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Information Maximising Optimal Sensor Placement
Robust Against Variations of Traffic Demand Based

on Importance of Nodes
Jordan Ivanchev1, Heiko Aydt2, Alois Knoll3

Abstract—This paper defines a measure of importance for
a node (intersection) in a transportation network, based on
its topology and traffic demand. Consequentially the measure
is used in order to solve the sensor placement problem by
maximising the information gain in terms of users’ routing
choices by sensing the most uncertain areas in the system. It
is demonstrated that utilising the proposed strategy makes the
performance robust against short and long term variations of
traffic patterns. Finally, a method for finding the optimal number
of sensors to be installed in a city is proposed. It models and
maximises the utility stemming from the trade-off between cost,
performance, robustness and reliability of the sensor placement
problem solution.

I. INTRODUCTION

IDENTIFYING the most important modules or elements of
a complex system is a problem that is of great interest

to engineers and researchers. Its most significant entities or
subsystems are, depending on the system, either cautiously
monitored, robustly controlled, or rigorously studied in order
to gain deeper understanding of the system’s dynamics.

In the case of transportation systems, “important” parts of
the network are usually sensed in order to get information
about the overall traffic state. Engineers go even further
by trying to change and control traffic parameters at such
locations by planning new infrastructure developments [1],
control strategies [2], novel policies [3], etc.

The aim of sensing traffic has been mostly in order to deter-
mine the flows in a city. The problem of optimal placement of
counting sensors in order to estimate an Origin - Destination
(OD) matrix has been around for more than four decades
[4]. Knowing the OD matrix, the flows can be extracted and
knowing the flows, the traverse times on the respective roads
can also be evaluated, thus providing aggregated information
about the traffic situation.

Given the increased pace of introduction of new technolo-
gies to the market and growing availability of computing
power, traffic sensing and city planning are getting more
interdependent and strongly connected. There are methods that
use sensed data in real time in order to apply changes to the
traffic system [5]. Therefore, sensors may not be placed with
the sole reason to observe traffic. Smart cities use their sensors’
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data streams in order to optimise their performance in real
time. With the increased number of sensor types such as plate
scanning, velocity measuring, emissions measuring, etc. and
their reduced error rate, it is now a matter of great importance
to shift the sensor placement problem toward a more active
goal. The information stream coming out from the sensors
should be utilised by control algorithms or long term planning
strategies in order to “actively” sense the traffic by controlling
it at the same time.

Fundamentally, sensors are put in such positions so that
they maximize the information gain. Naturally, the locations
that need to be sensed in order to maximize the information
gain are the ones of higher importance. In other words, the
chosen locations to be sensed are usually the ones that we are
most uncertain about with respect to a predefined information
measure. In case the uncertainty of both nodes is of equal
magnitude, the one that is more used is of greater importance.
Therefore, the uncertainty of users’ choices at every node
should be weighted by the number of users that utilise it.
Depending on the definition of information the placement
problem can take different forms.

In most cases, information is considered to be a character-
istic of the link, like throughput or flow velocity. If, however,
we want to find the intrinsically important locations, we need
to look for the places where the choices, that lead to those
characteristics, are made. Average flows, velocities, densities
on road segments are perceived as the factors that describe
traffic conditions. The main factor that determines all those,
however, is the routing choices that the users make. Routing
choices can account for a significant difference of traffic
performance as shown in [6], where a 20% improvement of
average travel time for the whole system was demonstrated
by just optimally selecting the paths of the users. A novel and
more efficient approach for sensing traffic would then be to
try and maximise the information about the routing choices of
commuters rather than the flows, speeds and densities on the
roads.

By knowing the routing choices of drivers at key intersec-
tions, a detailed map of the specific flows on the links can
be inferred, which is what usually sensor placement strategies
aim at. In addition to this, however, information about where
the flows come from is also available. Therefore, by gaining
information about the routing choices, both the link and path
flows can be simultaneously approximated. Furthermore, by
examining differences between sensed flows and predicted
ones from the routing choices, the OD matrix can also be
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estimated. Therefore, routing choices stand as the source of
information that determines the usually addressed problems
of estimating OD matrix, path flows and link flows.

Intersections are the places where commuters make choices,
and what is sensed at the connecting road segments are just
the consequences of those choices. Therefore, instead of ex-
amining links in a traffic network, a more topologically central
approach would be to examine nodes (intersections) instead. It
is important to note that the uncertainties and the dynamics of
each node are expected to be weakly correlated with respect
to their spatial connections. Contrary to the speed, flow, etc.
measures of road segments, which are usually correlated in
case of physical proximity, the uncertainty at nodes tends not
to have a distance dependent correlation. This key difference
diminishes the need for a combinatorial mutual information
optimisation approach of high complexity in order to find
the optimal sensor placement, because there is intrinsically
no redundant information in the sensing network.

Sensing a node or a group of nodes representing an inter-
section in a road network boils down to tracking the decisions
of the users that pass through it. This task can be performed
by placing plate scanning sensors on the roads that lead to the
intersection and out of it. This sensing architecture allows us to
both evaluate the turning choices of the commuters as well as
still collect information about flows on the separate links. More
than that, since in order to properly “sense” a node we only
need the flow along the edges, sensors can be placed at any
position on the edge. Thus, if positioned at a midpoint along
the edge, the sensors will also be able to collect information
about the cruising speed along it, therefore maximising the
information input.

Another pressing matter that has been ignored in the past
is the robustness of a sensor placement solution. Usually,
robustness is understood as the error rate or redundancy of a
particular sensor placement. In this work, however, we look at
robustness from a different angle. Due to the fact that sensors
are quite expensive and their installation consumes both time
and resources, we want to minimize the need to move the
sensors around (if at all possible) after they are once installed.
In this sense, robustness of a sensor placement can be defined
as the property of the set of locations to stay important when
the traffic demand conditions in the system are changed. Such
changes may include short term changes in the OD matrix such
as daily variations of traffic (evening rush hour vs. morning
rush hour or weekday against weekend) and also long term
changes in the network demand such as people moving around
the city and changing living districts and jobs, building of
new living complexes or business centres, etc. Such changes
may severely alter the situation for a given sensor placement
and thus make the investment for their installation obsolete.
The robustness of a planned sensor network against variations
in the traffic demand is of great importance, especially for
constantly evolving large cities.

In a more fundamental aspect, traffic is mainly determined
by two factors: traffic demand(where and when do people
want to go) and transportation network topology(the medium
that allows the commuters to move). The existing measures
governed mostly by the demand are link flows, path flows,

link average speed, etc. Measures connected to the topology
are centrality, heterogeneity, entropy, etc. There have been
previous efforts to define entropy (uncertainty) of a node or
a link but only in a purely topological sense [7]. We strongly
believe in the need of employing the information contained in
the OD matrix, namely the traffic demand, as well in order
to come up with a more useful definition and measure of the
uncertainty of a node and the importance of it being sensed. In
this study we define the entropy of a node and consequently its
importance by using both information about the traffic demand
and topological information about the network, which surely
gives a better overview than basing the definition on just one
of them. The information from both sources must be entangled
since they are actively affecting each other. In this way a single
measure that represents all the available information can be
defined.

The main contributions of this work are:
• Definition of entropy of a network and importance of

nodes.
• Study on the robustness of the measure against changes

in the OD matrix.
• Design of methods for finding the most robust optimal

sensor placement against short and long term variations
• Design of a method for finding the optimal number of

sensors to be placed in a given network.

II. LITERATURE REVIEW

Determining the importance of locations in traffic networks
is crucial. There are two main branches of research that are
interested in locating central spots in a network. The first one is
traffic sensing. In most sensor placement problems, the set of
locations to be sensed is chosen so that, the resulting synthesis
of data is the most informative, which boils down to sensing
the important locations that describe the traffic demand. The
other area is complex networks research. Importance is then
defined and studied in a purely topological sense by examining
the transportation network without considering any traffic
demands. This review will cover both areas with an emphasis
on the sensor placement studies.

There are many attempts to find optimal sensor placement
in order estimate an important traffic characteristic. One of
the most comprehensive surveys [8] discusses and summa-
rizes existing sensor location problems. It defines the traffic
sensing problems into categories depending on sensor types
(AVI sensors, counters etc.), prior information and flows of
interest (link flows, route flows, OD flows). The optimisation
problems are divided into two categories: Flow observability
problems and flow estimation problems. Moreover, it describes
different rules for optimisation and analyses methods such
as flow intercepting, demand intercepting, independence of
traffic counts (mutual information). This work is valuable
because it summarizes and categorizes the various approaches
by providing a unifying picture of existing strategies.

One of the most standard traffic characteristic to be observed
is the OD matrix. Estimating it from sensor data has become
a central problem. In [9] the sensor location problem for
OD matrix estimation is defined and a solution is suggested.
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The study deals with counting sensors, while other studies
also include the possibility of using (AVI) Automated Vehicle
Identification readers, which are more informative since they
also collect information about the identity of the car, which
allows for easier tracking and therefore path estimation [10].
In [11] both types of sensors are used in a method that places
counting sensors and AVI readers to maximize the expected
information gain for an OD demand estimation problem. It
also takes into consideration uncertainty in historical demand
information. A technique for calculating the optimal number
and locations of plate scanning sensors for a given OD matrix
is also presented in [12]. Those approaches are centred around
the goal of estimating the OD matrix. In most of the cases
they are applied on artificial networks as a proof of concept,
however their high complexity might turn into a disadvantage
if one tries to apply such a strategy for a real life large
city. Therefore there is a need for sensor placement method
that is less computationally intensive so that it is practically
applicable.

Once the locations of sensors are fixed one might use a
linear approximation technique in order to estimate the OD
pairs using traffic counts offline such as the one described
in [13]. In case plate scanning sensors are used a method
for path reconstruction from such type of data can be used
as in [10]. In [14] methods for extracting information from
sensors data in order to estimate travel times are discussed,
while also looking at sensor failure probabilities. Furthermore,
due to the heterogeneous nature of collected data, information
demands and the limited storage capacity of road side sensors,
a maximum content dissemination strategy must be employed
as well as done in [15]. Another issue that must be taken
into account once the road segments that need to be sensed
are determined is the feasibility of positioning a sensor there.
More precisely, it must be verified if the sensor will be able to
handle the volume in the sense of contact time and contact rate
or more sensors must be placed at the same road segment in
order to increase the accuracy of the extracted data. A rigorous
analysis of these problems can be found in [16].

There are more universal approaches for choosing the
most important locations to be sensed, which are based on
maximizing information gain. There are information theoretic
techniques such as [17],where a non-myopic strategy is used
to find the most informative locations for sensors, [18] where
a Kalman filtering structure is employed in order to solve a
traverse time prediction problem via optimally placing sensors,
and [19] where a method for target localization and tracking
is presented, which computes the posterior target location
distribution minimizing its entropy. Furthermore, in [20] the
spatial and temporal correlation between the flows are used in
order to feed an ant colony optimisation algorithm that finds
optimal sensor locations.

Information theoretic approaches, however, may vary among
each other. In [21] traffic phenomena are modelled as Gaussian
processes. They discuss maximizing entropy for sensor loca-
tions and also mutual information between the locations and
demonstrate that the mutual information approach performs
better for certain type of scenarios. Moreover the method is
extended to find robust placement against failures of sensors

and uncertainties in the model and uses real world data sets.
This is a generic method that can be applied to different
types of sensors. It locates the most representative links in
the network that reduce the uncertainty about the unobserved
links. There is, however, no method that is able to determine
the most important links in the sense of locations where users
makes the choices that are later observed at the representative
links.

With the advancement of technology some type of sensors
now can be mobile instead of static, while granting better
coverage. In [22] a mobile traffic surveillance method is
presented. A routing problem is defined such that it computes
the optimal paths for the mobile sensors and show that in most
cases it performs better than a static network. Mobile sensors
provide several advantages such as bigger area of coverage,
adaptability to changes in traffic patterns and are the better
approach when there is no prior knowledge about the system.
In [23] a strategy for a sensor placement for monitoring mass
objects is described. By allowing the sensors to be mobile the
sensing network can self-organize in order to achieve better
coverage. An expectation-maximization algorithm is used in
order to update the distributions of objects, which are then
used to implement an adaptive sensor placement strategy for
the desired tracking task. On the other hand, static sensor
placements are easier to implement, cheaper to maintain and
due to their static nature are able to use technologies that
are more complex and precise. One more advantage of static
sensor networks is that they are able to provide a better
“instantaneous” picture of the traffic situation in the sense that
mobile sensors collect samples that vary both spatially and
temporally, while static sensors collect much larger number
of samples for exactly the same time period. Especially in
rush hour conditions with fast changing traffic patterns such
temporal stability is valuable for a more precise estimation of
traffic characteristics.

In the findings of [24] the authors demonstrate using traffic
indicators that importance of road segments is mainly deter-
mined by the network structure and the flows. Even though,
this statement is clearly known there is still no indicator
of importance of road segments that fully utilizes the flow
information and the topological properties of the network. As
it can be seen most methods to determine important locations
for sensor placement are based mostly on the flows; while in
a separate part of literature people look at purely topological
properties of transportation graphs.

Important locations can be determined based solely on the
topology of a network. Some efforts deal with identifying
critical links using a network robustness index based on link
flows, link capacity and network topology as in [25]. In [26]
the most vital links or nodes are defined as the first n links
or nodes whose removal will lead to the biggest increase in
average shortest path distance. While in [27] the importance
of roads is simply defined to be proportional to the traffic load
on them, in [28] three measures of centrality for a street are
suggested: closeness, betweenness and straightness and their
correlation to various economic activities in the respective
areas are examined.

Moreover, the network itself can have some properties that
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are usually based on the structure of the system and not on
local properties of its elements. In [29] the development of
the Swiss road and railway network during the second half
of the 20th century is investigated. It is observed that the
spatial structure of transportation networks is very specific,
which makes it hard to analyse using methods developed for
complex networks. In [30] existing measures of heterogeneity,
connectivity, accessibility, and interconnectivity are reviewed
and three supplemental measures are proposed, including mea-
sures of entropy, connection patterns, and continuity. Entropy
is also used in order to determine the heterogeneity of the
network regarding a chosen parameter.

The topology of a network holds an enormous amount
of information. It may provide insights into the structure of
the roads (transportation networks are organized hierarchically
as shown in [31]). In [32] they measure the efficiency and
accessibility in Paris and London based on the network con-
nectedness. Moreover, this information can be utilized in order
to reconstruct user’s trajectories from GPS signals as in [33].
There is also a family of graph measures based on entropy that
are rigorously summarized in the survey [7]. It includes some
measures from chemical structural analysis and social network
analysis. The survey examines the overall connectedness of
graphs such as the topological information content and the
entropy of the weights of the edges. A measure of local
features’ such as entropy of nodes is defined as well, based on
length of links connected to it. The centrality measure of links
is also defined. Most of the measures deal with evaluating the
information content in the graph itself. Those measures are
highly uncorrelated, which means that they capture different
aspects of graphs, so the proper measure should be chosen for
each specific task.

Once a measure of importance is defined and the most
informative locations are chosen, there is one more aspect that
needs to be examined. The robustness of those choices depends
on the evolution of both the topology of the network and on
the evolution of the OD matrix as well. Those two factors are
naturally also highly interdependent. In [34] the evolution of
the topology of networks is observed. A high degree of self-
organization and spontaneous organization of hierarchies is
observed in the city of Indiana. Also variations in the relative
importance of parts of the network are observed. In [35] the
evolution over 200 years of a North Milan road network is
observed. Two main processes can explain the developments
that occur. Densification of the road network around the main
roads and emergence of new roads as a results of urbanisation.
An evaluation of the robustness against such type of long term
network evolution for any type of sensor placement is lacking
at the moment.

In order to analyse traffic and plan for its surveillance one
needs a model. Dynamic traffic assignment models such as
the one described in [36] need a dynamic network load model
and routing choices of users model, which basically means that
they need the OD matrix combined with a routing model such
as in [37] based on stochastic conditions. Although patterns
seem not to vary excessively as observed in [38]. It is shown
that daily traffic is highly predictable and that there exist
regular patterns that can be exploited. This stability of choices

made by traffic participants together with network topology
also leads to traffic concentration on mainly a few links of the
network as shown in [39].

III. MEASURING IMPORTANCE OF NODES

In this section the measure of importance of nodes is
introduced. We define a node as important if many users pass
through it and we are uncertain about the choices they make.
In order to get the uncertainty an entropy measure at the node
is needed. Following that we simply weigh this measure by the
throughput of users. In this way we can measure how much
this node adds to the overall uncertainty of the road network
given an OD matrix. Let us introduce some notation that will
be used throughout the paper first:
Nij - number of cars that moves from node i to node j
Pl - the path of the l-th user
fij(l) - function that is one if the sequence of nodes ij is the
that path of user l
A - a set containing all the users
pij - probability that an user that is at node i will continue
on to node j
Si - set of nodes that are successors to node i
Hi - entropy of node i
Ii - importance of node i
T - number of regions the day is split into
N t

ij - number of cars that pass sequentially through node i
and j during time period t
Ht

i - entropy of node i during time period t
Iti - importance of node i during time period t
Īi - overall daily importance of node i
Īdi - the overall importance of node i for a degree of
perturbation d
R - total reduced entropy
L - a set of sensor locations
Ld - locally optimal sensor placement for a degree of
perturbation d
Lo - globally optimal robust sensor placement
V ard[Idi ] - the mathematical variance of Ii across all possible
values of the d coefficient
Ed[Idi ] - the mathematical expectation of Ii across all possible
values of the d coefficient
gd - a function that takes as argument a set of sensor locations
L and return the total reduced entropy for a given degree of
perturbation d
VLo

- variation level of the importance values of sensor
placement Lo

Md
Lo

- percentage of mismatched sensors between locally
optimal placement Ld and globally optimal robust placement
Lo

MLo
- the overall percentage of mismatched sensors for all

degrees of perturbation
QLo - performance measure of robust optimal solution Lo

KLo
- cost of installing solution Lo

ULo
- utility function value of solution Lo

Shannon’s entropy is calculated using the transition proba-
bilities between the states of the system. Let us assume that
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the state of an user is its current link. The set of possible
transitions from this state represents the set of actions of the
user turning on any of the links that are successors of the
current link. The entropy of the node connecting those links
is calculated using this information.

The following are the steps taken in order to calculate the
importance of a node:

1) Calculate turning probabilities:
Let Nij be the number of cars that pass through the i-th
node and after that through the j-th node, where node j
is a successor of node i in the directed graph describing
the road network, and let Pl be the path of the l-th user.
Then let the function fij(l):

fij(Pl) =

{
1 if nodes ij are in Pl

0 otherwise
(1)

Then:

Nij =

|A|∑
l=1

f lij(Pl) (2)

, where |A| is the number of users.
Let pij be the probability that an user at node i continues
to node j
Let Si be the set of nodes that are successors of node i.
Then we can define the turning probability as the ratio
between the number of cars that pass through node i
and then proceed to node j and the total number of cars
that pass through node i :

pij =
Nij∑

k∈Si
Nik

(3)

2) Calculate the entropy at every node:
The entropy of a node i, Hi, is calculated using Shan-
non’s entropy definition. A state is represented as the
current link an user is on and the transition probabil-
ities are the turning probabilities from this node to its
successors. Then the entropy becomes:

Hi = −
∑
j∈Si

pij log pij (4)

3) Weight the entropy of every node with the number
of users that pass through it:
In order to differentiate between nodes that have a high
entropy value that have high and low traffic throughput,
we weigh the entropy of every node by the number of
users utilising it. The importance of node i is defined
as:

Ii = Hi

∑
j∈Si

Nij (5)

Although the main goal of this work is not to design the
physical architecture needed to sense an intersection, we have
provided an example architecture on Fig. 1. Since sensing a
certain intersection might require several sensors placed in

(a) (b)

(c) (d)

Fig. 1: Illustration of a suggested positioning strategy for
sensors for different types of intersections. On Fig. 1a the
graph representation of an intersection with all allowed turns
is presented. As it can be observed this scenario can be
represented with a single node connecting all the edges leading
to the intersection and leading out of it. On Fig. 1b the
green circles represent plate scanning sensors that need to be
installed in order to be able to obtain the necessary information
to calculate all the turning probabilities. It should be noted
that this is the simplest possible case and that the sensors
positioned at the intersection do not even need to collect the
id of the passing vehicles in order to evaluate the turning
probabilities. On Fig. 1c we have depicted a slightly more
complicated case where U-turns are not allowed. In this case 8
separate nodes are needed in order to represent the intersection
using an unidirectional graph. As observed in Fig. 1d all edges
from and to the intersection need to be observed by the plate
scanning sensors in order to extract the needed information to
calculate the turning probabilities and the entropy of all nodes.

close proximity it is important to comment on the redundancy
of the positions of sensors.

When deploying sensors in order to maximise information
about flows or velocities using common methodologies, the
measured values are usually highly correlated in space due
to the fact that what is being sampled is in fact continuous
sequence of road segments that belong to the same road. In the
case of sensing, based on the proposed importance of a node
measure, the main value that determines the priority of sensing
a certain intersection is the collection of turning probabilities
at it. We believe that it is trivial to observe that those are not
correlated in space.

Let us assume that we have an intersection between two
main roads. The importance value for this intersection is likely
to be high and therefore a group of sensors should be placed
there. It is not likely that there is such an intersection in close
proximity to this one, since this would be considered as an
inefficient design and even if there is another major intersec-
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tion in close proximity, this would be a topological peculiarity
of the road network rather that an intrinsic property of spatial
correlation as in the case of sensor placement strategies that
maximise information about the flows or average speeds.

Therefore, sensor placement based on importance values
of intersections is intrinsically not prone to redundancy of
sensor positions. If a situation occurs where two neighbouring
intersections both possess a high importance value it is vital to
understand that this is not a redundancy issue and in fact both
intersection should be sensed in this case since the information
acquired from each of them is different. Naturally, the edges
connecting the two intersections should not be sensed twice.

An example of calculating turning probabilities, entropy and
importance of nodes is given in Fig. 2. Furhtermore the exact
positions of the sensors in the simple example network are
shown depending on the number of sensors to be put.

Fig. 2: Diagram providing an example of calculating impor-
tance of nodes. The first thing to do is to calculate the entropy
of every node. Nodes 3,4 and 5 have only one successor, which
means that there is only one turning probability with value 1,
which means that the entropy and therefore the importance
of those nodes is 0. As it can be seen on the graphs, no
choices are being made at those nodes, therefore they have
a small importance value. The entropy of node 1 is calculated
using Eq. 2 is H1 = 0.3 and the importance from Eq.3
is I1 = 3. Similarly for the other nodes H2 = 0.41 and
I2 = 2.05. Therefore, the nodes that are of interest and in
this case have non-zero values are nodes 1 and 2. In case
sensors for one intersection are available the most important
node (1) is sensed. The precise positions of the sensors are on
the links L12 and L13, which ensure complete knowledge
of the choices made at the intersection. In case one more
intersection can be sensed, obviously it should be intersection
2 and the green sensors represent the additional links that
should be sensed. Since there already is a sensor placed at
L12, we only have to add sensors on L23 and L24 in order to
gain complete information about the routing choices at node
2. Since the entropy of all other nodes is 0 after the placement
of the red and green sensors it is guaranteed that we have full
information about the network.

Changing traffic demands over the course of a day results in

the importance value of a node changing as well. Some nodes
may experience high importance values during morning rush
hour while having lower values during the evening. In case
sensors are placed at nodes, whose importance value varies
significantly throughout the day, they cannot be moved if some
other nodes become more important. This is the reason why
we need to find out the nodes that overall, have the biggest
importance values across the day.

Since it is also important to study the daily variation of
importance let us examine the notation describing splitting the
day into time-of-day (TOD) intervals:
N t

ij - the number of users that go from node i to node j in
period t
Ht

i - the entropy of node i during period t
Iti - the importance of node i during period t

Next step is to come up with an importance value represen-
tative for the whole day. Some regions of the day are of less
interest than others simply because the amount of information
that can be extracted is smaller. Typically, the factor that plays
the largest role in this case is the amount of traffic. Therefore,
we compute the total importance of a node for the whole day,
using a weighted average of importance values of the node for
different regions of the day. The weight function is governed
by the number of users that pass through the node during the
respective time region. Then, we can define the overall daily
importance of a node as:

Īi =

T∑
t=1

Iti

∑
k∈Si

N t
ik∑

k∈Si
Nik

(6)

The second term in the sum is simply the number of cars
that pass through the node throughout time region t over
the total number of cars that pass throughout the whole day
and T is the number of regions the day is split into. This
definition of overall importance puts an emphasis on the nodes
that are interesting during the important parts of the day.
This weighting is included in order to avoid high importance
values throughout periods of time where the node is not being
utilised.

IV. ACHIEVING ROBUSTNESS AGAINST CHANGES IN THE
OD MATRIX

In reality, apart from the changes in the OD matrix over the
course of the day, there is another process that alters the traffic
demand in a less intense and more gradual way. This process
is a result of long term changes to both the user population and
the city structure. In order to demonstrate that our method is
robust against such type of variations we implement a generic
way to “alter” or “perturb” the traffic demand.

A. Methodology for altering the OD matrix

Let every user have a list of itineraries, which is composed
of separate trips. Every trip has an origin, destination and start
time. In most cases an user takes two trips per day: from
home to work in the morning and from work to home in the
evening. Let us take two users. We assume that the first origin
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and the last destination in the itinerary of those users is their
place of residence. Then we exchange those locations, as if
the first user now lives in the home of the second user and
vice versa. We do this for a predetermined percentage of all
the users. We call this percentage the degree of disturbance.
By executing this strategy the number of people starting from
or arriving at all the regions is not changed. This means that
the intensity of people starting from any region is not changed
and the intensity of people arriving at those regions is also not
altered. The factor that is perturbed is precisely the OD matrix,
since only the intensities of the connections between origins
and destinations are varied.

This procedure is visualised in Fig. 3

Fig. 3: Diagram illustrating the exchange of origins or living
locations of two users. Both users still have the same work
locations however they switch their homes. In this way the
OD pairs intensity is changed.

B. Strategy for robust placement

In order to find locations that are optimal for performance
and robust against variations in the OD matrix we have to find
a measure that represents the importance of a set of nodes for
different degrees of perturbation. This is the overall importance
of the chosen locations. Every node i has an importance
measure Īi. We assume that we can take a given number of
sensors from all possible locations and then we calculate the
total reduced entropy in the network which is:

R =

|L|∑
i=1

Īi (7)

For every different degree of perturbation every node has
a calculated importance value Īdi where d is the degree of
perturbation.

Let the resulting reduced entropy from a set of locations
L for different degrees of perturbation d be calculated by the
function gd(L) = R, let the optimal placement for a given
degree of perturbation d be Ld and gd(Ld) = Rd

We are looking for an optimal placement Lo that maximizes
the reduced entropy relative to the local maximum across the
various perturbations:

max
Lo

∑
d

gd(Lo)

gd(Ld)
(8)

C. Strategy for finding the optimal number of sensors

There are four aspects that should be taken into account
when designing a utility function to be maximised in order to
find the optimal number of sensors.

1) The variation of the importance value across the
perturbations:.
Every node has a different importance value across the
perturbations Īdi . We want to evaluate the degree of
variation so that we can locate globally important nodes
rather than nodes that have just one high importance
value among various degrees of perturbation. In order
to do that, we calculate the variance for every node i
across different degrees of perturbations d: V ard[Īdi ].
We normalise it by the average value across the pertur-
bations so that this measure is comparable to others:

V ard[Īdi ]

Ed[Īdi ]
(9)

In order to evaluate the total variation level of the
importance for a sensor placement we calculate the
average of the scaled variances for all chosen locations:

VLo = Ei

[
V ard[Īdi ]

Ed[Īdi ]

]
(10)

We can vary the number of nodes to be included in the
set of optimal locations Lo; this can also be referred
to as its cardinality: |Lo|. The goal is to minimise the
variation of importance of the same node across the
degrees of perturbation in order to ensure robustness of
the placement.

2) The percentage of mismatched sensors:
We define Md

Lo
as the percentage of sensors that are

mismatched between the optimal sensor placement for
a certain degree of perturbation Ld for a given number
of sensors, and the robust optimal solution Lo. This is
basically the cardinality of the difference between the
two sets divided by the cardinality of the set:

Md
Lo

=

∣∣Lo \ Ld
∣∣

|Lo|
(11)

Then the overall percentage of mismatched sensors is
just the average of this measure across all degrees of
perturbation:

MLo
= Ed[Md

Lo
] (12)
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This is a measure of distance between the optimal
solution for d and the robust optimal solution for all
degrees of perturbation. It can also be understood as a
value signifying the percentage of sensors that need to
be moved in order to reach the local optimal solution.
This measure should be minimised if we want to ensure
robustness of the placement. In other words, the sensor
locations should be as universal as possible.

3) Performance measure of the robust optimal solution
compared to the local optimal solutions:
This measure is used to describe how close is the robust
optimal solution to perfectly match the locally optimal
solutions.

QLo
=
∑

d

gd(Lo)

gd(Ld)
(13)

This measure should be maximised since we aim for
maximum performance.

4) Cost of sensors:
We also include a function that punishes high number
of sensors. For simplicity we just use a linear function
that grows with the increase in number of sensors:

KLo
= α |Lo| (14)

The utility function that needs to be maximised subject to
the number of sensors or the cardinality of the set Lo then
becomes:

max
|Lo|

ULo
= w1QLo

− w2VLo
− w3KLo

− w4MLo
,

where
4∑

i=1

wi = 1
(15)

All the separate functions are scaled to assume values
between 0 and 1, however depending on the designers choice
some measures can be given more weight by varying w1−4.
On Fig.IV-C we can see all the separate functions and the
utility function that determines the optimal sensor number.

V. CASE STUDY: SINGAPORE

A. Modelling the Traffic in Singapore

In order to collect all the data needed by the methodologies
described in the previous sections, the traffic in a specific
realistic scenario should be modelled and simulated. The
procedure is as follows:
• Generate users:

The data source used for user generation is the Household
Interview Travel Survey (HITS) of Singapore done in
2012. It contains information of a representative sample
of people (about 1 % of the population) that state their
daily travel patterns. For every person that participated we
can extract the information about all trips that are made
on a daily basis consisting of origin point, destination
point and starting time of the trip. We use those “sample”
points in order estimate an origin destination matrix for
the city and its variation in time. For every user that

we want to generate, we choose one of our “samples”
at random and add Gaussian noise to it, both in space
and time, meaning that we slightly vary the starting
position and the starting time of the user in order to
get a more realistic homogeneous distribution that is still
based on the real world data that we have. The total
number of users that we generate is around 300, 000 with
starting times of trips varying throughout the day. Most
of the users have two trips in their itineraries, one in the
morning (between 6:30 and 9:30) and one in the evening
(between 5:30 and 7:30), however there is traffic in the
city throughout the whole day.

• Calculate the routes of the users:
After we have the generated users, we use the origins and
destinations in their itineraries to calculate their actual
routes. The weights on the routing graph that we use
represent the time it would take the user to traverse
the link with the maximum allowed speed on this link.
This assumes that the commuters would prefer the fastest
path. Our model does not allow for re-routing of the
users based on congestion factors. After the routes are
computed, we have the sequence of links that every user
passes through, which is then used in order to calculate
the turning probabilities for the node entropy calculation.
The day is split into 48 pieces consisting of 30 minute
intervals. In order to calculate the entropy values of every
node for the respective time periods, we use the starting
time of the trip as a time-stamp of the whole route and in
this way organize the passages through the links in time.

B. Importance Analysis

In this section we demonstrate the functioning of the
described methodologies in a case study of Singapore. We
start with calculating the entropies of every node of the
network within each of the time periods that the day is
split into. A video of the evolution of the importance of
nodes in the city throughout a full day will be available at
http://ieeexplore.ieee.org.

Following this we apply the robustness against daily vari-
ations technique. This allows us to get the overall daily
importances of the nodes and use them to find the optimal
sensors placement as described in section III. Fig. 4 shows
the Singapore road network and the importance of nodes. It
can be observed that the sensors cover the city well with
accents on the central business district (south central part),
the highway intersections and intersection of highways with
other large roads. Moreover, there are plenty of sensors in the
residential areas(east and north central), which, however, have
lower importance values due to the smaller number of cars
that go through those intersections.

Next, we try to simulate change in traffic demand as
explained section IV-A. Fig. 5 visualises the results of applying
the change. Since it is not practical to visualise all OD pairs, in
our visualisation we show explicitly the intensities of OD pairs
that have as origin the university area around the Nanyang
Technical University (NTU) in the western part of the city.
We can observe the change in the destinations intensities as
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Fig. 4: Averaged importance value of nodes for a full day. The sensor placement resulting from those values is optimally robust
against daily traffic variations.

people increase their trips to the east part of the city while
reducing the trips that stay within the western part.

Fig. 5: Visualising the effects of perturbing the OD matrix. A
heat map showing the differences between the OD matrices
(original and with 30 % perturbation). We have taken only
the pairs that have as destination the area around the Nanyang
Technical University (NTU) and plotted the intensities of the
different origins. Yellow colouring means intensity has not
changed, red means higher intensity in the second OD matrix
and green means lower intensity in the second OD matrix.

The following step is finding the optimal sensor placement
for Singapore that is robust against such type of variations
in the OD matrix as described in section IV-B. In order to
evaluate the performance of the robust placement we run the
following experiment:

1) For each degree of perturbation run a set of 10 simula-
tions in order to get an averaged value for all the required

parameters. The number of simulations is determined so
that the degree of variation is below a certain threshold
as described in [40].

2) Using the simulation outputs, calculate the turning prob-
abilities, entropies, and importance of all nodes

3) Find the optimal placement of sensors for every degree
of perturbation.

4) Using the optimisation strategy described above, calcu-
late a robust sensor placement.

5) Compare the performance of the robust sensor placement
to the performance of the locally optimal (in the sense
of perturbation degree) sensor placements. The perfor-
mance in this case is the ratio between the total reduced
entropy R of the robust placement to the total reduced
entropy of the locally optimal placements.

In Fig. 6 we can see a comparison of the performance of the
optimally robust method versus the locally optimal solutions
for sensor placement.

Following this, we calculate the performance of those sets
of locations for other degrees of perturbations. For example the
blue line on Fig. 6 represents the optimal sensor placement for
the original OD matrix. Naturally, since the sensor placement
was made based on the traffic patterns in this scenario, the
performance is 100%. We can then see that the performance
of this sensor placement if the traffic is governed by the OD
matrix perturbed by 5% decreases. The more we perturb the
traffic demand, the more the performance of the optimal sensor
placement calculated from the original OD matrix decreases.
The goal of the method is to achieve robustness in the sense
that the performance stays consistently high as we vary the OD
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Fig. 6: Comparison of the performance of the optimally robust
method across the various degrees of perturbation for the
OD matrix to the performance of the locally optimal sensor
placements. It can be observed that the robust placement is
performing better in the sense that it is more invariant to
changes in the OD matrix. The performance value is stable
throughout the changes of the traffic demands.

matrix. We have also plotted the performance of our robust
sensor placement solution as the black dotted line. It can be
observed that the robust solution does not vary that much
when the OD matrix is perturbed and is performing better than
the rest. It can be concluded that the performance of optimal
sensor placements calculated from a specific OD matrix vary
more than the performance of the sensor placement strategy
that uses not just one OD matrix but rather a set of perturbed
variations of it. Moreover, it can be observed that the defined
measure of overall importance proves to have very little degree
of variation, which makes it a suitable candidate for a robust
measure of importance of nodes.

Finally, we compute the optimal number of sensors to be
placed in Singapore as described in section IV-C. For the sake
of simplicity let all the discussed factors be equally important.
In Fig. 7 the functions related to the process of finding the
sensor count are plotted. On the last sub-graph we can see the
utility function whose maximum corresponds to the optimal
number of sensors to be installed. We can see that in the case
of Singapore this number is 582. Surely, if some factors are
more important than others, they can be weighted differently
and this will affect the optimal number of sensors.

VI. CONCLUSION

In this paper we have pointed out the need for an importance
measure that is able to combine and refine the information
about the traffic demand contained in the OD matrix and the
information about the topology of the network. In this way one
can point to the locations in the network that hold the biggest
amount of uncertainty related to drivers’ routing choices; this
we believe is a crucial underlying factor that determines traffic
conditions in a network. We have discussed that nodes should
be examined instead of links since the intersections are the
places were decisions are made and the roads are the locations
were the results of those choices are observed.

We have defined a measure of importance that satisfies
the aforementioned conditions using information theory. More
precisely, the measure is a combination of the flow through a

(a) Performance

(b) Reliability

(c) Robustness

(d) Utility Function

Fig. 7: Functions that construct the utility function and the
utility function itself that need to be maximized by the number
of sensors: 7a performance of the sensor placement as a
function of the sensor number, 7b Overall variation of the
importance values of the sensor network as a function of
sensor count, 7c Overall Percentage of mismatched sensors
for the sensor network as a function of the sensor number, 7d
Utility function that maximizes 7a and minimizes 7b, 7c and
the number of sensors
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node and the entropy of the node itself. The novel definition
of entropy of a node that is provided in this paper is dictated
by the routing choices drivers made instead of by purely
topological factors.

We have observed that the importance of nodes can vary
throughout the day due to changes in traffic patterns, moreover
we have designed a method that finds the most robust sensor
placement against such type of changes, which we call short
term traffic demand variations. Long term changes are also
being addressed by our work. We have defined a method to
simulate long term city dynamics and their effect on the traffic
demand in the city. Moreover, a method is described in order to
find a robust sensor placement against such types of changes,
providing certainty that sensors will not have to be moved
once they are installed.

Finally, we have designed a method that allows designers to
weigh various factors connected to their preferences regarding
the sensor network and its functionality, in order to determine
the optimal number of sensors that need to be placed. The
utility function consists of the variation factor of the sensor
readings, the average percentage of mismatched sensors un-
der varying traffic demand, the performance and the sensor
installment and sustaining cost.

Future work on this topic would require the development of
a more comprehensive tool for modelling long term changes
in city dynamics, such as building new living or business
areas, building new road segments etc. Implementation of such
types of changes will bring qualitatively different type of OD
matrix variations, since this processes will create completely
new origins and destinations. Moreover the population growth
should be modelled as well.

Another interesting research aspect would be to use the mea-
sure of importance in order to reconstruct drivers’ trajectories.
Due to the fact, that, by design, the sensed locations maximise
the information about drivers’ routing choices, the sensed data
can be very useful in order to determine the paths commuters
take and consequentially the OD matrix. However, attention
should be given to the issue that regions where commuters
actually begin or end their trips are usually of low importance
value.

The heterogeneity of the nodes’ importance as a network
characteristic can be of great importance as well, as it is
directly proportional to the utilization factor of the trans-
portation network. In case of homogeneous importance values,
there is lack of central points at which congestion is created.
Homogeneity of the importance measure also means that
drivers are evenly spread across the network and utilize fully
its infrastructure. Heterogeneity, on the other hand, means that
drivers’ paths are very similar with the exception of several
hub points through which everyone passes. This might bring
imbalance of traffic on the network as some roads become
congested while others stay empty. Following this argument it
might be interesting to use the measure of heterogeneity of the
importance measure of a network in order to either evaluate
the traffic performance or optimise the routing of commuters
leading to overall reduction of congestion.

Finally, an interesting application of the measure would
be to use its daily variation to determine the nodes (cross-

sections) that are most dynamical in a city. Those intersections
should be given additional attention. For example, this measure
might be used in order to find the optimal locations for
installing intersection control systems, since it provides us
with the information that flow ratios at those nodes vary
significantly throughout the day.
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