
TUM
TECHNISCHE UNIVERSITÄT MÜNCHEN
INSTITUT FÜR INFORMATIK

Technischer
Technische Universität MünchenInstitut für InformatikBericht

Hardik Shah, Kai Huang, Alois Knoll

TUM-I1339

Weighted Execution Time Analysis of
Applications on COTS Multi-core
Architectures

Weighted Execution Time Analysis of Applications on COTS

Multi-core Architectures

Hardik Shah Kai Huang
Alois Knoll

Department of Informatics VI, Technical University Munich,
85748 Garching, Germany

{shah|huangk|knoll}@in.tum.de

July 26, 2013

Abstract

Commercial off-the-shelf multi-core architectures could significantly reduce costs and time-
to-market of hard real-time systems. However, due to the unpredictable interference on the
shared memory, the worst case execution time is either non-deterministic or overly pessimistic.
Typically, the pessimism originates from the conservative assumption of maximum interference
for each memory access. This paper analyzes the shared memory interference under off-the-shelf
round-robin arbiter. Rather than estimating a single worst case bound for the execution time,
distribution of execution times along their weights is derived. The analysis results are compared
with observed execution time of the benchmark applications on a multi-core platform.

1 Introduction

Today’s hard real-time applications have become computationally intensive due to the employment
of radars, cameras, digital signal processing algorithms etc. Increasing the processor clock
frequency to provide high computational power is not a viable solution any more as it
increases power consumption beyond manageable limits. Currently, only multi-core architectures
provide programming flexibility and high computational power at reasonable power consumption.
Additionally, multi-core architectures are naturally suitable for multiple application execution e.g.,
asymmetric multi-processing.

Adhering to strict timing constraints is a key requirement for hard real time applications such
as avionics and automotive. These applications, in combination, consume only 1.6% of globally
produced digital ICs. Due to this small market share, employment of Commercial-off-The-Shelf
(Cots) components could significantly reduce the costs of these systems. An open problem of using
Cots products for hard real-time systems is that such products are usually designed to optimize
average case performance. This optimization leads to difficulties in analyzing and estimating the
Worst Case Execution Time (Wcet) of applications executing on Cots products.

For instance, the round robin arbiter is typically used in Cots multi-core architectures to
orchestrate the accesses of shared resources, e.g., main memory, among multiple cores, due to its
simple design, fairness and work conserving property [1, 2, 3]. The access latency to the shared
memory under round robin arbitration depends on the arbiter pointer location and accesses from
other cores at the time when the access is issued. Both, the arbiter pointer location and accesses
from other cores are difficult to characterize for the analysis. Hence, being conservative, worst case
latency for every shared memory access is assumed, which results in pessimistic Wcet.

In general, the worst case latency is experienced by only few accesses during execution. Instead
of assuming the worst case latency for each shared memory access, our idea is to provide a range
of all possible latencies and their weights (importance). With the range of possible latencies, we
construct an execution distribution tree based on the application execution trace. The leaves of

{shah | huangk | knoll}@in.tum.de

Weighted Execution Time Analysis July 26, 2013 Hardik Shah

the tree represent all possible execution times under varying interference and their weights. Based
on the required precision of given designs, specific execution time can be chosen as a ”likely Wcet
” which is less pessimistic but still fulfills the design requirement.

We propose a novel approach of weighted execution time analysis of applications on off-the-shelf
multi-core architectures with shared memory. Rather than estimating a single worst case bound
for the execution time, distribution of execution times along their weights is derived. The detailed
contributions of the paper are summarized as follows: a) We present a tree-based construction of
the execution time distribution and the weight of each element in the distribution. b) We derive
a closed-form expression for computing the weight distribution for a given application trace and
formally prove the correctness of the closed form. c) We propose a conservative scheme to weigh
the latencies of shared memory accesses. The weights of access latencies are derived without any
knowledge of accesses from other cores. d) We conduct case studies on Cots multi-core architecture
using the Mälardalen Wcet benchmarks and the analysis results are compared with the observed
execution time on multi-core prototype on Altera Cyclone III FPGA. The chosen execution time
is up to 14% less than the absolute Wcet for the given application.

The paper is organized as follows. Sec. 2 describes the closest related work. Sec. 3 provides
the required background information. Sec. 4 and Sec. 5 present the core-technique of our analysis.
Sec. 6 presents the test architecture and discusses the results. Finally, Sec. 8 concludes the paper.

2 Related Work

There is an overwhelming amount of research work targeting the execution time analysis
of applications. There are mainly five approaches towards solving the problem. a) Static
Wcet analysis b) Hybrid Wcet analysis c) Tailored architectures, d) Measurement under high
interference, and e) Probabilistic execution time analysis. Instead of comparing our approach with
individual research work, we compare our approach on a high level with other approaches.

Static Wcet analysis is an industry proven technique and several tools are available for
single core architectures e.g. ait, otawa, chronos. Abstract interpretation and Implicit Path
Enumeration Technique (IPET) are the popular methods of estimating the Wcet of applications.
The static analysis formally guarantees the upper bound on the execution time. However, due to
the abstraction and utilization of Integer Linear Programming (ILP) to maximize the execution
time estimation, the estimated Wcet is highly pessimistic. On the other hand, undesirable events
such as timing anomalies and domino effects can be analyzed [4], [5]. However, significant effort is
required to model each “new” core.

Although Chattopadhyay et al. [7], Kelter et al. [6], Ding et al. [8] etc have recently presented
static WCET analysis of applications on multi-core architectures, we do not compare their
approaches with ours since our approach does not relate itself well with the static analysis in
general. We assume that the cycle accurate RTL model is the most accurate model of the core.
Hence, we record execution traces by executing an application on the RTL model and take the trace
as an input for interference analysis. Clearly, like any measurement based technique, our approach
cannot analyze events like timing anomalies or domino effects.

The hybrid Wcet analysis approach [9] records traces of execution by inserting instrumenta-
tion points1 at each basic block2. Later, these traces are statically analyzed to construct the worst
case path considering Maximum Observed Execution Time (MOET) of individual basic blocks.
This approach is commercially utilized in the RapiTime [23]. The advantage of this approach is
that the architecture is treated as a black box. Hence, Wcet of applications on reasonably complex
architectures can be measured. Moreover, since the test coverage data is already available from the
traces, additional testing for certification is not required making the method cost effective. However,
this approach cannot be used for multi-core architectures since the shared memory access latency
depends on the interference on the shared resource which could unpredictably increase MOET of

1Instrumentation points simply save the performance counter value in the trace to time stamp their execution.
2Basic block is defined as a code segment with single entry and single exit points.

Technical Report 2

Weighted Execution Time Analysis July 26, 2013 Hardik Shah

each basic block. Thus, the worst case path and the corresponding Wcet are invalidated. Our
approach complements this method by inserting statically analyzed shared memory interference
information for each shared memory access which makes the hybrid approach multi-core capable.

Measurement under uninterrupted interference, as the name suggests, does measure-
ments of execution time under synthetically created uninterrupted interference. Typically, this
interference is created by executing a simple code in infinite loop on each co-existing core. The
code intentionally accesses memory such that each instruction produces a cache miss. Thus,
uninterrupted traffic towards shared memory is created. This method was presented by Fernandez
et al. [10], Radojkovic et al. [11], Nowotsch et al. [12] etc. The biggest advantage of this method
is that it is virtually free of charge. Additionally, the synthetic code to create the interference is
trivial, change in architecture is not at all required and hybrid Wcet analysis technique for single
core architectures can be used for multi-cores without any modification. However, as we will show
in Sec. 3.3, Sec. 5 and Sec. A, such uninterrupted interference does not guarantee either the worst
case interference or the worst case execution time. On the contrary, some applications could even
benefit and experience less than the average case interference in this case.

As explained above, the unpredictable interference on the shared resources is the biggest
challenge of timing analysis on multi-core architectures. To avoid the interference, tailored
architectures, built especially for predictable timing behavior, are proposed. PRET, CoMPSoC
and MERASA are the examples of such architectures. Here, the predictable timing behavior is
achieved by time triggered access to the shared resource - PRET [17], by intentionally delaying a
shared resource access to the worst latency - CoMPSoC [16] or by providing high priority to the
accesses from the safety critical task - MERASA [15]. As explained in Sec. 1, due to the significantly
small market share of hard real-time systems, economic feasibility of producing these architectures
is yet to be investigated.

The probabilistic execution time analysis is the closest to our approach. It provides an
execution time distribution of the application instead of providing a single WCET value. The
approach was first presented in Edgar et al. [18] and Bernat et al. [19] and recently investigated
by PROARTIS [20] project. The project employs customized components such as random
cache [21], [22] which randomly evicts a cache-line upon a cache miss. Thus, unlike popular history
based eviction policies such as LRU, FIFO, Round Robin; the execution time of the program
does not depend on the execution history. Hence, undesirable events such as domino effects and
timing anomalies are eliminated. In the random cache, for every cache access, probability3 of hit
or miss is provided and based on that the execution time distribution is derived. Although our
work is inspired by this approach, there are important differences. First, their approach is not
used for multi-core architectures, yet. Second, cache is a major component of any processor core
and modifications to it are significantly expensive. Third, together with the execution history, the
performance advantage of using temporal locality is also eliminated. Hence, significant performance
degradation is expected which is yet to be investigated. Our approach uses off-the-shelf components,
hence, it is cost effective and performance preserving.

Other closely related work is from Shah et al. [14], [13]. Their approach records execution
traces and inserts statically calculated worst case interference on each shared SDRAM access to
estimate the Wcet. Due to the employment of tailored arbiters, PBS [24] and CCSP [25], built
for predictability, there approach yields reasonably tight bounds for highest priority applications.
However, as explained before, the economic feasibility of customized components is yet to be
investigated.

Pellizzoni et al. [26] uses memory access traces to build arrival curves of concurrently executing
applications from each core. Using real-time calculus, interference bound for any access is derived.
Thus, the assumption of the worst case interference for each memory access is avoided. However,
even an unimportant bug fix in any concurrently executing application invalidates the derived bound
and enforces re-analysis. Clearly, this approach restricts updates in all concurrently executing
applications and task migration. Collision of memory accesses from concurrently executing

3The subtle difference between probability in their approach and weight in our approach is explained in Sec. B

Technical Report 3

Weighted Execution Time Analysis July 26, 2013 Hardik Shah

ST
A

R
T

ST
O

P

T1

r

L1

T2

w

L2

T3

r

L3

T4

w

L4

T0 T5

ST
A

R
T

ST
O

P

t1

r

t2

w

t3

r

t4

w

t0 t5

c1 c2 c0 c3 c4

c0 c1 c2 c3 c4

Recorded
Trace

Computation
Trace

Lx = Latency, cx = Computation time, r/w = Read/Write,
Tx = Time in Recorded Trace, tx = Time in Computation Trace

Figure 1: Computation Trace

applications are investigated by Lv et al. [27]. Here, model checking is used to determine maximum
interference and corresponding Wcet. Like [26], this approach also restricts not only application
under test, but also the concurrently executing applications. In our approach, applications are
analyzed in isolation. Hence, no restrictions in the co-existing applications are enforced.

3 Background

This section provides the necessary background information to facilitate discussion in later sections.

3.1 Computation Trace

The computation trace consists only computation time of a core. In other words, it captures the time
when the core is executing only from local registers and caches. Main memory accesses occurring
due to cache misses during the execution are represented by instantaneous events. At first, we
remove all the latencies associated with the shared resource accesses from the total execution time.
However, type of accesses and their precise occurrence time is preserved in computation trace.

Computation trace, depicted in the Fig. 1, can be easily extracted using cycle accurate simulator.
For each shared memory access, its occurrence time and type (read or write) as well as its
experienced latency are recorded. Later, on the host machine, these latencies are removed and
each access is shifted towards left in time. We use computation trace for analysis and insert all
possible latencies for each access together with their weights as explained in Sec. 4 and Sec. 5.

It must be noted that the latencies in the recorded trace depend on shared memory interference.
When the same application path is executed multiple times, different interference could occur.
Hence, latencies differ between multiple execution of the same application path. However, the
computation trace remains unchanged4 when the same path is executed multiple times, provided
that each time we start from the same cache state. The computation trace allows us focus
on interference analysis ignoring effects of other execution time altering components like caches,
pipelines, branch predictors etc.

3.2 System Model

In this paper, we consider a multi-core system with a shared main memory. The shared memory
is accessed via cache in a burst fashion when a cache miss occurs. For conflict resolution on the
shared memory, a round robin arbiter is used. We assume application level parallelism (asymmetric
multi-processing). Thus, each core executes completely independent applications. Although the
applications are independent, they affect execution times of each other due to the contention on
the shared memory.

4In this paper, we assume absence of jitter in occurrence of cache misses and leave the jitter analysis for future
work.

Technical Report 4

Weighted Execution Time Analysis July 26, 2013 Hardik Shah

B

m1

m2m3

m4

W

Sl
ot
Si
ze

Figure 2: Graphical View of the Round Robin Arbiter

m1 m4 m3 m2 m1 m3 m2 m1 m3 m2

Completion Latency l1

Issue Delayed by l1

m4
l2

e1 e2

req1 req 2 Total Time
c1 + l1 + l2

m4 m2 m1 m3 m2

Completion Latency l1’

Issue Delayed by l1’

m4

l2’

e1 e2

req1 req 2 Total Time
c1 + l1’ + l2’

Computation Time c1

m3

Computation Time c1

A

B

 c1

 c1

m4 m1 m3 m2

Completion Latency l1’’

Issue Delayed by l1’’

m4

l2’’

e1 e2

req1 req 2
Total Time

c1 + l1’’ + l2’’

m3

Computation Time c1 C

 c1

m2 m1 m2 m3

Figure 3: Latencies Under Round Robin Arbitration

Each core is equipped with an instruction cache and a data cache with unknown, but
deterministic, eviction policy e.g. FIFO, LRU, pLRU etc. The deterministic eviction policy allows
us to assume constant computation trace for any number of execution runs, provided that each
time we start from the same cache state. On the contrary, random eviction policy randomly picks a
cache-line to evict. Hence, in some execution run, if frequently visited cache-lines are evicted, there
will be more number of total cache misses than if less frequently visited cache lines were evicted.
Thus, the computation trace changes during multiple execution of the same path when the random
cache is used.

3.3 Work Conserving Round Robin Arbiter

In this subsection we will analyze different scenarios of memory access latencies under the Round
Robin (RR) arbitration scheme. Under the RR scheme, the shared resource contenders are assigned
fixed number of slots, depending on their bandwidth requirements, in a virtual ring as depicted
in Fig. 2. For simplicity, we consider, one slot per contender. The figure shows four contenders
(master1, master2, master3 and master4) in the ring. Here, we assume that these contenders are
processor cores executing independent applications. Throughout the paper we use master and core
terms interchangeably.

The arbiter continuously searches for a master which wants to access the shared resource in
a clock-wise direction. We call this master an active master. As soon as an active master is
encountered, it is granted the shared resource for a predefined maximum number of clock cycles
(SlotSize). The SlotSize is big enough to accommodate the burst issued for one cache-line fill.
After the granted master finishes its burst access, the search process resumes from the next slot in
the ring. Thus, the shared resource is always occupied as long as there is at least one active master

Technical Report 5

Weighted Execution Time Analysis July 26, 2013 Hardik Shah

WA WA

WD WD

RD RD

GRANT

WRITE

READ

RA RA

WRITE
DATA

READ
DATA BL WL BL

WL

ADDRESS

1 2 3 4 5 6

 = interference, WA = Write Address, RA = Read Address, WD = Write
Data, RD = Read Data, BL = Best Case Latency, WL = Worst Case Latency

Figure 4: Read–Write Latencies

(hence the name, “work conserving”).

Now let us assume that the application-under-test is executing on m4 and SlotSize is same for
all masters. For this architecture, an access request from m4 experiences the worst case completion
latency (4× SlotSize) if it is issued when the arbiter pointer is at W in Fig. 2 and all other
masters utilize their slots. Similarly, an access request experiences the best case completion latency
(1×SlotSize) if it is issued when the arbiter pointer is at B in the figure.

Fig. 3 depicts various interference scenarios. The computation trace of the application-under-
test represents two cache miss events, e1 and e2 in the figure. The computation time between the
two events (cache misses) is represented by c1.

Scenario A illustrates latencies in the presence of uninterrupted interference from other masters.
In other words, the interfering masters continuously request an access to the shared memory. Here,
the event e1 produces an access request req1. When the request is issued, the arbiter has just
scheduled m1. Since the interfering masters are continuously requesting, m1 to m3 utilize their slots.
Thus, the request completes after the worst case latency l1 = 4×SlotSize. After req1 is served, the
master does computation for c1 and issues an access request req2 associated to event e2 in the
computation trace. However, during the time c1, m1 to m3 keep on accessing the shared memory
and moving the arbiter pointer. Thus, when req2 is issued the arbiter pointer is not at W of
Fig. 2. Hence, req2 has completion latency of l2 where l2 << l1. In this scenario, although the
co-existing masters m1 to m3 continuously accessed the shared memory, each request from m4 does
not experience the worst case latency.

In scenario B and C, traffic generated by the interfering masters is sparse. However, in both the
cases the total time is larger than the total time of scenario A. Similarly, other scenarios where the
total time is less than that of scenario A can be illustrated. Scenario C is the absolute worst case
interference where both the requests are interfered by all other masters in the system. However,
in a typical multi-core execution, the completion latency of accesses is in the range [BL,WL], where
BL = 1× SlotSize stands for the best case completion latency and WL = #Masters× SlotSize stands
for the worst case completion latency.

From the above discussion it is clear that the access latency under work conserving round robin
arbiter depends on the arbiter pointer at the time of issue and the activity of other masters at the
time of issue. Since the arbiter pointer location depends on the activity of masters, under sporadic

Technical Report 6

Weighted Execution Time Analysis July 26, 2013 Hardik Shah

(2,1)

(11,1/2) (12,1/2)

(18,1/4) (18,1/4) (19,1/4) (19,1/4)

(19,1/4) (19,1/4) (20,1/4) (20,1/4)

2 3

2 3 2 3

(18,1/4) (19,2/4) (20,1/4)

+

(27,1/8) (27,1/8) (28,1/8) (28,1/8)

1 2

(28,1/4) (28,1/4)

(29,1/4) (29,1/4)

1 2

(29,1/8) (29,1/8)

(30,1/8) (30,1/8)

1 2

+ +

(27,1/8) (28,3/8) (29,3/8) (30,1/8)

et1 = r, t1 = 1, c1 = 7,
Latencies = [2,3]

et2 = r, t2 = 8, c2 = 5,
Latencies = [2,3]

et3 = w, t3 = 13, c3 = 8
Latencies = [1,2]

et4 = , t4 = 21

Intermediate
nodes

(0,1)
et0 = , t0 = 0, c0 = 1,
Latencies = [1]

1

(I00, W00)

(I10, W10)

(I20, W20) (I21, W21)

(I40, W40) (I41, W41) (I42, W42) (I42, W42)

(I30, W30) (I31, W31) (I32, W32)

Figure 5: Execution Time Tree

interference, the completion latency experienced by any access request is in the range [BL,WL]⊂ N
and all numbers in this range have equal weights (equal probability or equal importance). The
assumption of having equal weights for all numbers in the latency range is valid only if the interfering
cores are accessing sporadically. In Sec. 5, we analyze latencies when interference is not sporadic.
For now, we consider sporadic interference to explain our approach.

4 Weighted Execution Time

In this section, we describe our tree based approach to derive execution time distribution and weight
of each element in the distribution. For each shared memory access, we consider, it could experience
any latency in the range [BL,WL]. Thus, each access could delay the issue of all subsequent accesses
by any value in the range [BL,WL]. Considering that, we create tree where each node represents
issue time of particular access. The leaves (nodes on the last level) of the tree represent execution
time distribution.

4.1 Illustrative Example

In this section, we explain our technique with the help of an example. For simplicity, consider
a simple dual core system with a shared memory. Both cores are equipped with a deterministic
cache. The cache-line size is only one word, hence, SlotSize = 1 for both the cores under RR.
The application-under-test is mapped to one of these cores and encapsulated by profiling macros.
The profiling macros provide the start(↑) and finish(↓) events to the simulator between which the
application executes, hence, cache misses occurring between only these events are analyzed. These
events can be realized by setting a local register to flag an event. We assume that these start/stop
events consume constant time of one processor clock cycle.

The interference on the shared memory is explained in Fig. 4. Here, the typical difference
between read and write accesses are exhibited. At point 1, a write access is requested and it is
granted immediately. Here, write data is presented together with the write access request, hence,
write operation completes in one clock cycle (Bw

L = 1). At point 2, the write access request is
interfered by the other core. Since there are only two cores in the system and SlotSize = 1, any
write access completes, by the latest, in two clock cycles (W w

L = 2). For a read access request (at
point 4), the read data is available one clock cycle after the read access request is granted. Hence,
the minimum time to complete a read operation is two clock cycles (Br

L = 2). At point 5, the read
access is interfered by the other core. Hence, the maximum time to complete a read access is 3
clock cycles (W r

L = 3).

For the analysis, we define the parameters listed in table 1. From now onwards, by latency we
mean completion latency.

Technical Report 7

Weighted Execution Time Analysis July 26, 2013 Hardik Shah

Parameter Symbol Value

Read Latency Range [Br
L,W

r
l] [2,3]

Cardinality of Read Latency Range Cr 2

Write Latency Range [Bw
L ,W

w
L] [1,2]

Cardinality of Write Latency Range Cw 2

ith Event Type eti r,w,↑,↓
Worst Case Latency of ith event W eti

L -

Best Case Latency of ith event Beti
L -

Cardinality of ith event Latency Range Ceti -

Start Event ↑ -

Read Event r -

Write Event w -

Stop Event ↓ -

Occurrence time of ith
ti

-

Event in Computation Trace

Computation time between ith
ci ti+1− ti

and (i + 1)th Events

Computation trace length N

Table 1: Parameters

Let us assume that a computation trace is given, e = {↑,r,r,w,↓} with the associated time
t = {0,1,8,13,21} and computation time c = {1,7,5,8}. Here, the length of the trace, N = 5. As
shown in the Fig. 5, we can build an execution time tree for the given trace. The ith level of the
tree represents issue time profile of the ith event and contains j nodes. Each of j nodes represents
issue time of the ith event, Ii j, and the weight of the issue time, Wi j.

The root node starts with e0, ↑ event, which occurs at t0 = 0. Since there are no previous events
which could delay the issue of ↑, it will be issued immediately with weight 1. Thus, the root node
is represented by a duple (I00 = 0,W00 = 1) where I00 is the issue time of the root node and W00 is
the weight of I00.

For e1, a read access, the issue time is delayed by the completion latency of e0. The completion
latency of the ↑ and ↓ is assumed to be constant - one clock cycle. Thus, issue time of the read
access I10 = I00 + c0 + 1 = 2. Moreover, the completion time of e0 is constant, hence, there is only
one node for e1 event which has weight of 1.

For e2, issue time depends on the completion time of e1. As depicted in Fig. 4, a read access event
(e1) can be completed in either 2 or 3 clock cycles with equal weights under sporadic interference.
Hence, the issue of e2 is delayed by either 2 or 3 clock cycles. We create Cr (= 2) number of nodes
for the e2 to represent the issue times, I20 = I10 + c1 + 2 = 11 and I21 = I10 + c1 + 3 = 12. Since,
these two nodes inherit weight from their parent node and they themselves have equal weight,
W20 = W10÷Cr = 1/2 and W21 = W10÷Cr = 1/2.

Similarly, nodes for e3 can be created. Here, two nodes have the same issue time (underlined).
Hence, these nodes are merged to one node and their weights are summed up. Note, that the e3 is
write type, hence, it has completion latencies of 1 and 2.

The issue times for the finish event, ↓, are considered as execution times of the application the
event encapsulates. Thus, for our computation trace e, the possible execution times are {27, 28,
29, 30} with the associated weights of {1/8, 3/8, 3/8, 1/8}.

4.2 Formal Analysis

From the tree it is clear that the at each level, the issue time through nodes are sequentially
increasing integers. This is due to the fact that [Br

L,W
r
L] and [Bw

L ,W
w
L] are sequentially increasing

Technical Report 8

Weighted Execution Time Analysis July 26, 2013 Hardik Shah

integer ranges. Hence, at any level i, the issue times of jth node and xth node is bounded by the
following relation,

I(i)(j+x) = Ii j + x, j < x (1)

As shown in Fig. 6, the Best Case Execution Time (BCET) and the Worst Case Execution Time
(WCET) can be calculated by traversing through the left and right sides of the tree, respectively.
For c(−1) = 0,

BCET = I(N−1)(0) =
N−2

∑
i=0

(Beti
L + ci−1) (2)

WCET = I(N−1)(λ−1) =
N−2

∑
i=0

(W eti
L + ci−1) (3)

Here, λ is the total number of nodes in the last level.

λ = 1 +WCET −BCET (4)

Putting W eti
L = Beti

L +Ceti−1 in equation 3,

λ = 1 +
N−2

∑
i=0

(Ceti−1) (5)

According to [28], the variability of execution time in percentage is defined as,

variability = (1− BCET
WCET

)×100 (6)

From equations (2), (3) and (6), it is clear that the variability of execution time depends on,

1. Length of the trace (number of cache misses). The longer the trace, the higher the variability

2. Difference between W eti
L and Beti

L . If W eti
L >> Beti

L then the variability is high.

3. Computation time. If ∑ci >> ∑W eti
L then variability is low. These applications are

computation intensive and their BCET and WCET are dominated by the computation time,
instead of memory access latencies.

Fig. 6 depicts cut off and cut off Execution Time (cET). The cut off of any application is decided
based on the consequences of missed deadline. For example, in cars, cut off of break application
must be much lower than the cut off of climate control application. Missing a deadline in climate
control application could compromise comfort of the passengers while missing a deadline in break
application could endanger lives of passengers and people in the proximity. Hence, higher assurance
(lower cut off) from the break application is expected.

To compute cET, we traverse the last level of the tree from WCET to BCET (right to left).
While traversing the tree, we accumulate weights of each node and stop traversing as soon as the
cut off is reached. In the figure, we chose cut off = 1/2. The cET means that one out of two times
the application is executed under varying interference, the execution time could be equal or greater
than 29.

4.3 Computation of Weight using Convolution

In this subsection we prove that the weights of issues times at level (i+1) is convolution of weights
of issues times at level i and impulse function O.

For simplicity, we consider ci = 0 first. The latency ranges [Br
L,W

r
L] and [Bw

L ,W
w
L] are modeled as

an arithmetic sequence, i.e., O = {ok}, ∀k ok+1−ok = d, d ∈ N. Now the tree construction presented
in the previous section can be considered as constructing an n-ary tree with root node of issue time

Technical Report 9

Weighted Execution Time Analysis July 26, 2013 Hardik Shah

(2,1)

(11,1/2) (12,1/2)

2 3

2 3 2 3

(18,1/4) (19,2/4) (20,1/4)

1 2 1 2 1 2

(27,1/8) (28,3/8) (29,3/8) (30,1/8)

Weight numerator:
 [1 1] = [1] * [1 1]

Weight numerator:
[1 2 1] = [1 1] * [1 1]

Weight numerator:
[1 3 3 1] = [1 2 1] * [1 1]

t1 = 1

t2 = 8

t3 = 13

t4 = 21

Weight of
BCET = 1/8

BCET = 27
Weight of
WCET = 1/8

WCET = 30

Execution Times & their Weights

(0,1)

Weight numerator:
 [1] = [1] * [1]

t0 = 1

1

cET = 29,
Cut off = 1/2

Figure 6: Execution Time Tree with Convolution

I0 = 0 and weight W0 = 1. We will show how to extend the results for ci > 0 and [Br
L,W

r
L] 6= [Bw

L ,W
w
L]

afterward.
Let {Ii, j,k}

|O|−1
k=0 denotes the sequence of issue times of the children of the jth node at the ith level

of the tree. Here, k denotes the index of unmerged children of the jth node. Let {Ii, j} denotes the
sequence of issue times of nodes at level i. Since each node in the constructed tree has a unique
issue time, Ii, j also refers to node ni, j in this section. Before showing the main result, we first prove
a few lemmas.

Lem. 1 For any ith level of the constructed tree,

{Ii, j+1,k}
|O|−1
k=0 = d +{Ii, j,k}

|O|−1
k=0 (7)

where d = ok+1−ok, ∀k.

Proof: We prove by induction. Lets first check the children of the root node. The children of the
root node are O. Therefore, by the definition it is an arithmetic sequence. Now assume at level i,
{Ii, j} is an arithmetic sequence. For node ni, j, it has |O| children, the issue time of these children
are:

{Ii, j,k}
|O|−1
k=0 = Ii, j +{ok}

|O|−1
k=0 = {Ii, j + ok}

|O|−1
k=0 (8)

For node ni, j+1, the issue time of its children is:

{Ii, j+1,k}
|O|−1
k=0 = Ii, j+1 +{ok}

|O|−1
k=0 = d + Ii, j +{ok}

|O|−1
k=0

= d +{Ii, j + ok}
|O|−1
k=0 = d +{Ii, j,k}

|O|−1
k=0 (9)

The lemma therefore holds. tu

Lem. 2 For any level i of the constructed tree, the issue time Ii, j of the nodes is an arithmetic
sequence.

Proof: From Lemma 1, the issue time of children of node ni, j+1 can be considered as a right shift
of those for node ni, j. Therefore, we get Ii, j,k = Ii, j+1,k−1,∀ j, k. As by construction, the issue time
for each node is unique. Hence, only one node is generated for children of different nodes that have
the same latencies. Therefore, we get {Ii+1, j} is arithmetic sequence with distance d. tu

Technical Report 10

Weighted Execution Time Analysis July 26, 2013 Hardik Shah

Lem. 3 The number of nodes for level i + 1 is |{ni, j}|+ |O|−1.

Proof: As shown in Lemma 2, the issue time of children for node ni+1 can be seen as right shift by
d of ni. For the first node, |O| children will be created, for all the rest |{ni, j}|−1 nodes, one new
issue time (node) will be created for each node, i.e., |{ni, j}|− 1 new nodes. Therefore, the length
of level i + 1 is |{ni, j}|+ |O|−1. tu

To illustrate above results, we show an example in Fig. 7. Suppose there are three nodes at
the ith level and three different latencies in O. Each node ni, j has three children. Some of these
children share a same issue time. For instance, the third children of node ni,1, the second children
of node ni,2, and the first children of node ni,3 have the same issue time, which can be merged into
one single node during the construction of the i + 1 level of the tree.

ni+1,0 ni+1,1 ni+1,2 ni+1,3 ni+1,4

ni,0 o0 + Ii,0 o1 + Ii,0 o2 + Ii,0
ni,1 o0 + Ii,1 o1 + Ii,1 o2 + Ii,1
ni,2 o0 + Ii,2 o1 + Ii,2 o2 + Ii,2

Figure 7: Example for Issue Time Computation

Thm. 1 The issue time of level i + 1 of the tree can be computed from the issue time sequence of
level i by a min-plus convolution

Ii+1, j = min
k
{Ii,k + o j−k}, (10)

by setting the undefined values to +∞.

Proof: This can be directly derived from Lemmas 1–3, as Ii,k + o j−k = Ii,k−1 + o j−k+1. tu

Theorem 1 tells how the issue time of nodes are computed. More importantly, it shows how the
tree can be constructed, as the constructed nodes have unique latencies. With this knowledge, we
state the main result of this section:

Thm. 2 The Weights of the nodes at level i+1 is the convolution of level i with the impulse function
O, i.e.,

Wi+1, j = ∑
k

Wi,k ·Wo j−k (11)

by setting the undefined values to 0.

Proof: Functions (10) and (11) are isomorphic as they are both convolution operation. The min-
plus convolution in (10) defines the structure of the tree, i.e., the parent-child relation between
nodes. The function 11) reuses the constructed structure, only replacing the node merging by
summing up the weights of nodes with the same issue time, as shown in Figure 8. Therefore, the
theorem holds. tu

ni+1,0 ni+1,1 ni+1,2 ni+1,3 ni+1,4

ni,0 Wo0Wi,0 Wo1Wi,0 Wo2Wi,0
ni,1 Wo0Wi,1 Wo1Wi,1 Wo2Wi,1
ni,2 Wo0Wi,2 Wo2Wi,1 Wo2Wi,2

Figure 8: Example for Weight Computation

Cor. 1 Theorems 1 and 2 hold for ci > 0

Proof: According to the multilinearity of convolution, i.e., c(f1 ∗ f2) = (c f1) ∗ f2 = f1 ∗ (c f2), the
corollary holds. tu

Technical Report 11

Weighted Execution Time Analysis July 26, 2013 Hardik Shah

Cor. 2 Theorems 1 and 2 hold for [Br
L,W

r
L] 6= [Bw

L ,W
w
L]

Proof: As the construction of the next level of the tree is independent from the previous
construction, the O can be different for each construction. Therefore, different O can be applied
during the construction of the tree. tu

Note that sequence of weights for latencies does not need to be an arithmetic sequence. In the
next section, we will show how to compute the weights for different latencies.

5 Analysis Under Deterministic Interference

The example given in Section 4 uses equal weights for all latencies in the range [BL,WL]. The equal
weights may not always be true, as the interfering cores could have stuck-at faults on their request
lines or could be doing big DMA transfers, etc. In all these cases, the interfering cores send many
access requests in a relatively short period of time which results in the scenario A of Fig. 3. This
section presents a technique to conservatively weigh the latencies of the shared memory accesses.
Here, we first determine the maximum latency experienced by the application when interfering cores
are continuously accessing the shared memory. Then weight allocated to this latency is increased
at the cost of weights of lower latencies.

5.1 Deterministic Interference Basics

We assume that an interfering core either do uninterrupted accesses or does not do any access at
all (turned off). Hence, the rotation of the arbiter pointer becomes deterministic as depicted in
Fig. 9 (Note that if at least one core does arbitrary accesses than the rotation of the arbiter pointer
becomes non-deterministic and the analysis of the previous section applies). We call this type of
interference “α interference”. Here, α = 3 if the uninterrupted interference is produced by three
masters, α = 2 if uninterrupted interference is produced by two masters and so on.

Now, let us reconsider scenario A of Fig. 3, α = 3. The latency experienced by req2 can be
easily calculated using the following equation.

l2 = 4×SlotSize−{c1 mod (3×SlotSize + 1)} (12)

Denote this deterministic latency for ith request by DLi. Equation (12) can be generalized as follows,

DLi
α = (α + 1)×SlotSize−{c(i−1) mod (α×SlotSize + 1)} (13)

Let Θ
(i−1)
α = {c(i−1) mod (α×SlotSize + 1)}, we have:

DLi
α = (α + 1)×SlotSize−Θ

(i−1)
α (14)

Consider average of all DLi
α values is DLα and the average of all Θi

α values is Θα (note that DLα and
Θα represent average values over entire execution path). Hence, equation (14) can be re-written
as,

DLα = (α + 1)×SlotSize−Θα (15)

Equation (15) implies that as Θα → α×SlotSize, DLα → 1×SlotSize = BL < AL. Thus, certain
applications could, on an average, achieve less than the average case latency (AL = (BL +WL)÷2)
for their accesses due to the α interference. We consider these applications as being benefited from
the α interference since round robin is considered to be a fair algorithm. Under fairness property,
accesses should experience, on an average, average case latency.

The intuition behind this observation is depicted in the Fig. 9. If an application has a Θα in
the favorable region, the DLα is less than the AL. Here, the issue of request occurs close to the next
scheduling opportunity. Similarly, if an application has a Θα in the unfavorable region, the DLα is
more than AL. We consider these applications as being penalized from the α interference.

Technical Report 12

Weighted Execution Time Analysis July 26, 2013 Hardik Shah

m1

m3

m4 can be
scheduled

here
Unfavorable Region

Favorable Region

m4 can be
scheduled

here

m2

U
nfavorable

Region

Favorable Region

(a) Three Interfering
Masters, a = 3

(b) Two Interfering
Masters, a = 2

m2 m1

Figure 9: Rotation of Arbiter Pointer under Uninterrupted Interference.

BL WLDL1
i DL2

i DL3
i

Easy to induce latencies

BL WLDL1
(i+1) DL3

(i+1) DL2
(i+1)

a’ = 3

Figure 10: Easy to induce latencies for ith and (i + 1)th accesses

As an example, consider an application with Θα = 0 for a particular α interference. It means,
under α interference, this application on an average requests just after its scheduling opportunity.
Hence, it has to wait for α × SlotSize to be scheduled. After being scheduled, it needs another
SlotSize to complete. Thus, it experiences completion latency of (α + 1)× SlotSize for majority
of its requests. In general, application that does accesses close to their scheduling point in the
unfavorable region is vulnerable to high latencies due to interference.

The DLα is an important factor to classify applications as being vulnerable to high latencies or
being not vulnerable to high latencies due to the high interference. In the following section, we will
use it to compute the weights of latencies.

5.2 Allocating Conservative Weights

With the help of DLα , we can derive which latency should carry higher weight. To do that, we
apply“reverse engineering”approach. Using interfering cores, we want to induce an average latency,
x ∈ [BL,WL] for the application-under-test. Note that the application-under-test and x are given,
and x is the average latency over all accesses during application execution. Our task is to design
interfering applications such that when these applications run together with the application-under-
test the average latency experienced by all accesses of the application-under-test is x.

This task is very challenging except for given x = BL and x = DLα . If given x = BL, we turn off all
interfering cores (α = 0). Thus, the application-under-test experiences BL for each access. Hence,
average latency, x = BL, holds. If given x = DLα , we turn on only α number of interfering cores
and execute an application on them that will generate back-to-back cache misses. Design of an
application that will generate back-to-back cache misses is explained in Sec. 6 and in [10], [11], [12].

To induce latencies other than BL and DLα , the interfering cores must analyze computation
trace of the application-under-test thoroughly and do coordinated accesses with the accesses from
application-under-test. Moreover, phase change of even 1 clock cycle in application-under-test will
not produce the required x latency. Note that executing the same application on interfering cores
will not produce worst case interference (Fig. 16 in the appendix). Hence, it is very difficult to
induce any other latency except BL and DLα .

Let us consider DL = max(DLα),α = 1,2,3.... Thus, DL is the largest possible average latency

Technical Report 13

Weighted Execution Time Analysis July 26, 2013 Hardik Shah

1 1 1 1 1 1

BL WL

5 1

BL WlDLa’
i

3 1 1 1

BL WLDLa’
i

Equal
Weight

Weight Based on
DLa’

i

0 0

Figure 11: Convolution Vector for Conservative Weight Allocation

Interfering Cores

Core 1 Core 2 Core 3

Core 4

I$ D$

Round Robin Arbiter (Avalon Interconnect)

Shared
Memory

TRACE

r,T1,L1

w,T2,L2

r,T3,L3

………

Figure 12: Test Setup

which can be easily induced in application-under-test and the associated α is the number of
interfering masters needed to induce DL. We denote the α associated to the DL as α ′. We know
that DL is the average of elements DLi

α ′ . Fig. 10 depicts these parameters for ith and (i+1)th access
requests of application-under-test. As shown in the figure, it may be possible that for some accesses,
DLi

α ′ < DLi
α . However, it is these DLi

α ′ latencies which leads to the maximum of all easy-to-induce
latencies. Hence, we give highest weight to the DLi

α ′ of all accesses.
To stay conservative, only higher latencies are allocated more weight at the cost of weights of

the lower latencies and not the other way around. Our conservative weighing scheme is based on
the following:

1. Since DLi
α ′ is the easy-to-induce latency and DL is the maximum of all easy-to-induce average

latencies, DLi
α ′ is allocated the highest weight.

2. Since DLi
α ′ is easy-to-induce, latencies lower than DLi

α ′ are not interesting any more. Hence,
their entire weights are added to the weight of DLi

α ′ .

3. Weights of latencies higher than DLi
α ′ are unchanged from the equal allocation. This captures

the fact that if the interference is not the “α interference”, some sporadic interference could
induce more than DLi

α ′ latencies.

Fig. 11 depicts the resulting convolution vector. Note that as DLi
α ′ approaches WL, its weight

increases which in turn increases weight density towards the worst case latencies. This captures
the fact that under α ′ interference, if the application-under-test does many accesses just after its
scheduling point (Fig. 9), it is highly vulnerable to the worst case latencies.

6 Case Studies

This section provides case studies. The experimental results are derived from Altera Cyclone III
FPGA.

6.1 Test Setup

Fig. 12 depicts our test architecture. The architecture contains four 32 bit NIOS II Floating point
cores with instruction and data caches. Each cache has cache lines of 32 bytes and the total size of

Technical Report 14

Weighted Execution Time Analysis July 26, 2013 Hardik Shah

the cache is 1 KB. An on-chip SRAM serves as a main memory. The Altera Avalon interconnect
by default provides round robin arbitration for the shared resources [1]. The interconnect is 32 bits
wide. Hence, it takes minimum 1×8 clock cycles to write back a cache line of 32 bytes. However
due to the interference on the main memory, the write back may take up to 4×8 = 32 clock cycles.
Thus, [Bw

L ,W
w
L] = [8,32]. As depicted in Fig. 3, [Br

L,W
r
L] = [9,33].

Altera provides encrypted cycle accurate simulation models of processors and memories. We
used these models to record trace (Sec. 3.1) of applications from the Mälardalen Wcet benchmark.
The benchmark applications run on the Core 4. In our setup, instruction and data cache share
a single master port to connect to the shared main memory (via the RR arbiter). Measurement
for the recorded trace is probed from this single master port. Thus, the recorded trace captures
consolidated instruction and data cache misses. We processed the recorded trace and removed
latencies from it to create computation trace.

6.2 Experiment I

In this experiment the computation traces of applications from Mälardalen Wcet benchmark and
equations (2), (3) and (5) were used to derive execution times. The conservative weights of execution
times are calculated using convolution vector as explained in Sec. 5. Using execution times and their
weights Bcet, Wcet and cET are extracted. We considered 10−8 as a cut off to calculate cET.
The Maximum Observed Execution Time (MOET) is considered after executing the application-
under-test for multiple times under varying interference. Obviously, after each iteration, caches are
flushed. The varying interference is created as follows.

Each interfering core either executes one of the applications of the Mälardalen benchmark or
a synthetic application in an infinite loop. In the case of benchmark application, the cache miss
pattern is sporadic while in the case of the synthetic application, back-to-back cache misses are
generated. The synthetic application accesses an integer array of 512 elements (2 KB - double the
size of data cache) in the stride of 8 integers (32 B - cache-line size) ensuring a new cache-line
is accessed each time. The access type is write type, hence, for every access, dirty line must be
written back to the main memory and the requested line is fetched from the main memory. Thus,
we get two back-to-back accesses (write and read) to the main memory. This is exactly the same
method used by [10], [11], [12] to create uninterrupted interference.

Short
Applications

0,00

10,00

20,00

30,00

40,00

50,00

60,00
 % Variability % Reduction in WCET DL in Clock Cycles

Figure 13: Results
Table 2 and Fig. 13 illustrate results of this experiment. The applications are arranged in the

ascending order of their Bcet. The “Reduction in Wcet” depicts how much less execution time

Technical Report 15

Weighted Execution Time Analysis July 26, 2013 Hardik Shah

Bench- Execution Times Reduction

mark Bcet Wcet Variability cET in Wcet MOET DL

jane 692 884 21.72% 878 0.68% 831 23.78

fac 971 1187 18.19% 1179 0.67% 1127 23.80

fibcall 1012 1132 10.60% 1132 0.00% 1108 22.33

duff 4194 4938 15.07% 4834 2.11% 4617 21.22

crc 5061 6045 16.28% 5888 2.60% 5626 21.91

recursion 6644 6884 3.49% 6871 0.19% 6808 22.18

cover 8356 12196 31.48% 11418 6.38% 10676 22.51

fdct 13417 22537 40.47% 19354 14.12% 16844 16.99

expint 16005 16605 3.61% 16543 0.37% 16401 24.31

jfdcint 20696 26192 20.98% 25056 4.33% 24008 23.40

ud 21196 38476 44.91% 34088 11.40% 31825 22.77

compress 21214 28822 26.40% 27420 4.86% 26296 24.22

minver 100147 186619 46.33% 164253 11.98% 156133 23.59

quart 128077 237469 46.06% 207410 12.65% 195444 22.95

prime 138729 201369 31.10% 183331 8.95% 173956 21.55

ludcmp 249765 494973 49.54% 429782 13.17% 405503 23.44

edn 313973 336989 6.83% 330811 1.83% 326928 21.68

matmul 1138798 1360318 16.28% 1304203 4.12% 1273093 22.86

fir 1221979 1415467 13.67% 1375517 2.82% 1340169 24.83

Table 2: Results for Exe. Times in Clock Cycles

must be considered if we take cET instead of absolute Wcet into account for certification. The
table clearly shows that the reduction in Wcet is highly application dependent.

For short applications (jane, fac, fibcall, duff, crc), the reduction in Wcet is
negligible. These applications are short and does not have many cache misses. As explained
in Sec. 4, each cache miss is represented by one level in the tree (Fig. 5). Weights of execution
times decrease level by level. Due to the less number of levels, none (fibcall) or only few (crc)
execution time weights are decreased far below 10−8 in order to be termed as “negligible”. This
enforces consideration of almost all possible execution times to calculate cET. Hence, negligible
reduction in the absolute Wcet is achieved for short applications.

Some of the applications (recursion, expint, edn, matmul, fir) are long, however, their
execution time variability (equation (6)) is less. Execution times of these applications are dominated
by computation instead of memory access latencies. Although these applications have many cache
misses, considering applications’ total execution time the numbers of cache misses are small. Hence,
variable latencies of cache misses cannot influence the final execution time significantly.

Fig. 13 depicts relation between variability in execution time, reduction in the Wcet and the DL
factor. Apart from short applications, reduction in Wcet follows pattern of variability. However,
the reduction in the Wcet is not exactly proportional to the variability in execution time. For
example, although ud, minver, quart and ludcmp have higher variability than the fdct, the fdct
application has the highest reduction in Wcet. This high reduction in Wcet is attributed to the
low DL factor of the fdct application. In other words, the fdct application does majority of
accesses in the favorable region of Fig. 9, hence, it is less vulnerable to high latencies.

6.3 Experiment II

In this experiment, we investigate the relationship between the reduction in Wcet with the
variability of the execution time and DL factor. We hypothetically added another four cores in
our test architecture to increase the [BL,WL] range and analyzed the weighted execution time of
matmul application from the Mälardalen benchmark suit. The matmul application is chosen due to

Technical Report 16

Weighted Execution Time Analysis July 26, 2013 Hardik Shah

0,00

5,00

10,00

15,00

20,00

25,00

30,00

35,00

40,00

45,00

4 5 6 7 8

 % Variability % Reduction in WCET DL in Clock Cycles

Number of Cores

Figure 14: Variability vs Reduction in WCET for matmul Application

its reasonable length and low execution time variability. Fig. 14 shows that we could achieve higher
reduction in Wcet with the increase in execution time variability. Note that DL is the highest for
α = 6. Hence, under α interference, the matmul application produces larger execution time if 6 out
of 7 co-existing masters are turned on than all 7 co-existing masters are turned on.

7 Discussion

Our approach derives cET using factors such as SlotSize, Number of masters, ci, ti, number of cache
miss, DL factor and cut off. Note that Li was measured during application execution, however, it was
removed to build computation trace. SlotSize and Number of masters are architecture dependent
and known. ci, ti and number of cache miss are application dependent. From these parameters DL
factor is derived. The cut off depends on the severity of consequences if deadline is missed. Thus,
none of the parameters used to derive cET depends on the co-existing applications. This shows
that we did the cET analysis of applications executing on Cots architectures in isolation.

In future, we would extend our analysis to support refresh operation of SDRAM to be able to
use an SDRAM as a main memory in the test architecture. Apart from the refresh operation, as
informed earlier, jitter in occurrence of cache misses in the computation trace is left for future work.
We did not consider shared L2 caches for our analysis since we believe that they tremendously
increase execution time pessimism when applications are analyzed in isolation. Consider that a
highly active co-existing core always fills up the shared L2 cache with its data. In this case, each
L1 miss of the application-under-test also produces an L2 miss. Hence, each L1 miss must be
considered as an L2 miss when analyzed in isolation. Our belief is supported by the latest report
on using multi-cores in airborne systems [29].

8 Conclusion

This paper has proposed a novel approach of weighted execution time analysis of applications on
off-the-shelf multi-core architectures with shared memory. Instead of providing an absolute worst
case execution time, the execution time distribution and the weight of each execution time value
are derived. The derivation process is independent of activities of co-existing cores making it truly

Technical Report 17

Weighted Execution Time Analysis July 26, 2013 Hardik Shah

analysis in isolation.
The approach is tested on the real world applications from the Mälardalen benchmark suit on

a multi-core architecture. Depending on the required precision, a specific execution time from the
derived profile is chosen as a “likely Wcet”. The chosen execution time is up to 14% less than the
absolute Wcet.

References

[1] SOPC Builder Design Optimizations. www.altera.com/literature.

[2] Multi-layer AHB Technical Overview. www.infocenter.arm.com/.

[3] LEON4 32-bi Processor Core. www.gaisler.com/.

[4] G. Gebhard. Timing Anomalies Reloaded. In WCET 2010, Dagstuhl, Germany.

[5] R. Wilhelm, D. Grund, J. Reineke, M. Schlickling, M. Pister, and C. Ferdinand. Memory
hierarchies, pipelines, and buses for future architectures in time-critical embedded systems.
28(7), 2009.

[6] T. Kelter, H. Falk, P. Marwedel, S. Chattopadhyay, and A. Roychoudhury. Bus-aware multicore
wcet analysis through tdma offset bounds. In Real-Time Systems (ECRTS), 2011.

[7] Chattopadhyay, S. and Kee, C.L. and Roychoudhury, A. and Kelter, T. and Marwedel, P. and
Falk, H. A Unified WCET Analysis Framework for Multi-core Platforms. In RTAS, 2012.

[8] Ding, H., Liang, Y., and Mitra, T. Shared Cache Aware Task Mapping for WCRT Minimization.
In ASP-DAC, 2013.

[9] R. Kirner, I. Wenzel, B. Rieder, and P. Puschner. Using measurements as a complement to
static worst-case execution time analysis. In Intelligent Systems at the Service of Mankind, vol.
2, UBooks Verlag, Dec. 2005.

[10] M. Fernández, R. Gioiosa, E. Quiñones, L. Fossati, M. Zulianello, and F. J. Cazorla. Assessing
the suitability of the ngmp multi-core processor in the space domain. In Embedded Software
(EMSOFT), pages 175–184, Tampere, Finland, 2012. ACM.

[11] P. Radojković, S. Girbal, A. Grasset, E. Quiñones, S. Yehia, and F. J. Cazorla. On the
evaluation of the impact of shared resources in multithreaded cots processors in time-critical
environments. ACM Trans. Archit. Code Optim., 8(4):34:1–34:25, Jan. 2012.

[12] J. Nowotsch and M. Paulitsch. Leveraging multi-core computing architectures in avionics. In
Dependable Computing Conference (EDCC), 2012 Ninth European, pages 132 –143, may 2012.

[13] H. Shah, A. Knoll and B. Akesson. Bounding Resource Interference: Detailed Analysis vs.
Latency-Rate Analysis. In Proc. DATE, 2013.

[14] H. Shah, A. Raabe and A. Knoll. Bounding WCET of Applications Using SDRAM with
Priority Based Budget Scheduling in MPSoCs. In Proc. DATE, 2012.

[15] T. Ungerer, et al. Merasa: Multicore execution of hard real-time applications supporting
analyzability. IEEE Micro, 30:66–75, September 2010.

[16] A. Hansson, K. Goossens, M. Bekooij, and J. Huisken. Compsoc: A template for composable
and predictable multi-processor system on chips. ACM Trans. Des. Autom. Electron. Syst.,
14:2:1–2:24, January 2009.

[17] B. Lickly, I. Liu, S. Kim, H. D. Patel, S. A. Edwards, and E. A. Lee. Predictable programming
on a precision timed architecture. CASES ’08, NY, USA.

Technical Report 18

Weighted Execution Time Analysis July 26, 2013 Hardik Shah

[18] Edgar, S. and Burns, A. Statistical Analysis of WCET for Scheduling. RTSS 2001.

[19] Bernat, G. and Colin, A. and Petters, S.M. WCET Analysis of Probabilistic Hard Real-Time
Systems RTSS 2002.

[20] Cazorla, F. J., E. QuiËIJnones, T. Vardanega, L. Cucu, B. Triquet, G. Bernat, E. Berger, J.
Abella, F. Wartel, M. Houston. PROARTIS: Probabilistically Analysable Real-Time Systems.
ACM Transactions on Embedded Computing Systems, 2012.

[21] QuiÃśones, E., E. Berger, G. Bernat, and F. J. Cazorla. Using Randomized Caches in
Probabilistic Real-Time Systems. ECRTS 2009.

[22] Kosmidis, L., J. Abella, E. Quinones, and F. Cazorla. A Cache Design for Probabilistic Real-
Time Systems. DATE 2013.

[23] http://rapitasystems.com/

[24] M. Steine, M. Bekooij, and M. Wiggers. A priority-based budget scheduler with conservative
dataflow model. In Proc. DSD, 2009.

[25] B. Akesson, L. Steffens, E. Strooisma, and K. Goossens. Real-Time Scheduling Using Credit-
Controlled Static-Priority Arbitration. In Proc. RTCSA, 2008.

[26] Pellizzoni, R. and Schranzhofer, A. and Jian-Jia Chen and Caccamo, M. and Thiele, L. Worst
case delay analysis for memory interference in multicore systems. In Proc. DATE, 2010.

[27] Mingsong Lv and Wang Yi and Nan Guan and Ge Yu Combining Abstract Interpretation
with Model Checking for Timing Analysis of Multicore Software. In Proc. RTSS, 2010.

[28] Kirner, R. and Puschner, P. Time-predictable computing. In Springer-Verlag, 2010.

[29] MULCORS - Use of Multicore Processors in airborne systems. Research Project Report
EASA.2011/6. www.easa.europa.eu

Technical Report 19

Weighted Execution Time Analysis July 26, 2013 Hardik Shah

A Interference Scenarios

m1

m3

m2 m4 m1 m2 m1 m2 m4 m1 m2 m1 m2 m4

m1 m2 m4

 c1 c2

e1 e2
 c1

 l1 req1 l2 req2

 c2
e3

req3 l3
Total Time

c1 + c2 + l1 + l2 + l3

e1 e2
 c1 c2

e3

 c1

 l1’ req1

m3 m1 m2 m4

 l2’ req2

 c2

m3 m1 m2 m4

req3
Total Time

c1 + c2 + l1’ + l2’ + l3’

 l3’

a = 3

a = 2

Figure 15: Total Execution Time under α = 3 and α = 2

Fig. 15 depicts particular application execution under uninterrupted (α) interference. Here,
two cases are depicted, i) Uninterrupted interference is produced by 3 cores ii) Uninterrupted
interference is produced by 2 cores. Note that the latencies experienced by the application executing
on m4 is more in case the interference is produced by 2 cores than the interference is produced
by 3 cores. Hence, for this particular application, measurement of execution time under α = 3
interference and considering that as a WCET is an optimistic estimation.

m3 m1 m2 m4

e1 e2
 c1 c2

e3

 c1
 l11 req11

m3 m1 m2 m4
 c2

m3 m1 m2 m4

req12

req13

req14

req21
 l21 req31

 l31

 c1 c2

req22
 l22 req32

 l32

 c1 c2

req23
 l23 req33

 l33

 c1 c2

req24
 l24 req34

 l34

 l12

 l13

 l14

Only the first access from all cores arrives simultaneously.
Subsequent accesses are interleaved.

Figure 16: Executing the same application on all cores.

Fig. 16 depicts a scenario when all cores execute precisely the same application. The subscripts
in the parameters denotes the associated masters. It is clear that the apart from the first access
of m4 (l14 = 4×SlotSize), none of the accesses experiences the worst case latency. Here, only the
first access from all masters arrive concurrently. All subsequent accesses are interleaved due to the
round robin arbitration.

Technical Report 20

Weighted Execution Time Analysis July 26, 2013 Hardik Shah

1 1 1 1 1 1

BL WL

5 1

BL WLDLa’
i

Equal Weight/Probability
Convolution Vector

0
0.5

1.5 1.5
0.5

1.5
0.5

BL WLDL1
i DL2

i DL3
i

Probability Convolution
Vector Weight

 Convolution Vector

a’ = 3

Figure 17: Difference between Probability and Weight

B Difference between Weight and Probability

There is a subtle difference between assigning probabilities to latencies and assigning conservative
weights to latencies. Fig. 17 depicts the difference in the convolution vectors. Under α interference,
for ith access, all DLi

α latencies should be assigned higher probability since all these latencies are
“easy-to-induce”. Moreover, these higher probability is assigned at the cost of probabilities of all
other latencies. As depicted in the figure, this approach increases probability density towards BL

end of the range. Hence, if the “application-under-test” executes under α ′ = 3 interference, the
increased probability density towards BL produces optimistic cET.

In our approach, in order to stay conservative, we deliberately increase weight of DLi
α ′ latency

such that weight density could increase only towards WL end. Note that in our approach weight of
WL never decreases.

Technical Report 21

