definitior[4.1, the contraction of System|4.1|foJ, yields to
0]y < [doqe™ .

Obviously, one can have the contraction ratefrom the upper bound of matrix

measure of system Jacobian as
¢y = —max{p,(J)}.
According to the equivalence between, and| - |, from Lemm&4]2, one has
[d], < n/a PG |e et
which can be expressed as
52, < |5wol, e

wherey = p—dlogn dangtes a time-shift. O
(pacq)

Considering the equivalence of contraction, we choosei@i@sh norm ag [91]

for ease of description.

4.1.2 Robust Consensus Problems

In this subsection, robust consensus problem with boumaledpolytopic uncer-
tainties will be introduced. A weighted and directed grépk- (<7, &, G) consists
of a finite nonempty node set = {A, ..., Ay}, a directed edge sét C .o/ x .7,
and a weighted adjacency matix € RV*N. A directed edge from¥, to 4; is
denoted ags;; which stands for information can be transmitted from tite node
to thei-th node but not conversely.

Time-varying parametric uncertainties are consideredis ¢hapter. In spe-
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cific, it is supposed that the weighted adjacency mairis affected by uncertain
parameterd(t) € R?, denoting the time-varying perturbations from environien

to the system dynamicis [42,45]. It satisfies that
(0(t),0()) € @ ={(0(1), 0(t)) : 0(t) € A, () € Z} (4.6)
in which A, is a simplex ancE is a polytope given by

A, ={0(t) e R*: Y7 0:(t) =1, 0;(t) > 0}
= = co{dW,...,d"}

4.7)

for some given vectord®), ..., d®) € R® such thab_* , d”) =0, Vj = 1,...,vand

7

0, € = where0(, is a column vector with alk. entries being zero.

Remark 4.1 Sinced(t) belongs t&, one had(t) = S2%_, ¢;(t)d) wherec, (1), ..., c,(t) €

j=1
R satisfy )

D gty =1

j=1

cj(t) >0, Vj=1,..,v

Thus, one has that

a

i 0;(t) = Z ()Y d? =o.

j=1 i=1

Remark 4.2 The modeld.6) has been introduced by [97] and is developed as an
extension of models adopted in previous works[98, 99] uidiclg various famous

models as special cases.

e A prevailing model widely adopted by literatures is the utaiaty set of time-
invariant polytope. It can be obtained fro@.8) by selectingy = 1 and
d% = 0,.

e The model of time-varying uncertainty constrained in a fogdg can be ob-

tained from(4.6) by selecting the scalad equal to the number of vertices ‘F ;

of the polytope and properly choosing the coupling matriassociated to

b, .0, e
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The uncertain MASs with time-varying uncertainties is uniddowing consensus

protocol
ii(t) = f —bZLU NCz;(t), 4,j=1,...,N (4.8)

wherezx; € R" is the state of-th agent,N is the number of agentsjs the coupling
weight, f(x;) € R™is a nonlinear function, = diag(yi, .. .,v,) € R™"is a diag-
onal matrix wherey; > 0 means the agents communicating through th#irstates.
L;;(0(t)) is theij-th entry of the uncertain Laplacian matiixd(t)) € RV*Y given
by L;;(0(t)) = —G,;(0(t)) forall ¢ # j and byL;;(6(t)) = — Ej\[zl,#i Li;(0(t)).

Remark 4.3 Consensus protoc@L8)is a general form and has a great number of
implementations. One special case of time-invariant uiacety has already suc-
cessfully applied in voltage analysis of chaotic circult80]. As a non-autonomous
system with time-varying input, it implies that not only mgwvequilibrium point is

considered, but bounded manifolds like periodic orbit caatic oscillator.

Remark 4.4 Linear pertubation in communication network is widely eoyed in
literatures [45,64,88]. In this section, we also assumgd(t)) is a linear function

thus the uncertain Laplacian matrix can be displayed as

D= Lot > 0L

Nonlinear coupling with nonlinear disturbs will also be dissed in Sectidn 4.2.

Let us introduce the uncertain MAE (%4.1) in compact form as
() = g(a(t)) —b(L(O(t)) @ I')x(t) (4.9)

wherex(t) = (x1()", ..., an(t)")" andg(z(t)) = (f(z1 ()", ... flan(t)")".

Then, the robust consensus problems can be shown as follows.

Problem 4.1 To establish whether the uncertain dynamical sysfé®) achieves
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robust global and exponential consensus, i.e. foratiere exist positive constants
x and ¢ such that||z;(t) — z;(t)]| < &l|z:(0) — ;(0)|le~ for all a;(0), x;(0),

0(t) e Qandi,j=1,...,N.

Problem 4.2 To establish whether the uncertain dynamical sysfém) achieves
robust global and asymptotical consensus, i.e. for attyere existl’(¢) > 0 such
that||z;(t) — z;(¢)|| < eandlim; g [|z;(t) —z;(t)|| = 0forall t > T, x;(0), z;(0),

0(t) e Qandi,j=1,...,N.

4.2 Robust Consensus Conditions

In this section, the conception of parameter-dependertactive matrix will be in-
troduced and corresponding robust consensus conditidhsebuilt via the partial
contraction and SMR technique.

An intuitive yet effective way to analyze consensus withimiological uncer-
tainty via using contraction theory is the method of part@htraction, where an
auxiliary system is adopted and the desired convergencavhmir can be isolated

from the overall system dynamicds [101].

Lemma 4.3 Consider a continuously differentiable nonlinear systeinthe form
* = f(x,z,t) and there is an auxiliary systetn= f(y, x, t) which is contracting
with respect tqy. If a particular solution of the auxiliary-system obtains a smooth
specific property, then all trajectories of the originalsystem have this property

exponentially. The original system is said to be partiatiyptracting.

Let us observe that the virtual systepgigystem) has two particular solutions,
i.e., y(t) = z(t) sharing this specific property. Provided that all trajee®rof
virtual system converge exponentially to a specific trajggtit directly yields that

x(t) exponentially verifies these properties.

Example 1 Let us investigate a consensus problem via using partiairaotion.
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Considering a pair of unidirectional coupled oscillators #ollows

Ty = f(:pl,t)

Ty = f(29,1) + u(z1) — u(2)

(4.10)

wherez;, z, € R™ are state vectorsf(z;, t) is the dynamics of uncoupled oscilla-

tors andu(z;) — u(zs) is the coupling force. We can choose a virtual system

v = f(y,t) —u(y) + ulzy).

It is clear thatz, (1) = x5(t) is a particular solution. On the condition thgt— u is

contracting, consensus can be achieved exponentially.

Definition 4.3 Lety = h(y, 6,t) be an auxiliary system df.8), a symmetric and
uniformly positive definite matrix/(y, ¢) is called parameter-dependent contrac-

tion matrix(PD-CM) such that

orT M. OM
OV o 95 LM« oo 4.11
he(28yM+ 500" o >_ v (4.11)

where~ is a strictly positive scalar. Similarly, a symmetric andiformly posi-
tive definite matrix\/(y, 6) is calledparameter-dependent asymptotical contraction

matrix such that

oh” oM . OM
he(2 M 0 1) < —2~] 412
e( 9y + 20 + oy y) < Y ( )

where~ is a strictly positive scalar.

Lemma 4.4 (From [76]) Let A € RY*Y be a symmetric matrix. Produgt’y) =
(1y - 1%) ® A is positive semidefinite if and onlyif > 0, wherely is a column

vector whose entries are all one.

Theorem 4.1 Consider an uncertain syste@.9), an auxiliary system can be built
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as

y(t) = g(y(t)) — b(L(O()) ® D)y(t) — Wpr(0)y(t) + Wer(0)=(t)  (4.13)

whereWaL(0) = (1x - 1%) @ (P(#) - T) and P(6) € R™*" is a positive definite
matrix for all (4(t),6(t)) € Q. In addition, robust global exponential consensus
can be achieved if there is a parameter-dependent contmactiatrix M (y, ) such

thatg(y(t)) — b(L(6(¢)) ® I')y(t) is contracting.

Proof
Considering a positive semidefinite mat#x#), fori,j = 1,..., N, (4.8) can

be equivalently represented as

N

(1) = f(xi(t) =0y Lij(O(t)) Ty (t) ZF:@—}—P )erj. (4.14)

J=1

Then one can get a compact form frdm {4.9) such that

i(t) = g(a(t)) — b(L(O(t) @ T)a(t) — Wpn(0)z(t) + Wpp(0)a(t).  (4.15)

Let us considefV2.(0)x(t) as the system inputs, the auxiliary systém (#.13) can

be obtained that a particular solution of robust consersuyis+ 1y ® y., Where
N
Joo(t) = f(Yoo) = N PTyoo + P(0) > Ty, i,j=1,...,N.

From Lemmd4J3, the robust consensus of system (4.9) foé@ll, 6(¢)) €  can
be achieved and the property = ... = xy is able to be verified exponentially if
system[(4.1B) is contracting. Thuis, (4.13) is an auxiligstem for systen{ (419).
Next, it will show that the auxiliary systeri (4]13) is comttiag if there is a
parameter-dependent contraction matrix. A concise pré@axponential conver-

gence of trajectories for contracting system can be fouftti2] for an uncertainty-

free case. Let, andy; be two different points and I€f(y, 0, t) be the associated
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flow of the auxiliary systen((4.13). If there is a parametepehdent contraction
matrix M (y, #) given by Definitior 4.8, then by the Theorem 2[0f [102] one cah g

DM<T<yO7 97 t)a T(ylu 97 t)) S e(_C/Q)tDM<yO7 y1)7

whereD),, is the geodesic distance corresponding to the métrig, ), and map-
ping T is a strict contraction. Then, from Contraction Mapping diten, it implies
the flow Y (y, 6, t) verifies a specific manifold,, (¢) exponentially[[70].

Lastly we will show that there is a parameter-dependentraohbn matrix\/
such that[(4.13) is contracting. Singé&y(t)) — b(L(6(t)) @ T')y(¢) is contracting,

one can obtain that there exists a maf¥ixg) such that

OhT - OM . OM
—M + —0+ —71)

— he(aain) — bhe((L(0)) @ T)" M) + %he(aa—]\:é) + %he(%—ﬂ?j /)

he(

(4.16)
Sincel is diagonal positive semidefinite at|0) is a positive semidefinite matrix,
one can obtain thate(W7;.(6)) > 0 by Lemmd4.}. Thus, the Riemanian manifold
of general infinitesimal length for the auxiliary systénil@).can be represented by,
S 5yTN1(0, )0

dt
1d

= dyThe (M(Q, y))5y

2dt 5
1. /. OnT - oM. M,

— oyThe(22 0
500" e oy ey )y )
1 o 09" - - Nom OM. OM.

= - he(2—M — 2b(L N M —2 M+ — —
58y e o b(L(B)) @ T) a(}\j/m(e;)M ot )dy
1 - . )

_ 55yThe(zain ~ 2H(L(6)) © )M + Tl + 1)y
—5yT((WéVr(9))TM ) Sy — oy” (M Wfovr(Q))@
1 9" - r~  OM. OM .

< = M — il il

< 25yhe<2 o M = 20(L(0) & T)NT + 5+ )y

< =0y " M(0,y)dy.

Therefore, the auxiliary system is contracting and henegtbof completes. [J
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Aresult can also be gained for robust asymptotical consgmgusing parameter-

dependent asymptotical contraction matrix as follows.

Theorem 4.2 Consider an uncertain systef@.9), an auxiliary system can be con-
structed aq4.13) Furthermore, robust asymptotical consensus can be aebidv
there is a parameter-dependent asymptotical contractiatrisn M/ (y, 6) such that

g(y(t)) — b(L(0(t)) @ I')y(t) is asymptotical contracting.

Proof One can obtain an auxiliary system as (4.13) by similar limeproof of
Theoreni 4. By Definition 413 and l&t,_, be the infinitesimal distance between

trajectories starting from, andy;, one gets

%DM(T(y(]? 97 t>7 T(yh 97 t))
= %5y§,1he(%M + M3 4 G+ %y)éyo_l

IN

—Y0Yg_10yo—1, Iy > 0.

where

h(y) = g(y(t)) — b(L(O(1) @ T)y(t) — (L - 1) ® (PT)y(t).

One can obtain that the trajectories inevitably convergbéaset where the Eu-
clidean distance vanishes, i.e., the robust consensuscarchiteved for the asymp-
totical contracting system if there is a parameter-depeinaeymptotical matrix.

Provided thay(y(t)) —b(L(0(t)) @ T")y(t) is asymptotical contracting, via same
lines in proof of Theorenl 411, the Riemanian manifold of gahénfinitesimal
length can be verified as asymptotically vanishing, i.e.,

%@TM (6, 4)dy < —~oyTdy.

hence it implies that the auxiliary system is asymptoti@aitcacting. This com-

pletes the proof. O
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Remark 4.5 For Theoreni 4]l and Theordm#.2, note that

e The virtual quantity of matrix°(6) is to construct the auxiliary syste@.13)
satisfying(WA:(9)TM)® > 0. Note that it has no influence on the actual
systems, neither on the specific robust consensus mandoloimthe robust

consensus rate. Moreover, matéX¢) in the auxiliary system is not unique.

e Comparing with Lyapunov-like method which is broadly aédpin litera-

tures, a system error dynamics has to be constructed as
g = fle;)) +Uleq,...,en,0), i=1,.., N

wheres; = z; — 31 e;z; Withe; > 0 and Y e; = 1 and mapping
U is a linear function oreq, ...,ey and ond. However, the nonlinear part
f(g;) is difficult to obtain and usually requires a linearization ather ap-
proximations (suffered to sorts of assumptions, e.g.,albipchitz-like con-
dition) which definitely brings conservatism. Furthermasgen though the
system error dynamics can be established, a parameterdepe Lyapunov-

like method or Krasovskii's theorem can also be deemed ageaase of

contraction theory by selecting

V(z,0,t) = f(z,t)" M(x,0)f(z,1).

e FromLemm&4l]l, a more general case can be obtained by usm&nolidean
norms and introducing a general parameter-dependent ectitn matrix

such that
M(y,8) = M(y,0)" > 0,70 € Q.

910 (y,0)yl; < —c| M(y, )5y,

Robust consensus conditions can be established by usifegedif vector

norms and corresponding induced matrix norms through sinarguments
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for Euclidean norm.

e As a natural extension, nonlinear coupling force is straighnvestigated

with following consensus protocol.

where functiory is nonlinear onz; — z; and linear ond. Similar results can

be gained under additional assumptions that

89(%’ — Ty, 9)
oxj — ;)

39(371‘ - 372‘,‘9)

20 > 0.

> 0,

Nonlinear mapping o will be discussed in next subsection.

4.3 Analysis via HPD-PCM

Checking conditions of Theordm #.1 and Theokenh 4.2 are nlsiin that they are
nonlinear inequality problems with time-varying uncemtaés. However, via appro-
priate parameterizing some affine spaces, SMR techniqwedeoan effective way
to solve these problems which amounts to handling with an [8dkibility test.
Indeed, by bringing in a new class of contraction matrix,, il€PD-PCM, robust
consensus conditions can be provided via solving an LMIilbday test.

In this chaper, we concern with the robust consensus prabtdrpolynomial

nonlinear system. Thus let us introduce the following agstion on f ().

Assumption 4.1 The functionf(z;) in (4.8)is polynomial.

Remark 4.6 One-side global Lipschitz condition (or QUAD conditionyegjuired : E:

in an overwhelming number of existing methods for globakeasus such a5 [50]. . :!—J

Nevertheless, the QUAD condition is not fulfilled for simpbalinearities such as E_’L?*TL

quadratic and cubic functions. By contrast, Assumpfiohidcludes such nonlin- [ ‘[_ J
o o =
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earities, and also includes some essential systems lilenkzdike system, Hamilto-

nian systems, Guckenheimer system asgkRr system.

Let us define homogeneous parameter-dependent polynosral@ws,

m(y,0) = E cqryl0", (4.17)
qeN™, 3701 4:i<2dy
TENG, Z(ilzl T‘i:dg

wherec,, € R is the coefficients of monomia)?6”, dy of m(y,6) denotes the
degree imu scalar variable$, 2d, of m(y, ) is the degree im scalar variableg
andn = Nn. Thus, a set of homogeneous parameter-dependent polyintaniae
given as# = {m(y, ) : (AI1)holds}. Then, the definition of HPD-PCM can be

given as

Definition 4.4 M(y, 0) isaHPD-PCMifitis a PD-CM and every entry af/(y, 0)

satisfies

By a similar way, homogeneous parameter-dependent polhasymptotical con-
traction matrix (HPD-PACM) can be defined by using condit@a2). LetR(y, 6,6, )

be a matrix of polynomial as

R(y,0,6,7)
_ (; 9i>he<aain) - bhe((L(e) ® F)TM) + %(Zl 9i)2he<8gg 9’)

Ao (s) - () (S

Thus, condition[(4.111) can be displayed in a homogeneous éddegreel, + 1 in . "_ .-: .l,l;:
¢ since) ! 6, = 1forall § € Q. The condition tha € A, can be relaxed to the ‘L:
conditiond € R¢ by the following lemma. 1B l';.—l‘

KU
Lemma 4.5 (From [88]) The functionH (0) : R* — R™*™ is a symmetric matrix [ -& dic
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composed of homogenous polynomials with dedgee o scalar variables. Then,

H(#)>0V8 e A, <= H(sq(f)) >0V0 € R;.

Lemma 4.6 Robust exponential consensugéi8)can be achieved under Assump-
tion[4.] if there is a positive scalarand a HPD-PCMM (y, 6) such that
0 < M(y,sq(0))Vy € RE, VO c R
(. sq( ))' y €RG & (4.18)
0 > R(y,sq(0),0,7) Yy € R, V(0,0) € Q
Proof This result can be obtained directly from Definitionl4.3, dieen[4.1 and

Lemmd4.b. O

By the technique of SMR)/ (y, sq(f)) can be expressed by

M (y,sq0)) = V(M,d,, dg, 1) (4.19)

where

\D(Ma dy> dG’ TNL) - (*)TM(¢p01(ya dy) ® Qbhom(ea dG) ® Iﬁ)a

Ppoi(y, d,) € Rleat(™d) is a power vector containing all monomials of degree less
than or equal t@,, gpom (0, dy) € Rirom(@4e) js a power vector containing all mono-
mial of degreeds, andi, (7, dy), lhom(a,dy) can be given by[(1]16) and (1]11).

Symmetric matrix)/ belongs to the set

M ={MT =M : ¥(M,d,,dg,n) only contains

monomials’ with even powery }.
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Lemma 4.7 The set/ is a linear space of dimension

(i, dy,dg) = %ﬁ(lpol(ﬁa dy)lhom (@ dg) (lpor(12, dy) Iom (a; dg) + 1)
— (7 + 1) (lhom (@, 2dy) — lhom(a, do))lpol (7, 2d,))

Proof Let M, and M- be any matrices in/. It directly follows that for any linear
combination of\/; and M5, one hasy M + ¢, M, € ., for all ¢;, ¢, € R such that
c1 + ¢ = 1. Thus, one can obtain tha# is an affine space.

Define

a = ﬁlpol<ﬁ7 dy)lhom(a’7 d‘9>7

the total number of free entries f € R*** can be obtained aga(a + 1). Let
b € Rz%(+1) pe a vector containing the free entries of matti and define a linear

mappingE : Rzt — Rexa satisfyingE(b) = M. Thus, one has

U (M,d,,dg, )
= (x)TED)(por(y, dy) @ bnom(0, dg) @ I7)
= (F0)" (¢par(y; 2dy) @ drom(0,2dp) @ I)

whereF' is a proper transformation matrix. Observe that
M ={E():b € ker(E)}.
It directly follows that

dim(#) = dim({E(D):b € ker(E)})
= dim(ker(FE))

= 3a(a+ 1) —rank(E). 3| % |

=) 5 |

=

Let us observe that dimension.ef stems from the entries of some monomials with || == : o

A | PPoVAN

even power i, yielding that ! “J'?A*Li
| H i B

UYL i

| : "-.'r |

o e
rank(E) = {number of distinct monomials ¢; ;8'y’ with odd power i*}. (4.20) fi-kranc
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Thus, one can get a complete parametrization of the affireesgafor HPD-PCM
of (@19). Now let us investigate the SMR 8{y, 0,0, ~). Note that the degree of
polynomialg(y) is d, in y and let

d, = max(d, — 1+ 2d,,2d, — 1 +d,, 2d,), (4.21)

and2d, = even,,(d,) (i.e.,2d, = d, if d, is even, an@d, = d, + 1 if d, is odd). It
follows that,
R(y,0,0,7) = W(B(M,0,7) + N, dy,dy + 1, ) (4.22)

where B(M, 0,~) is a multilinear function inM andé, i.e., it is linear inM for
fixed 6 and fixed~, and is also linear i for fixed A and fixed, and N is a

symmetric matrix belonging to the set

N ={NT =N :U(N,d,,dy+1,7) = 0}.

Lemma 4.8 ./ is a linear space whose dimension is

- 1 -
o(n,d.,dg+1) = éﬁ(l(ﬁl + 1) — (1 + 1) lhom(a, 2dg + 2)lpa1 (72, 2d,))  (4.23)
wherel = l,1(7, d, ) lnom (a, dg + 1).
Proof Similar to the proof of Lemnia 4.7 and we omit it here. O

Interested readers can refer [01[84), 88] and its recent dprednts in robust

consensus [81,82,B7]. The following result provides asieffit condition which is
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a convex problem of LMIs feasibility test.
Theorem 4.3 The robust exponential consensug#l) can be achieved under As-
sumptiori 4.1 if there exist matricég(«), N(3) and a positive scalay satisfying,

0 < M(a) (4.24)

0 > B(M(a),d,v)+ N(#),Vj=1,..,v.

where M («)) and N(3) are linear parametrizations of affine space# and .4
respectively, andy, 3’ are corresponding free parameters whose dimensions are
given by Lemm@a4.7 and Lemmnal4.8, forjal 1, ..., v.

Proof Let us consider the first LMI condition i@.24) V6 € R¢, by pre- and
post-multiplying(¢poi (v, dy) @ dnom (0, dg) @ )" @and (¢pe1(y, dyy) @ dnom (0, dp) @
I;), one can obtain

0 < M(y,sq(d)).

Similarly, from the second condition i@.22) Vy < RI andV(6,6) € Q, by
pre- and post-multiplyinge,o (v, d.) @ ¢nom (8, ds + 1) @ Iz)T and (¢po(y, d,) ®
drom(0,dy + 1) ® I5), it follows that there is a positive scalarsuch that

0> U(B(M,d,~)+N(£),dy,dg+1,7), Vj=1,..,0.
In addition, consideringV(5’) € .4/, one has
U(N(F),dp,dg+1,7) =0, Vj=1,...,0.

Therefore, it follows that there exists a positive scalauch that

0> R(y,sq(6),6,7), {5 75|

= :

€|

. . A . I i:'_l.-" Ed |

SinceZ is a convex hull of vectorg’ for j = 1,...,v, the condition of Lemma 4.6 || =77 |

holds. O Hrir.L Jf
|- [
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An analogous result can be given by using the same approaobbiest asymp-

totical contraction as follows.

Corollary 4.1 The robust asymptotical consensus(éf8) can be achieved under

Assumption 4]1 if it satisfies following condition,

0 < M(a)
o (4.25)
0 > B(M(a),d")+ N(@), ¥j =1,...v,
where
R(y,0,60) = W(B(M,6) + N,d,,dy + 1, 1), (4.26)
and
ﬁ(y,@,@)

_ (i@i)he(%M> - g((L(H) @T)TM) + %(iei)zhe(agfej

4.4 Robust Consensus Performance

Sectior 4.2 and Sectign 4.3 propose conditions on whichabest exponential or
asymptotical consensus can be established. Follow-ugignesises naturally that
what is the largest level of polytopic uncertainties whére iobustness of asymp-
totical consensus remains. This section aims to answeqteistion.

Considering time-varying bounded-rate polytopic ungetygorovided by[(4.6),

a variation rate margin of robust asymptotical consensnseantroduced for un-

certain consensus protocbl (4.8). lghbe variation rate margin for system (4.8) as :
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follows.
n = sup {n € R : (4.8) achieves robust consensus, 4.27)
Vo e co{nd(l), ...,nd(”>}, Vo e Aa}.
It is useful to bring in another definition which concerns ba tases that robust
asymptotical consensus is guaranteed by a HPD-PACM, sq(f)) given by [4.19)

for system[(4.8) as follows.

Definition 4.5 Definenyg, 4,1 as {d,,dy}-HPD-PACM variation rate margin for
system4.8) if there exists a HPD-PACM/(y, ) given by(4.19)for system4.8)

such that

N{dy.dg} = SUP {77 eR:fe co{nd(l), ...,nd(v)}, Vo e Aa}. (4.28)

Obviously,nyq, 4,1 is @ lower bound of the variation rate margin, where the ro-
bust asymptotical consensus can be ensured by the clas£©ePHEM. In specific,
one has

Nidy.dey <1, Vdy, Vdy.

The following results provide a strategy for obtaining aésound ofy4, 4,}

by solving a GEVP problem.

Theorem 4.4 Define

R 1
Mdy,do} = F (4.29)
wherec* is the solution of
¢F = inf
s, M a, [—}(0) _____ 5(“)
.
0 < ¢
0 < M
(@) (4.30)
st.4 0 < Bi(M(a))+ N(B°

0 > g(Bl(M(a)) + N(60)>
+By(M(a),d) + N(B)Vi=1,...,a
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whereM () and N (3) are linear parametrization of spac# and. /" respectively,

R(y7 07 0) = Rl (y7 07 0) + RQ (y7 07 8)’

Ri(y.6,0)
- (0)gue( ) - pre((20) 0 1)
(3 0)g0e(%55-0) ~ (60 1)

RQ (y7 0 0)

- (o) ()

and
Ri(y,0.0) = \If(Bl(M) Y N.d,.dy+ 1n>

Ro(y,0,0) = @(BQ(M,e') + N, d,, dy+ 1n>

Thenf;{d%de} is the lower bound o;f;{dy,de}, i.e. Ndydoy < T{dy.do}-

Proof Suppose thaf (4.80) holds. Pre- and post-multiplying ticerseé LMI condi-
tionin M) by(¢pol(y7 dy)®¢hom<97 d9)®[ﬁ>T and<¢pol<y7 dy)®¢hom(97 d€>®[ﬁ);
respectively, one has that

0 < W(M,d,, dg,7)

hence implyingV/ (y, 0) is positive definite Sinc@,o1(y, dy,) @Pnom (0, do) R15) T (dpoi (y, dy)) @
Grom (0, dy) ® I) > 0 forall y # 0. Then,R(y, 6, 6) for = ¢/ is given by

R<y7 97 é)|é:g—1y(i)
= U(By(N) + < Bo(M, ), dy, do + 1,7 (4.31)
- cl\p(gBl(M)+BQ(M,di),dr,d9+1,ﬁ).

sinceN(3) € A, Vi = 0,1, ..., a, it follows

R(?/a 07 é)lé:gfly(i)
= <1 (S(B(M (@) + N(5) (4.32)
+By(M (), di) + N(87),d,, dg + 1, n)
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Thus, due to the last condition in_(4130) one has
R<y7 97 9')|9.:§71V(i) < 0 V’l = 1, o, a.

Based on this, one can also obtain that there is a HPD-PCMIféfa in fol-

lowing set
N{dy,.dg} = SUP {77 eR:fe Co{gfld(l), ey g’ld(”)}, Vo e Aa}. (4.33)

Therefore, one hag, 4,; < 1 which completes this proof. OJ

4.5 Numerical Examples

45.1 Examplel

In this case, a coupled model of Moore-Greitzer jet engisesonsidered in the

no-stall mode[[46,89]. The intrinsic dynami¢sr) in (4.8) is given by

—0.523 — 1.52% — 240
fla) =

3Ti1 — Tyo
wherez; = (z;1, 7). i = 1,2, x;; relates to the mass flow ang, associates with
the pressure rise. The communications between these twog@es are affected
by a time-varying uncertainty(¢). Let us choose the uncertain weighted adjacency
matrixG(6(t)) as
1 0

G = 1-20(t) 1

Ford(t) > 0.721, the consensus can not be achieved since a Hopf bifurcatikes t

place as shown in Fid._4.1 where error statg = x1(t) — x2(¢). In (a) of Fig.

B,6(1) = 0.6, § = 0, consensus can be achieved where trajectory of agent 1 i/ 1"\J]
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shown in (b). In (c) of FigCZl14(t) = 0.75, 6 = 0, consensus can not be achieved
where trajectory of agent 1 is shown in (d). Sirigec = = co{d, ...,d™}, for
anyrn given by [4.27), the robust consensus can not be achievedyhe> 0.721.

Hence in this example we consider the parameter boudd(¢) < 0.6.
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Fig. 4.1: Hopf bifurcation of coupled M-G jet engines.

Letc = 1, = I, and a maximum variation ratgof 6(¢) is investigated such

that the robust asymptotical consensus can be achievedydé@)| < 1. Hence,

= can be expressed as

. _n
—_ 0.6 0.6
= = CO ,
~06 06 1=
15538
Then, we calculate the lower bourdyy using HPD-PCM withiy = 0,1, 2,3 Z ;‘ )
andd, = 1,2,3 as shown in Table_4.1. Comparing with other sufficient con- ‘FJ;]:;-L
S ge ol |
ditions proposed by [98] (QLF with affine parameter depecdprand by [[46] | r :Z."[_ j
(Parameter-independent polynomial contraction matting proposed method gen- - ]"'
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Table 4.1: Lower bound, for some values of,, andd,
dy/dg 0O 1 2 3
1 N/A N/A NA NA

2 178.3 197.1 207.7 214.1
3 185.8 202.3 211.2 216.4

eralizes these cases and provides a less conservative guging higher-order
HPD-PCM. Specifically, with respect to linear parametguedelent quadratic Lya-
punov function, the robust asymptotical consensus canegehbured wherg, = 1
andd, = 1. In addition, the proposed method also has a significanetasgund
in contrast with the parameter-independent polynomiatreation matrix where

dp = 0.

4 6 8
t
Fig. 4.2: Trajectories of robust consensus.

Figurel4.2 shows that 50 trajectoriesz0f) with 6(¢) randomly chosen if2 and

initialized with points randomly chosen jr-4, 4]*.
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Fig. 4.3: Topology of a six-agent system.

4.5.2 Example 2

In this case, a six-agent system in Figuré 4.3 is investibatth intrinsic dynamics

in (4.8) as follows
T2
f(xi) =
=371 — T2

Leta = 2,n =2, N =6, = I, and an uncertain weighted adjacency matrix is

given asG(6) = Gy + >_¢ G.6; where

10 0

20 0
GOZ )
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o 0 0 0 020
01 0 0 0 0 0
0 03 0 O 0 0
Gy =— ,
0O 0 02 0 0 0
0 0 0 05 0 0
o o0 0 0 0 0
0000 =030
0000 0 O
0000 0 O
GQI
0000 0 O
0000 0 O
0000 =010

0= (01,05), Ay ={0(t) e R?: 0, + 0, = 1, 0;,0, > 0}, v = 2 and= is chosen
to be cdd,d®} whered™™ = (1, —1)" andd® = n(—1,1)". Note that this is

equivalent tdd;| < n fori = 1,2 andé; + 6, = 0.

Table 4.2: Comparison of lower bourjdby different approaches wit, = 1.

Approachegd, 0 1 2 3
[98] N/A 5734 N/A N/A
[46] 4871 N/A N/A N/A

This chapter 48.71 59.52 67.13 70.81

Analogous with former example, we calculate the lower bohyg using HPD-
PCM method withd, = 1 anddy = 0, 1,2, 3 as shown in Table_4.2. Comparing
with sufficient conditions given by [98] and by [46] , agaihetproposed method
is verified to be less conservative and has a larger robustsyical consensus
margin withd, > 1. Furthermore, it also displays that by increasing the degfe
uncertain parametefy, the conservatism level decreases progressively.

It is worth noting that, in contrast with the approach giver{®8], even though

samedy is considered, proposed method still has a bigger majgeso shown
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in Table[4.2) in that it completely parameterized corresjiag affine spaces while
[98] does not.

4.6 Conclusions

In this chapter, robust consensus of MAS with polynomiallim&ar dynamics is
considered where the communication network is affectedhg-arying polytopic
uncertainty with bounded variation rate. Thanks to padaitraction, a novel ap-
proach is proposed by adopting a new class of contractiomxmeae., HPD-PCM,
and conditions for robust exponential consensus and rasyshptotical consen-
sus are both given. Corresponding sufficient condition®leso been provided
in terms of LMIs via exploring the parametrizations of relaffine sets. Further-
more, we also investigate robust asymptotical consenstgim the variation rate
where the lower bound of this margin can be estimated viarsp@EVPs.

In contrast with Parameter Linear-dependent Quadratiplugav Function (PLD-
QLF) and parameter-independent polynomial contractiotrimpaaumerical exam-
ples have demonstrated that the proposed method genexlbize methods and the
conservatism level has apparently decreased by using arhagtier HPD-PCM, in
other words, an expanded lower bound of variation rate margn be found via

increasing the values af, andd, respectively.
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Chapter 5

Conclusions and Future Works

This chapter displays the conclusions of this thesis, aogiges some possible

directions of interests for our future efforts.

5.1 Conclusions

This thesis is concerned with the consensus problems of MABsdifferent dy-
namics. More specifically, following kinds of MAS models ledveen studied and

corresponding consensus conditions are given.

1. In chapter 2, robust consensus of MASs with linear dynamnd topological
uncertainties is considered, both for continuous-timéssys and for discrete-
time systems. First, necessary and sufficient conditioegesvided for ro-
bust first-order consensus and for robust second-ordeeneus in different
cases of positive and non-positive weighted adjacencyiceatr In addition,
this chapter also investigates robust consensus probléndiscrete-time dy-
namics. Necessary and sufficient conditions are given fousbconsensus
via finding a polynomial parameter-dependent Lyapunovtionc It is also
shown that the necessity can be achieved by providing anruppend on
the degree of candidate Lyapunov function required. Thereassary and

sufficient condition is given for robust first-order consesmwith nonnegative

weighted adjacency matrices by checking the zeros of a patyal. Finally,
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by expiating SOS technique, these robust consensus comglitan be tested

by solving convex optimization problems in terms of LMIs.

. In chapter 3, HPLF are exploited to solve the consensusgroof MASSs.

Firstly, local and global consensus in MASs with nonlinegmaimics are in-
vestigated. For local consensus, a method has been propased on the
transformation into an uncertain polytopic system and enube of HPLFs.
Meanwhile, regards to global consensus, another methobddes proposed
based on the search for a suitable Polynomial Parametendept Lyapunov
Function. In addition, we have investigated robust localsemsus in MASs
with time-varying parametric uncertainties. A novel conapproach has
been proposed based on the transformation from the origyséém to an un-
certain polytopic system and on the use of HPLFs. Correspgndli-based

conditions are obtained by using SMR technique. Polytopitsensus mar-

gin has also been investigated by a convex optimizationistng of GEVPs.

. In chapter 4, robust consensus of multi-agent system patnomial non-

linear dynamics is considered affected by time-varying/fogic uncertainty
with bounded variation rate. Based on partial contracampvel approach is
proposed by using a new class of contraction matrix, i.eDH¥M, and con-
ditions for robust exponential consensus and robust asytrogk consensus
are both provided. Corresponding sufficient conditionsehal¢o been pro-
posed in terms of LMIs via exploring the parametrizationgedéted affine

sets. Moreover, we investigate the variation rate for rolasymptotical

consensus margin whose lower bound can be estimated viag@hEVPs.

Comparing with PLD-QLF and parameter-independent polyiaboontrac-

tion matrix, numerical examples have shown that the praposethod gen-
eralizes above methods and can successfully decreasenbereatism level
by using a higher-order HPD-PCM, in other words, an expaholedr bound

of variation rate margin can be obtained via increasing #ieevofd, andd,

respectively.
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5.2 Future Works

Several possible extensions of research topics considethbi$ thesis are listed as

follows.

1. In our previous works, the consensus design approackamaghat the in-
formation of each agent is always available. Neverthelessany practical
applications, this assumption is not always satisfied inttiestates of agents
may not be completely accessible due to difficulties in mesments and in-
formation transformation. Therefore, it is natural to use bbserver-based
model where the state information are only available for snead output.
In many cases of MASs, implementations have already oatumrproblems
where dynamic observers are designed to estimate the systdes and a
feedback controller for each agent can be designed forilalisd coopera-

tive control.

2. Based on model of MASs with observer-based controllesthear interest-
ing extension is how to design an optimal distributed cdigrsuch that the
system estimation is as good as possible with considerimgrlkironmental
noises. Regards to this problem, a number of robust perfoceneriteria can
be applied to measure the perturbation against the distoebiaputs, which
is usually measured by norms related to the system distoedaput and sys-
tem responses. A frequently employed measurement i theorm method,
by which the worst-case effect on the system output can becteaized un-

der the consideration of bounded disturbance.

3. Time-varying topological uncertainty is used to simeltte communication
disturbances, thus making the topology of MAS unfixed. Arotwidely
adopted model for chaining topology is MASs with stochastitching net-
work. It is natural to assume that each agent can only comeatenwith its

neighbours, and as the agent is moving, a time-varying camgation net-

works can be represented by a moving neighbourhood grarewhe edges
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of moving neighbourhood graph are set by the location of tagenthe lat-
tice. In addition, each agent is assumed to be a random watkkeoccupies
one lattice where information exchange is available fonége same lattice.
The dynamics of moving neighbourhood graph is determinethéymotion
of agents in lattices, and not affected by the states of ag&his model meets
many practical applications in engineering, physics awtblgly and consen-
sus conditions are expected by using Markov chains, sttictsability and

fast switching theory.

. As time-delay is a phenomenon commonly encountered ipt@etical im-
plementations of networked control systems, it is worthgdasider the ef-
fects of time-delays in communication for different MAS @ynics. Not
merely using the stability theory for time-delay system xiseng results
of differential equation theory, consensus conditionsuhtbe emphasized
on the topological condition of MAS in which the consensi&pik ensured
by certain characteristic communication topology. A maaditime-varying
time-delay on communication is expected to be estimatedimgisome con-
vex optimization programming. In addition, other than adagng first-order
consensus and second-order consensus, a higher-ordensaasnodel can
be discussed for a more general case. A detailed analydisefdigher-order
consensus algorithms can be an inevitable step to consioler r@alistic dy-

namics into the model of individual autonomous agent faurfeistudy.
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Appendix A

Runtime and Numerical Complexity

Letd, dy, a, n and N be the degree of state variable, the degreg, dhe number

of uncertain parameters, the number of inner states forgdesagent and the total

number of agents, respectively. The computational iin@nd number of variables

w for some examples in this thesis are shown as[Tab. A.1.

Table A.1: Number of variables and runtime for each example

Chapter Example Type Problem w T, (Second)
1 d=0,dp=2,a=1, N=4,n=1 (2.22) 17 0.4368
2 2 d=0,dp=2,a=2, N=6,n=1 (2.38) 2402  215.8274
4 d=0,dp=1,a=2, N=6,n=1 (2.95) 247 0.5148
1 d=4,dp=1,a=1, N=2,n=2  (3.10) 10 0.1680
3 2 d=4,dy=1,a=1, N=2,n=2 (3.21) 117 1.1260
3 d=2,dp=1,a=1, N=2,n=2  (3.38) 7 0.5304
4 d=8,dy=1,a=1, N=3,n=1 (3.44) 123 2.7839
4 1 d=2,dy=2,a=1,N=3,n=1 (4.24) 4653  473.2381
1 d=4,dp=4,a0=1, N=3,n=1 (4.30) 29613 3785.9542

Device information are given as follows:

- CPU: Intel Core (TM) i5, 2.67GHz;

- RAM: 4.00 GB;

- Operating System: 64-bit Operating system, Windows 7 rpnite.
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