
JOURNAL OF XX, VOL. X, NO. X, MONTH YEAR 1

Set-Based Prediction of Traffic Participants on

Arbitrary Road Networks
Matthias Althoff and Silvia Magdici

Abstract—Safety is of paramount importance in automated
driving. One of the main challenges ensuring safety is the
unknown future behavior of surrounding traffic participants.
Previous works ignore this uncertainty or often address it by
computing probability distributions of other traffic participants
over time. Probabilistic approaches make it possible to predict the
collision probability with other traffic participants, but cannot
formally guarantee (i.e. cannot mathematically prove for given
assumptions) whether a planned maneuver is collision-free. Our
approach addresses exactly this problem: instead of computing
probability distributions, we compute an over-approximation of
all possible occupancies of surrounding traffic participants over
time. This makes it possible to prove whether an automated
vehicle can possibly collide with other traffic participants. The
presented algorithm for occupancy prediction works on arbitrary
road networks and produces results within a fraction of the pre-
diction horizon. Experiments based on real-world data validate
our approach and show that we could not find a behavior of a
traffic participant that is not enclosed in our prediction.

Index Terms—Occupancy prediction, reachability analysis, for-
mal verification, autonomous vehicles, arbitrary road networks.

I. INTRODUCTION

Autonomous vehicles are expected to provide a broad range

of benefits compared to human-driven vehicles. Among them

are increased road safety, mobility for disabled people, and

better traffic throughput. Today, more than 80% of vehicle

crashes are caused by human error1, which could be prevented

by fully or partially automated vehicles. In order to ensure that

future autonomous vehicles are safe, it is desirable to develop

provably correct decision algorithms using formal methods

[1]–[3]. A further important aspect in autonomous driving is

the ability to cope with uncertainties in several respects: mea-

surements of the ego vehicle (i.e. the host vehicle performing

the computations), measurements of the environment (road

borders, static obstacles, other traffic participants), and the

future behavior of other traffic participants. We present an ap-

proach that enables us to compute formally correct maneuvers

despite the aforementioned uncertainties by computing the set

of future occupancies of other traffic participants. If none of

these computed occupancies intersects with the occupancy of

the ego vehicle for all points in time, one can guarantee that

the ego vehicle does not cause a collision [3].

In this paper, we solely focus on the occupancy prediction

and exclude the following aspects: 1) maneuver planning [4],

Silvia Magdici and Matthias Althoff are with the Department of Computer
Science, Technische Universität München, Boltzmannstraße 3, 85748 Garch-
ing, Germany e-mail: {silvia.magdici, matthias.althoff}@tum.de.

Manuscript received month day, year; revised month day, year.
1http://www.nsc.org/learn/pages/nsc-on-the-road.aspx

which is required to avoid positions possibly occupied by other

traffic participants in the future; 2) intention predictions for

particular actions, such as a lane change or a turn, as performed

in e.g. [5], [6]; 3) path predictions of the ego vehicle [7]–[10];

and 4) predictions of traffic participants for fixed road sections,

such as a particular intersection, which are typically obtained

using machine learning techniques [11]–[13]. Recently, an

overview article on behavior prediction has been published

[14]. The literature in that work is structured into physics-

based, maneuver-based, and interaction-aware prediction. This

is a somewhat orthogonal categorization compared to ours,

which is grouped into four main categories: approaches com-

puting a) a single future behavior, b) a countable set of future

behaviors, c) probability distributions of future behaviors, and

d) uncountable sets of future behaviors.

a) Single future behavior: Previous work that predicts

only a single behavior of other traffic participants can be

found in [15]–[19]. In [15], the future position of surrounding

vehicles is estimated by assuming constant acceleration and

yaw rate, which are tracked by an extended Kalman filter.

In [16], only a single behavior of each surrounding traffic

participant is predicted to compute possible evasive trajectories

of the ego vehicle. Single trajectories of other road users are

considered in [17] in order to determine whether a collision

should be avoided by steering and/or braking. Also, the

threat assessment of traffic situations is performed in [18] by

considering multiple possible maneuvers of the ego vehicle,

but only a single future trajectory of surrounding vehicles.

Since the maneuver planner in [19] targets comfortable driving

under consideration of social behavior, only a single future

behavior of surrounding traffic participants is considered.

In driving assistant systems, where the formal correctness of

warnings is not highly prioritized and a computationally cheap

assessment is desired, a number of heuristic methods based

on a single behavior have been developed, which are often

referred to as surrogate measures. The most known measure

is time to collision (TTC) [20], but many extensions, such as

time-exposed TTC and time-integrated TTC [21], as well as

combinations of several surrogate measures [22], also exist.

b) Countable set of future behaviors: To mitigate the

fact that infinitely many possible future trajectories exist,

many works consider a finite number of future behaviors

rather than a single future behavior. These methods are widely

used for collision assessment. Multiple physically possible

trajectories of the ego vehicle and one other vehicle are

generated offline in [23] to compute the time to trigger an

emergency brake. Multiple simulations are often weighted by

probabilities, which is also known as Monte Carlo simulation.

JOURNAL OF XX, VOL. X, NO. X, MONTH YEAR 2

This technique is often used for online threat assessment of

vehicles [24]–[26] or to create a threat database [27]. Motion

clusters in combination with a particle filter are used in [28]

to determine the most likely future motions. However, since

there exist infinitely many traffic scenarios, techniques based

on a finite number of predictions cannot guarantee safety.

c) Probability distribution of future behaviors: The fact

that infinitely many possible future behaviors exist is addressed

by a group of works predicting the probability distribution of

possible future behaviors. The behavior of other traffic partic-

ipants is predicted using Dynamic Bayesian Networks in [29].

Another probabilistic approach has been suggested in [30],

where Gaussian distributions are used to represent the future

occupancy with a special focus on an efficient computation

of the collision probability. The aforementioned approaches

cannot formally guarantee safety since a collision probability

of zero does not imply that no collision is possible. This,

however, is guaranteed in [31] by formally abstracting traffic

participants to Markov chains using reachability analysis. A

comparison of this approach with Monte Carlo simulation can

be found in [32].

d) Uncountable set of future behaviors: In the archi-

tecture proposed in [33], the importance of set-based pre-

diction of other vehicles is highlighted, but no algorithm to

formally compute the occupancy prediction is proposed. In

our previous work [3], we utilize techniques from reachability

analysis to rigorously compute an over-approximation of the

occupancy of surrounding vehicles. The novelty compared

to the aforementioned papers is later presented. Due to the

over-approximative computation, all possible behaviors are

considered so that the approach is predestined for certification,

see e.g. [34]. Set-based prediction of traffic participants is

challenging since their dynamics are typically nonlinear and

subject to constraints, e.g. one has to exclude behaviors, such

as leaving the road boundary. Since those restrictions cannot

be formulated as bounds of inputs that do not depend on the

current state of the system, traditional techniques for reach-

ability analysis cannot be applied. We group previous work

by the applied set representation: polytopes [35], zonotopes

[36], zonotope bundles [37], rectangular grids [38], ellipsoids

[39], support functions [40], oriented rectangular hulls [41],

and axis-aligned boxes [42]. Standardized set representations

can only be used when unrealistic behavior does not have to

be excluded; otherwise, the obtained reachable sets can even

become non-convex or disjoint [43], [44].

A combination of set-based prediction and stochastic predic-

tion is presented in [45]. However, the set-based computations

in [45] are heuristic and thus not applicable to a formal anal-

ysis. Reachability analysis is also applied to driving assistant

systems [2], [46] rather than using it for occupancy prediction

as done in this work. Reachable sets have also been applied

to mobile robots, typically assuming simple models that are

overly simplified for road traffic applications: [47] assumes

intervals on possible velocities in all directions; more advanced

models assume intervals on the velocity and acceleration [48].

More complicated models are based on Dubin’s car [49] or a

tricycle model [50].

The review of the existing work shows that a formal ap-

proach for computing the occupancy prediction for other traffic

participants is needed in order to guarantee safe maneuvers.

This paper is an extension to the authors’ previous work [3],

[51], where it was shown that the occupancy prediction of

other traffic participants can be computed in a formal manner.

This work significantly extends previous work:

• For the first time, we present a new framework that

rigorously predicts the occupancy region of surrounding

traffic participants on an arbitrary road network. Our

previous work has only considered single lanes without

forks or joints and did not consider multi-lane roads.

• A further extension to our previous work is that we

consider arbitrary lane changes of other vehicles.

• In our previous work, we assumed that a shortest path

through a road network exists, without providing any

algorithm (we consider a shortest path as defined in Prob-

lem 1). In this work, we provide an efficient algorithm

that provides an over-approximation for the fastest way

through a lane.

• For the first time, we validate our approach against real

traffic data and check if the prediction always encloses

the actual recorded behavior of other traffic participants.

The remainder of this paper is organized as follows: Sec. II

presents the basic idea of how our occupancy prediction can

be integrated in a collision avoidance concept and which con-

straints we make on the behavior of other traffic participants.

The representation of the road network and the mathematical

modeling of other traffic participants are presented in Sec. III.

The algorithm for computing the occupancy prediction is

introduced in Sec. IV. Sec. V presents the experimental results

that are compared with a high-fidelity vehicle model and real

traffic data; we also show how our approach can be integrated

into a motion planner.

II. MOTIVATION AND OBJECTIVE

The main idea of our proposed approach is quite simple: A

planned trajectory of an automated vehicle can be verified as

safe if the occupancy of the ego vehicle does not intersect with

the occupancy of any other traffic participant at any time. Since

even for a bounded time interval, infinitely many points in time

exist, we check whether there exists a possible intersection of

occupancies for consecutive time intervals as shown in Fig. 1.

This only requires a finite number of collision checks while

still ensuring that the reference trajectory of the ego vehicle

is safe when there is no intersection for consecutive time

intervals. When too few time intervals are chosen, the result

may become too conservative, i.e. there exists an intersection

of occupancies although a reference trajectory would be free of

collision. This, however, can be easily addressed by recursively

splitting time intervals [tk, tk+1] into [tk, t̃] and [t̃, tk+1] with

t̃ = 0.5(tk + tk+1) for which occupancy sets are intersecting

– the other time intervals remain unchanged. A recommended

initial time step tk+1 − tk is 0.5 s.

The procedure for obtaining safe reference trajectories of

the ego vehicle is illustrated in Fig. 2. To better guide the

reader through the figure, we first introduce a few different

types of trajectories:

JOURNAL OF XX, VOL. X, NO. X, MONTH YEAR 3

obstacle

obstacle

obstacle

other vehicle

ego vehicle reference trajectory

t ∈ [t0, t1]:

t ∈ [t1, t2]:

t ∈ [t2, t3]:

Fig. 1: Snapshots of the occupancy of traffic participants for selected
consecutive time intervals.

• Long-term reference trajectory: A trajectory received

from a trajectory planner (not the subject of this work) for

a time horizon of typically several seconds that the ego

vehicle should follow based on a non-formal prediction

of other traffic participants.

• Intended trajectory: First part of a long-term reference

trajectory subject to formal verification.

• Fail-safe trajectory: A trajectory that brings the vehicle

to a safe state, such as a standstill on a shoulder or a safe

distance behind another vehicle.

• Potential trajectory: Concatenation of an intended trajec-

tory and a fail-safe trajectory, which has not yet been

verified.

• Safe trajectory: Potential trajectory, which is verified as

safe. A safe trajectory is verified for all times, since

the ego vehicle is not accountable if it is hit in a safe

state. If the reference trajectory would not result in a safe

state, a collision might be inevitable when the reference

trajectory is replanned [52].

The procedure in Fig. 2 is performed online and is contin-

uously repeated to consider the constantly changing traffic

situation. We start with a verified safe trajectory from the

previous time step tk (Fig. 2, ➀). Next, the predicted occu-

pancy of other traffic participants is computed (Fig. 2, ➁).

Please note that in order to keep the illustration compact,

we do not show the occupancy for consecutive time intervals

separately, but only the union of partial occupancy sets. Based

on the occupied regions over time, new potential trajectories

are planned (Fig. 2, ➂). All potential trajectories are designed

to branch off the previous one at a point B (see Fig. 2, ➂),

which is chosen based on the observation that the computation

time of the verification tcomp is roughly linear in the prediction

time horizon th: tcomp ≈ λ th (λ ∈ R, λ > 0), where λ
depends on the computational power. In order to obtain in

most cases the verified result of the new potential trajectory

upon arriving at B, we choose B as the point at which the

vehicle will arrive at time λ th+ǫ (ǫ ∈ R, ǫ > 0); larger values

of ǫ provide more conservative results but limit the risk of

starting the fail-safe trajectory in case the verification result is

not obtained on time. A potential trajectory is safe if the ego

vehicle following it would never intersect with the occupancy

of another traffic participant. Out of those safe trajectories,

the one that minimizes a user-defined cost function is selected

(Fig. 2, ➃ b). If no new safe trajectory is found, the previous

trajectory is continued (Fig. 2, ➃ a), which may result in

executing the fail safe trajectory; this depends on whether

there is enough time to replan before the fail safe trajectory

is reached. However, in most cases, new safe trajectories are

found so that the fail-safe trajectory is only executed in rare

situations as demonstrated in Sec. V-D.

➀ Updated

traffic situation

➁ Prediction of
other traffic
participants

➂ Planning

and collision
detection

➃ a) Keep

following old

safe trajectory

➃ b) Follow

new safe
trajectory

safe trajectory: intended part (thick)

safe trajectory: fail-safe part (thick)

potential trajectory: intended part

potential trajectory: fail-safe part

o
ccu

p
ied

reg
io

n
o
f

traffi
c

p
articip

an
ts

o
ccu

p
ied

reg
io

n

o
f

eg
o

car

sensor updates

(next time

step tk+1)

New
safe

trajectory

found?

no yes

Bego
car

other traffic
participants

Fig. 2: Overview of online verification of automated vehicles. Gray
regions show the occupancy of traffic participants including the ego
vehicle. Black lines indicate different kinds of reference trajectories
as illustrated in the legend at the top of the figure.

The set-based occupancy prediction results in increasingly

larger regions when the prediction horizon is increased. Larger

occupancies of other vehicles block space for the trajectory

planning of the ego vehicle, as depicted in Fig. 2, ➂. Thus,

trajectory planning should be performed for two time horizons

JOURNAL OF XX, VOL. X, NO. X, MONTH YEAR 4

in parallel: long-term trajectories should be generated based on

non-formal occupancy prediction techniques, such as single

behaviors or probabilistic methods. A single behavior for a

long-term maneuver (overtaking) is shown in the upper illus-

tration of Fig. 3. Since the uncertainty of behaviors of other

traffic participants grows over time, we apply our verification

concept only to short potential trajectories (first part of a long-

term reference trajectory plus a fail-safe trajectory) as depicted

in the bottom illustration of Fig. 3. Due to the short time

horizon, the proposed set-based techniques do not block overly

large regions for trajectory planning. If the maneuver is safe,

the next part of the long-term plan is executed; otherwise, the

fail-safe trajectory is initiated. As a result, the proposed set-

based occupancy prediction guarantees safe maneuvers, while

non-formal techniques provide long-term plans based on likely

behaviors of other traffic participants.

Non-formal, long-term prediction (t ∈ [0, tlong])

Formal, short-term prediction (t ∈ [0, tshort], tshort < tlong)

ego

vehicle

ego

vehicle

intended trajectory

intended trajectory

rest of long-term

trajectory

under-approx. occupancy

at t = tlong

over-approx. occupancy

at t = tshort

occupancy of

prediction horizon

fail-safe trajectory

other vehicle

other vehicle

Fig. 3: Comparing non-formal, long-term prediction with formal,
short-term prediction.

The objective of this work is to create a framework for

automatically computing the occupancy sets of other traffic

participants on arbitrary road networks. A fast and robust

algorithm for computing the occupancy prediction is required

in order to meet real-time constraints. We further require

computing an over-approximation of occupancy sets since it

is provably impossible to compute exact ones [53]. Due to the

over-approximation, our approach can be used for formal anal-

ysis – if the ego vehicle never enters the over-approximative

prediction, then it also does not enter the exact prediction. A

special feature of our approach is that we explicitly consider

uncertainties in both the future behavior of traffic participants

and their measurement of position, orientation, length, width,

velocity, and acceleration. The occupancy is computed based

on a model of other traffic participants and a model of the

road network, which are introduced next.

III. MATHEMATICAL MODELING

We introduce a formal representation of road networks and

the vehicle model used for predicting occupancies.

A. Road Network Representation

A formal and robust representation of road networks is

required in order to compute the occupancy prediction. To this

end, lanelets [54] are used, which are atomic, interconnected,

and drivable road segments.

Definition 1 (Lanelet [54]): A lanelet is defined by its left

and right bound, where each bound is represented by an array

of points (a polyline), as shown in Fig. 4. �

It can be expected that lane information is provided in future

autonomous vehicles, see e.g. [55]. The lane boundary infor-

mation for lanelets can be directly obtained from an open-

source map (e.g. OpenSteetMap2) by e.g. importing a raw

map into the free editor JavaOpenStreetMap (JOSM)3. We

additionally annotate the raw data consisting of left border

and right border by the speed limit (maximum allowed speed

on that specific lanelet) and a unique ID.

left bound right bound
lanelet

start
points

end
points

driving

direction

point of

polyline

lanel
et2

lanel
et1

Fig. 4: Lanelets.

To consider all possible routes through the provided road

network, an adjacent lanelet matrix is computed upfront. For

this purpose, we represent the road network as a directed

graph G = (V , E), where the set of vertices V represents

the lanelets and the set of directed edges E represents the

possible transitions between two adjacent lanelets, where each

node has four types of outgoing edges: longitudinal, left, right,

empty. The adjacent lanelet matrix AG is defined as fol-

lows: AG : V × V → {long, right, left, ∅}, where × denotes

the Cartesian product. Without loss of generality, it is assumed

that all laterally adjacent lanes have the same length. This

is exemplarily shown for the road network in Fig. 4, where

lanelet1 has the same length as lanelet2. This assumption

reduces the number of lateral adjacencies for multi-lane roads.

We define start points and end points of a lanelet as the

first and the final points of the left and right border in driving

direction, as shown in Fig. 4. Two lanelets are called longitudi-

nally adjacent, i.e., AG(lanelet1, lanelet2) = long, if the left

and right start point of one lanelet are identical with the corre-

sponding final points of the other lanelet. We say that lanelet2
is left-adjacent to lanelet1, i.e., AG(lanelet1, lanelet2) = left,
if the points of the left border of lanelet1 are identical to

the ones of the right border of lanelet2. This is analogously

defined for right-adjacent lanes. For implementation reasons,

one might accept small deviations of connection points of

lanelets rather than demanding that the values are identical.

For road networks which contain only longitudinally and

laterally adjacent lanes, the construction of the adjacent road

2www.openstreetmap.org
3https://josm.openstreetmap.de

JOURNAL OF XX, VOL. X, NO. X, MONTH YEAR 5

matrix is straightforward. However, most road networks also

contain road forks, see Fig. 4, which have to be constructed

in a special way to ensure that the computed occupancies are

over-approximative. This is ensured by considering possible

lane changes as long as there exists an intersection of lanes

as shown in Fig. 5(a). Since we can only model that lane

crossings are either possible or not along the entire length

of a lanelet, we have to partition the lanelets accordingly.

Therefore, we introduce the point p as the intersection of

the corresponding lane bounds of the bifurcating lanes, see

Fig. 5(a). If the final points of the outer bounds of lanelet11
and lanelet21 correspond with the point p, and lanelet21
and lanelet22 continue the corresponding lanes as shown in

Fig. 5(a), all lanelets fulfill the constraint that they are either

adjacent along their full length or not at all. The resulting

adjacency matrix is presented in Fig. 5(b). The adjacency

makes it possible to define lanes:

Definition 2 (Lane): A lane is defined as the union of

lanelets, which are longitudinally adjacent. �

lanelet11

la
ne
le
t 1
2

lanelet21

lanelet22

intersection p

lane
let0

(a) Lanelets.

0

21

11 12

22

longlong

longlong

left right

(b) Adjacency graph.

Fig. 5: Road fork.

Next, we describe how we model other traffic participants.

B. Model of Other Traffic Participants

Inspired by [3], the mathematical model of other traffic

participants is derived assuming the following constraints:

C1: positive longitudinal acceleration is stopped when a pa-

rameterized speed vmax is reached (vmax could be set to

a certain percentage above the official speed limit);

C2: positive longitudinal acceleration is inversely proportional

to speed above a parameterized speed vS (modeling a

maximum engine power);

C3: driving backwards in a lane is not allowed;

C4: maximum absolute acceleration is limited by amax;

C5: actions that cause leaving the road/lane/sidewalk/cross-

walk boundary are forbidden. Crossing lanes is allowed

if not forbidden by lane markings or traffic regulations.

While C2 and C4 are physical constraints, the other con-

straints are derived from the traffic rules described in the

Vienna Convention on Road Traffic [56]. Note that C1 can

also be a physical constraint if no speed limit exists, as can

be found on the German Autobahn. Formalization of traffic

rules is a new research area [57], but out of the scope of this

paper. A further extension is to integrate further constraints

when surrounding vehicles are automated and communicate

their future plans. In that case, one only has to consider the un-

certainty of following planned trajectories due to sensor noise

as demonstrated in [58]. If only more high-level information

is broadcast, such as the information that the vehicle will not

perform a lane change, we can simply adjust the adjacent

lanelet matrix AG to consider such a constraint. Of course,

further constraints which reflect other traffic rules can be

considered. However, removing some of the constraints does

not affect the soundness of the verification procedure, but it

increases the behavior uncertainty of other traffic participants,

which only leads to more conservative behavior of the ego

vehicle. We model the dynamics of other traffic participants

by a point mass (while a rectangle is considered to enclose

their size):

s̈x(t) = ax(t), s̈y(t) = ay(t), (1)

where sx(t), sy(t) denotes the position and ax(t), ay(t) de-

notes the acceleration in x and y coordinates. In order to re-

strict ax(t) and ay(t) according to the constraints C1-C4, unit

vectors that point towards the longitudinal and lateral direction

of the vehicle are introduced: Φlong(t) = 1
v [vx(t), vy(t)]

T ,

Φlat(t) = 1
v [−vy(t), vx(t)]

T , where v = ‖[vx, vy]T ‖2 and

‖.‖2 denotes the Euclidean norm. Thus, we can define ax, ay
as a function of the longitudinal acceleration along(t) and the

lateral acceleration alat(t):

[

ax
ay

]

= Φlongalong +Φlatalat.

Let us define a normalized steering input u1, where u1 = 1
refers to full steering to the left and u1 = −1 refers to full

steering to the right considering the maximum tire friction

potential, from which results the lateral acceleration

alat = amax u1.

In order to consider constraint C4, the remaining acceleration

potential in longitudinal direction is limited to

ac1,long =
√

(amax)2 − (alat)2

according to Kamm’s circle, which is a good approximation

since the peak forces of tires are almost identical for the longi-

tudinal and the lateral direction, see e.g. [59, Fig. 14-16]. The

maximum longitudinal acceleration for the engine power P
and the vehicle mass m is P

mv = amax
vS
v , where vS = P

amaxm
is the speed above which the acceleration is limited by the

engine power and no longer by the tire friction. However, since

this parameter may not be easily estimated, another option is

to set vS = ∞ as a fallback solution, which provides an over-

approximation of the occupancy set. Similarly to the lateral

acceleration, a normalized control input u2 for the longitudinal

acceleration is introduced, where u2 = ±1 represents full

braking and full acceleration within the acceleration potential.

Limited engine power, the restriction to forward driving, and

the maximum speed (constraints C1-C3) are considered by

JOURNAL OF XX, VOL. X, NO. X, MONTH YEAR 6

limiting the longitudinal acceleration to

ac2,long =

amax
vS
v , vS < v < vmax ∧ u2 > 0,

amax, (0 < v ≤ vS ∨ (v > vS ∧ u2 ≤ 0)),

0, v ≤ 0 ∨ (v ≥ vmax ∧ u2 ≥ 0).

Combining ac1,long and ac2,long results in the longitudinal

acceleration which satisfies the proposed constraints C1-C4
(C5 for not leaving the road is considered later):

along =

{

ac2,long u2, ac2,long |u2| ≤ ac1,long,

ac1,long sgn(u2), ac2,long |u2| > ac1,long.

Of course, static obstacles, e.g. stationary vehicles or just other

objects, can simply be modeled as other traffic participants

with zero velocity.

IV. OCCUPANCY PREDICTION

Based on the models of the road network and other traffic

participants, we predict the occupancy of other traffic par-

ticipants in this section. Since the occupancy prediction is

periodically computed as described in Sec. II, it is desirable to

efficiently compute the occupancy to realize frequent updates

and to be able to quickly react to changing traffic situations.

Let us first introduce what we refer to as a model in this paper.

Definition 3 (Model): Given is a dynamical system ẋ =
f(x(t), u(t)), where x is the state, u is the input, and t is the

time. The possible initial states and the inputs are bounded by

sets: x(0) ∈ X0, ∀t : u(t) ∈ U . The model of this system is

defined as the tuple (ordered set) M = (f,X0,U). �

Given a model M , we define a reachable set as follows.

Definition 4 (Reachable set): The reachable set of a model

M (see Def. 3) at time t = r is

R(M, r) =

{
∫ r

0

f(x(t), u(t))dt

∣

∣

∣

∣

x(0) ∈ X0, ∀t : u(t) ∈ U

}

and the reachable set of a time interval t ∈ [0, r] is

R(M, [0, r]) =
⋃

t∈[0,r]

R(M, t). �

However, due to the consideration of constraints C1-C5 of

the vehicle dynamics as described in Sec. III-B, we would

have to model the dynamics of the vehicle using a mixture of

discrete and continuous dynamics, which are also referred to

as a hybrid system [60]. For instance, if the vehicle reaches

the maximum velocity vmax, the dynamics has to change to

constant velocity. Since the computation of reachable sets of

hybrid systems is too time consuming for our application, we

instead use abstractions of the original model M .

Definition 5 (Abstraction): Given is a model M of a dy-

namical system. The model Mi is an abstraction of M if the

reachable set of the abstraction contains the reachable set of

the model, i.e. ∀t > 0 : R(M, t) ⊆ R(Mi, t). �

The abstract model should be chosen such that it preserves

the essential behavior of the original model and permits com-

putationally more efficient methods for reachability analysis.

Since ultimately, we are only interested in the occupancy,

which is determined by the position and orientation of other

traffic participants, we aim to find abstractions that are tight

with respect to these variables. Given a state vector x ∈ Rn,

where the first two elements x1, x2 are the x-position and

the y-position, and the third element x3 is the orientation,

we denote by proj(x) = [x1, x2, x3]
T the operator that

projects the state vector onto position and orientation. Further,

proj
(

R(M, t)
)

:= {proj(x)|x ∈ R(M, t)} returns the set of

possible positions and orientations. We exploit the fact that in

the end we are only interested in the position and orientation

using the following proposition taken from [3, Prop. 5.1]:

Proposition 1 (Over-approximative occupancy): Given are

models Mi, i = 1, . . . ,m which are abstractions of model

M0, i.e., ∀t > 0 : R(M0, t) ⊆ R(Mi, t). The occupancy of

the model M0 can be over-approximated by

∀t > 0 : proj
(

R(M0, t)
)

⊆
m
⋂

i=1

proj
(

R(Mi, t)
)

.

�

The result remains an over-approximation, but the reachable

set computation of the abstractions chosen in this paper is

significantly faster, while still providing accurate results. The

abstractions are significantly easier to compute since 1) they do

not require one to consider the complete set of states, which is

a big advantage considering that the computational complexity

of reachability analysis is superlinear in the number of state

variables, and 2) we do not have to consider constraints C1-

C5 by a hybrid dynamics, but by an intersection of results

of abstractions that are purely continuous. The larger the

number of computed abstract models is, the more accurate

the occupancy prediction becomes, but as a drawback, the

computing time may increase. This allows us to tune the ratio

between accuracy and computational time. However, one can

initialize a parallel thread for each abstract model considered

when hardware with multiple cores is used.

We compute the occupancy for consecutive time intervals

τk := [tk, tk+1] for a user-specified step size r = tk+1 − tk
and user-specified time horizon th. Consecutive time intervals

instead of points in time are used to ensure that no collision

detection is missed between points in time. In this paper, we

consider two abstract models for computing the occupancy

of each traffic participant. The first abstraction is denoted by

M1, and it considers constraint C3 and C4 (see Sec. III-B).

The predicted occupancy using abstraction M1 is denoted

by O1(t) ⊇ proj
(

R(M1, t)
)

, and we call it acceleration-

based occupancy. The second abstraction M2 considers the

constraints C1, C2, and C4 in longitudinal direction. Its

occupancy is denoted by O2(t), and we refer to it as lane-

following occupancy. Finally, the constraint C5 is considered

by intersecting the drivable road area Oroad with the other

occupancies. Thus, the overall occupancy is

O(t) = O1(t) ∩ O2(t) ∩ Oroad. (2)

It remains to decide on a set representation for O(t). To

efficiently perform collision checks of the occupied regions

with the ego vehicle and to exactly compute the intersections

JOURNAL OF XX, VOL. X, NO. X, MONTH YEAR 7

in (2), we require a set representation that a) is closed under

intersection, b) can represent non-convex sets, and c) for which

efficient algorithms for collision detection exist. We choose

polygons since other common set representations (ellipsoids,

boxes, zonotopes, polyhedra, etc.) are all convex.

Definition 6 (Polygon): Given is a tuple (v1, . . . , vp) of p
vertices vi ∈ R2. A polygon P (v1, . . . , vp) is a set in the plane

bounded by a border that consists of straight lines between

neighboring vertices vi and vi+1, except that the last vertex

vp is connected with the first one v1, see e.g. Fig. 7(b). �

For intersections of polygons as required in (2), a fast

algorithm is required. A lot of algorithms already exist for

computing the intersection of two polygons [61]. Considering

the strict time requirements, we choose the Greiner Hormann

Polygon Clipping Algorithm since it can efficiently deal with

non-convex shapes [62].

initial occupancy

left bound

right bound

front
bound

rear
bound

Fig. 6: Initial occupancy and boundaries of the occupancy set.

To obtain O1(t) and O2(t) in (2), each vehicle is character-

ized by a set of parameters, listed in Table I. Since the predic-

tion of the occupancy sets is done in an over-approximative

manner, all possible lanelets a vehicle can follow have to be

considered. To this end, we search in the adjacency graph of

the road network for all reachable lanelets (see e.g. road fork in

Fig. 5(b)). Furthermore, the algorithm is parallelized for every

vehicle, in order to improve the computational performance. In

the following subsections, the occupancy prediction for each

considered abstract model is presented, where abstraction M1

is considered in Sec. IV-A and abstraction M2 in Sec. IV-B.

TABLE I: Vehicle parameters.

parameter variable [unit] parameter variable [unit]

max. acceleration amax [m/s2] vehicle width w̃ [m]

max. velocity vmax [m/s] vehicle length l̃ [m]

switching velocity vS [m/s]

A. Acceleration-Based Occupancy (Abstraction M1)

The first abstraction of the vehicle dynamics considers that

driving backwards is not allowed (C3) and that absolute

acceleration is limited (C4). The latter implies that the over-

approximated occupancy at time t can be described by a circle

with center c(t) and radius r(t) (see [43]) as shown in Fig. 8

when C3 is not yet enforced:

c(t) =

[

sx(0)
sy(0)

]

+

[

vx(0)
vy(0)

]

t, r(t) =
1

2
amaxt

2. (3)

sx

s
y

4

0

−4

0 10 20

[bx(t), by(t)]T

[bx(t), −by(t)]T

O([tk, tk+1])

O(tk−2) r(tk+1)

c(tk+1)

Fig. 8: Occupancy sets.

Assuming that sx = 0, sy = 0, vx = v and vy = 0 (without

loss of generality), the boundary of the occupancy is described

by a two-dimensional function [bx(t), by(t)]
T , where

bx(t) = v0t−
a2maxt

3

2v0
, by(t) =

√

1

4
a2maxt

4 −
(a2maxt

3

2v0

)2

,

(4)

as shown in [3]. In order to prevent driving backward, the so-

lution in x-direction is to set the maximum value of bxmax
:=

bx(tmax) for t ≥ tmax. The value tmax =
√

2/3 v0
amax

is found

by solving for ḃx(t) = 0. The outer bound of the occupancy

O1(τk) for a given time interval τk = [tk, tk+1] is obtained

by the next lemma.

Lemma 1 (O1(τk) without vehicle dimensions): The oc-

cupancy O1(τk) without considering vehicle dimensions is

over-approximated by a polygon P (q1, . . . , q6), where

q1 = [cx(tk)− r(tk), cy(tk) + r(tk)]
T ,

q2 = [bx(tk), cy(tk+1) + r(tk+1)]
T ,

q3 = [cx(tk+1) + r(tk+1), cy(tk+1) + r(tk+1)]
T ,

q4 = [cx(tk+1) + r(tk+1), cy(tk+1)− r(tk+1)]
T ,

q5 = [bx(tk), cy(tk+1)− r(tk+1)]
T ,

q6 = [cx(tk)− r(tk), cy(tk)− r(tk)]
T . �

Proof: We over-approximate the occupancy by the convex

hull of the occupancy O(tk) and O(tk+1), as shown in

Fig. 7(a). This is an over-approximation since the bound-

ary [bx(t), by(t)]
T form (4) is concave. The points where

[bx(t), by(t)]
T and [bx(t),−by(t)]

T intersect with O1(tk) and

O1(tk+1) are denoted by q̂1 - q̂4, see Fig. 7(a). The exact

boundary O1(τk) is over-approximated by the vertices q1-q6
and q̂1 - q̂4, see Fig. 7(b). Finally, we over-approximate the

result in Fig. 7(b) by its convex hull, such that q̂1 - q̂4 are

removed, see Fig. 7(c), resulting in the vertices of the lemma.�

The motivation for removing q̂1 - q̂4 is to obtain fewer vertices

in order to reduce memory consumption and computation

time for collision detection, at the cost of a negligible over-

approximation. So far, we have assumed that each vehicle is a

point mass without considering their dimensions. We enclose

the shape of a vehicle including its uncertain initial position

in a rectangle with length l̃ and width w̃ and whose reference

point is the centroid. After adding measurement uncertainties,

we enclose the occupancy of the vehicle in a larger rectangle

of length l and width w as depicted in Fig. 9. Assuming that

JOURNAL OF XX, VOL. X, NO. X, MONTH YEAR 8

O1(tk) O1(tk+1)

q̂1 =

[bx(tk), by(tk)]
T

q̂2 =

[bx(tk+1), by(tk+1)]
T

q̂3 =

[bx(tk),−by(tk)]
T q̂4 =

[bx(tk+1),−by(tk+1)]
T

(a) Convex hull of occupancy.

O1(tk)

O1(tk+1)

q1

q2 q3

q4q5

q6

q̂1 q̂2

q̂3q̂4

r(tk) r(tk+1)

c(tk) c(tk+1)

(b) Enclosing, non-convex polygon.

q1

q2 q3

q4q5

q6

r(tk) r(tk+1)

c(tk) c(tk+1)

(c) Enclosing, convex polygon.

Fig. 7: Computation steps to obtain the over-approximative occupancy.

each point of the vehicle has the acceleration bound amax and

after introducing the notation M(X ∗) for a model whose set

of initial states is X0 = X ∗, we can formulate that

R(M(X0), t) =
⋃

x0∈X0

R(M(x0), t), (5)

which directly follows from the definition of reachable sets in

Def. 4. Using (5), we can over-approximate the occupancy for

a vehicle within an initial occupancy set:

Theorem 1 (O1(τk) with vehicle dimensions): The exact

occupancy O1(τk) when X0 is a rectangle of length l and

width w, is over-approximative by a polygon P (p1, . . . , p6)
using the vertices q1-q6 from Lemma 1, where

p1 = q1 + [−0.5l, 0.5w]T , p4 = q4 + [0.5l, −0.5w]T ,

p2 = q2 + [−0.5l, 0.5w]T , p5 = q5 + [−0.5l, −0.5w]T ,

p3 = q3 + [0.5l, 0.5w]T , p6 = q6 + [−0.5l, −0.5w]T .�

Proof: The proof follows directly from Lemma 1 and (5).

Fig. 9 illustrates the resulting points of the theorem. �

p1

p2 p3

p4p5

p6

q1

q2 q3

q4q5
q6

0.5l

0.5w

l̃

l

w̃w

Fig. 9: Occupancy polygon of a vehicle. The points q1-q6 are taken
from Fig. 7

We have assumed without loss of generality, due to position

and orientation invariance, a special relative position and

orientation of the initial set. To obtain the occupancy for

an arbitrary situation, the occupancy is finally translated and

rotated according to the initial position and orientation.

B. Lane-Following Occupancy (Abstraction M2)

In the previous subsection, we considered limited absolute

acceleration of other traffic participants. However, as con-

straints C1−C2 describe, a vehicle cannot always accelerate

with amax in longitudinal direction (i.e. driving direction)

to consider maximum velocity (C1) and maximum engine

power (C2). In order to efficiently consider C1 − C2, we

enforce these constraints along partial paths along inner lane

bounds. Once the maximum position along these partial paths

is determined, we use the abstraction that the vehicle can be

anywhere in lateral direction (i.e. perpendicular to the path)

within the lane boundaries. Please note that in abstraction M2,

C4 is still enforced in longitudinal direction, but not in lateral

direction, which we denote by C4∗. Thus, the traveled distance

along a path is irrespective of its shape when considering C1,

C2, and C4∗:

Proposition 2 (Traveled distance along path for M2):

Since we do not consider lateral acceleration in constraints

C1, C2, and C4∗, the maximum velocity is not affected by

the shape of the followed path. �

Lateral acceleration is considered, but only in model M1.

The computation of the front position along a path, which

is denoted by ξf (t) (f : front), is computed for model M2 as

presented in [3]: After introducing the interval of initial path

coordinates [ξ
0
, ξ0] and velocities [v0, v0], ξf (t) is obtained

by simulating the vehicle model in Sec. III-B with maximum

acceleration u2 = 1 from ξf (0) = ξ0 and v(0) = v0. Please

note that a single simulation suffices due to the monotonicity

property of longitudinal dynamics. This raises the question of

how to choose the shortest path since infinitely many paths

exist, even if the vehicle just follows a single lanelet. In

our previous work [3], we did not address this problem and

assumed the shortest path to be the center path along a lane,

which does not result in an over-approximation since one

can cut corners. In this work, we provide an abstraction that

encloses all behaviors possible under constraints C1, C2, and

C4∗, no matter which path through a sequence of lanelets is

chosen. For this purpose, we first present an efficient algorithm

to compute a lower bound of the shortest path through a

sequence of lanelets when following the road network.

Let us first formalize the problem of finding the shortest

path through a lane. Without loss of generality, we can assume

that the vehicle is only a point when reducing the distances

of lane boundaries to account for the dimension of vehicles.

If this step is not performed to save computation time, the

result would still be conservative, i.e. the shortest path would

be shorter than the exact solution.

Problem 1 (Shortest path through a lane): Given is an ar-

bitrary lane as depicted in Fig. 11. Let us denote the start

border by bstart(sx, sy) and the end border by bend(sx, sy).

JOURNAL OF XX, VOL. X, NO. X, MONTH YEAR 9

A point [sx, sy]
T is on the start line for bstart(sx, sy) = 0 and

bstart(sx, sy) < 0 when a point is inside the lane segment.

This is analogous for bend(sx, sy). The lane boundaries are

formulated as inequality constraints, where one is on the

right hand side from the left boundary in driving direction if

bleft(sx, sy) < 0 and analogously for bright(sx, sy) < 0. This

makes it possible to formulate the area of the lane segment as

the set

Osegment ={[sx, sy]
T |bstart(sx, sy) < 0, bend(sx, sy) < 0,

bleft(sx, sy) < 0, bright(sx, sy) < 0}.
(6)

We also introduce a path variable ξ so that the x-position and

y-position are functions of it: sx(ξ), sy(ξ). The path variable

ξ can be obtained from sx(ξ), sy(ξ) as

ξ =

∫ ξ

0

√

s′2x (ξ̂) + s′2y (ξ̂) d ξ̂,

s′x(ξ̂) =
d sx(ξ)

d ξ

∣

∣

∣

ξ=ξ̂
, s′y(ξ) =

d sy(ξ)

d ξ

∣

∣

∣

ξ=ξ̂
.

(7)

The problem of finding the shortest path from bstart to bend
while respecting the road boundaries can be formulated as

min
sx(ξ),sy(ξ)

J(sx(ξ), sy(ξ)) =

∫ ξf

0

√

s′2x (ξ̂) + s′2y (ξ̂)d ξ̂ �

under the constraints

bstart(sx(0), sy(0)) = 0,

bend(sx(ξf), sy(ξf)) = 0,

bleft(sx(ξ), sy(ξ)) < 0,

bright(sx(ξ), sy(ξ)) < 0.

(8)

Problem 1 is too time-consuming to solve for our time-

critical application, even when only polygonal obstacles are

considered [63]–[65]. Instead of exactly solving Problem 1,

we compute an under-approximation of the shortest path. For

this reason, we introduce the notion of corresponding paths.

Definition 7 (Corresponding path): We define the corre-

sponding path h(ξ) with path variable ξ of the border b as

b(sx(ξ), sy(ξ)) = 0 ⇒ h(ξ) = [sx, sy]
T .

The other direction h(ξ) = [sx, sy]
T ⇒ b(sx(ξ), sy(ξ)) = 0

is not unique, and we only demand that a possible solution is

provided such that the set {[sx, sy]T |b(sx, sy) < 0, sx, sy ∈
R} refers to the inner part behind the border. �

The path h(ξ) either refers to the left or right border of a lane,

depending on context. When using hright(ξ), we explicitly

refer to the right border and analogously for hleft(ξ). We

denote the well-known signed curvature by

κ(ξ) = fκ(h(ξ)) =
s′x(ξ)s

′′
y(ξ) − s′′x(ξ)s

′
y(ξ)

(s′x(ξ)
2 + s′y(ξ)

2)3/2
.

Let us first under-approximate the length of the shortest path

when the inner border has no inflection point.

Lemma 2 (Shortest path without inner inflection point):

Given is a lane segment as described in Problem 1, where the

inner lane bound does not change the sign of the curvature,

i.e., ∄ξ : κright(ξ) := fκ(hright(ξ)) = 0. Without loss of

generality, we consider a right curve so that the inner bound

is hright. We further require that hstart, hend are straight

lines perpendicular to hright. This can be formalized by

introducing the normal vectors nstart, nend ∈ R2 and the

distance values dstart, dend ∈ R:

∀ξ ∈ [0, ξf] :

κright(ξ) < 0 (right turn),

constraints in (8) (lane borders),

bstart(sx, sy) = nT
start[sx, sy]

T − dstart (start line),

bend(sx, sy) = nT
end[sx, sy]

T − dend (finish line),

|nT
starth

′
right(0)|

‖nstart‖2‖h′
right(0)‖2

= 1 (bstart perpendicular to hright),

|nT
endh

′
right(0)|

‖nend‖2‖h′
right(0)‖2

= 1 (bend perpendicular to hright).

(9)

The shortest path according to Problem 1 is [s∗x(ξ), s
∗
y(ξ)]

T =
hright(ξ) for ξ ∈ [0, ξf]. �

Proof: Let us divide the problem of the lemma into sub-

problems with auxiliary line segments haux,i(α) = pi + αli,
α ∈ [0, 1], pi, li ∈ R2, and the corresponding border is

denoted by baux,i, see Def. 7. Then, we obtain the same sub-

problems, except that bstart is replaced by baux,i and bend is

replaced by baux,i+1. We are now interested in the shortest

distance between two auxiliary line segments. Let us denote

the start and end points of the shortest line segment connecting

both line segments haux,i and haux,i+1 by pd,i and pd,i+1

(see Fig. 10). There exist four cases for the shortest distance

between two line segments [66]: A) pd,i and pd,i+1 are within

haux,i and haux,i+1, B) pd,i is within haux,i and pd,i+1 is

one of the end points of haux,i+1, C) opposite of case B, D)

pd,i and pd,i+1 are end points of haux,i and haux,i+1. In the

two-dimensional setting, case A only occurs when the line

segments intersect, which can be ruled out, see Fig. 10. Case

B and C result in longer solutions compared to case D; this

can be easily seen, since either the movement of pd,i along

haux,i or the movement of pd,i+1 along haux,i+1 increases the

distance.

When we let the number N of auxiliary straight lines haux,i

approach infinity, the union
⋃N

i {pd,i + γ(pd,i+1 − pd,i)|γ ∈
[0, 1]} of the shortest line segments approaches the set of

points on hright(ξ). �

hstart hend

haux,i haux,i+1

pd,i pd,i+1 hright
hfront(ξf)

{[sx, sy]T |bfront(ξf (t), sx, sy) < 0}

Fig. 10: Shortest path through a lane without inner inflection point.

Based on the shortest path through a lane segment without

inner inflection point, we can compute an over-approximative

JOURNAL OF XX, VOL. X, NO. X, MONTH YEAR 10

occupancy through such a lane segment.

Lemma 3 (Occupancy without inner inflection point):

Given is a lane segment as formalized in (9), where the

inner lane bound does not have an inflection point. Let

us introduce the front position ξf (t) along the inner path

under constraints C1, C2, and C4∗, and the front border

bfront(ξf (t), sx, sy) = nT
f (ξf (t))

[

[sx, sy]
T − hright(ξf (t))

]

(see Fig. 10), which is perpendicular to the inner bound

(here: hright) so that nf is aligned with the inner bound:

|nT
f (ξ)h

′
right(ξ)|/(‖nf (ξ)‖2‖hright(ξ)‖2) = 1. Then, by

using Osegment from (6), the over-approximative occupancy

under constraints C1, C2, and C4∗ is

O2(t) = {[sx, sy]
T |bfront(ξf (t), sx, sy) < 0} ∩ Osegment

under the assumption that the segment describes a turn of less

than 90◦. If this is not the case, one can split the segment into

smaller segments without loss of generality. �

Proof: Due to the invariance of the velocity with respect to the

shape of a followed path (see Prop. 2), the fastest trajectory for

getting from one border of a lane to another one is determined

by the shortest path. From Lemma 2 we already know that the

shortest path of lanes with no inner inflection point is the inner

border itself. Hence, it suffices to compute the front bound

along the path of the inner border and perpendicular to it.

According to Lemma 2 no shorter path exists between bstart
and bfront, which concludes the proof. �

To over-approximate the occupancy along an arbitrary lane,

we introduce our inflection-point segmentation.

Definition 8 (Inflection-point segmentation): We define our

inflection-point segmentation of a lane algorithmically, whose

result is illustrated in Fig. 11:

1) If κleft > 0 (inner bound), start at [s̃x, s̃y]
T , where

bstart(s̃x, s̃y) = 0, bleft(s̃x, s̃y) = 0, and follow hleft.

Otherwise, start at [ŝx, ŝy]
T , where bstart(ŝx, ŝy) = 0,

bright(ŝx, ŝy) = 0, and follow hright. Note that it is

possible that the left and right bound of the lane are

concave initially, but then the left side is the default

according to this algorithm.

2) Follow the current bound until an inflection point γi is

reached, which is defined by a sign change of κleft or

κright, depending on the border that is followed (see

Fig. 11). Construct a line segment hcross,i(α) = γi +
αgi, γi, gi ∈ R2, α ∈ [0, 1], from one bound to the

other, which is perpendicular to the bound belonging

to γi. For the change from the left to the right bound,

we have gTi h
′
left = 0, hcross,i(0) = hleft(γi,x, γi,y),

hcross,i(1) = hright(µi,x, µi,y), and µi is the point from

where one continues on the other bound (see Fig. 11).

The procedure is analogous for the change from the right

to the left bound.

3) To obtain a proper segmentation, we need the additional

line segments h̃cross,i(α) = µi + αg̃i, α ∈ [0, 1]
back to the previously followed border (see Fig. 11).

In contrast to hcross,i(α), h̃cross,i(α) is perpendicular

to the opposite lane bound (g̃Ti h
′
right = 0).

4) Given the corresponding bounds bcross,i and b̃cross,i
of the line segments hcross,i and h̃cross,i, we de-

fine two types of regions: the regions Ri =
{[sx, sy]T |bcross,i(sx, sy) < 0, b̃cross,i−1(sx, sy) < 0}∩
Osegment without inner inflection point and the inter-

mediate regions IRi = {[sx, sy]T |b̃cross,i(sx, sy) <
0, bcross,i(sx, sy) < 0} ∩ Osegment, where one border

only consists of the single point µi.

5) The bound to which µi belongs is followed until an-

other inflection point is reached and the same pro-

cedure is repeated until the final border is reached

(bend(sx, sy) = 0). �

hstart

hend

γ1

µ1
γ2

µ2

hright

hleft

R1

IR1 R2

IR2

σ1

σ2

hcross,2

h̃cross,1

hcross,1

Fig. 11: Inflection point segmentation of a lane.

Let us introduce the jth inner paths hin,j(ξ) of an inflection-

point segmentation, where ξ ∈ [0, ξmax,j[, hin,j(0) = µi−1,

and ξmax,j is defined as the value that ensures hin,j(ξmax,j) =
γi. The inner path hin,j(ξ) is perpendicular to h̃cross,j−1 at

ξ = 0 and perpendicular to hcross,j at ξ = ξmax,j . This is

not necessarily ensured for the first and last partial inner path

hin,1 and hin,e, touching hstart and hend, respectively. To also

ensure orthogonality in those cases, we construct the auxiliary

first and last inner bound hin,init(ξ) and hin,final(ξ) as shown

in Fig. 12, which are perpendicular to hstart, hend and touch

hin,1(ξ), hin,e(ξ).
Finally, we define the partially-connected compound path

from partial inner paths hin,j(ξ) as

h(ξ) =

hin,init(ξ), ξ ∈ [0, ξ̃0[,

hin,1(ξ), ξ ∈ [ξ̃0, ξ̃1[,

hin,2(ξ − ξ̃1), ξ ∈ [ξ̃1, ξ̃2[,
...

hin,final(ξ − ξ̃e−1), ξ ∈ [ξ̃e−1, ξ̃e].

(10)

Given the front path variable ξf , one has to evaluate the

compound path (10) to obtain [sx,f , sy,f]
T = h(ξf). From this

point, the front bound is constructed as described in Lemma 3.

Theorem 2 (Occupancy along lane): Let us introduce by

jξ(t) the index of the region corresponding to ξ(t), i.e.

ξ(t) ∈ [ξ̃j−1, ξ̃j [in (10). We further introduce the occupancy

within the jthξ inflection-point region obtained from Lemma 3

as O2,jξ(t). Thus,

O2(t) = (

jξ(t)−1
⋃

j=0

Rj) ∪ (

jξ(t)−1
⋃

j=0

IRj) ∪ O2,jξ(t). �

JOURNAL OF XX, VOL. X, NO. X, MONTH YEAR 11

Proof: The result follows directly from Fig. 11, Fig. 12, and

Lemma 3. �

hstart

hend

γ1

µ1

hin,init(ξ̃0)

hin,final(0)

hin,init(ξ)

hin,1(ξ)
hin,2(ξ − ξ̃1)

hin,final(ξ − ξ̃e−1)

σ1

Fig. 12: Inner paths of a lane segment.

The occupancy is not only computed for the current lane,

but also for neighboring lanes if a lane change is possible

according to the adjacency graph of the lanelets.

V. NUMERICAL EXPERIMENTS

We demonstrate our proposed approach for different multi-

lane road networks involving road forks. Additionally, we

compare our results to results obtained from a high-fidelity

model. The behaviors of the high-fidelity model are generated

by using rapidly exploring random trees (RRTs) [67]. To

validate our approach, we use real-world measurements from

US highway 101 and check whether all the recorded data is

enclosed by our set-based occupancy prediction. Finally, we

demonstrate how our set-based occupancy prediction can be

integrated into a trajectory planning algorithm.

All results are obtained using MATLAB 2015a on a machine

with a 2.2 GHz Intel Core i7 processor with 16 GB 1600 MHz

DDR3 memory. For simplicity we use the same values of the

required vehicle parameters listed in Tab. I for all predictions:

amax = 10 m/s2 (obtained from friction coefficient µ = 1.02
and g = 9.81 m/s2; see [68, Fig. 3.3]), vmax = 30 m/s (as-

suming US highway speed limit of 65 mph plus overspeeding),

vS = 10 m/s, w = 1.8 m, l = 4.2 m.

A. Multi-Lane Road Networks Involving Road Forks

We consider two different scenarios involving road forks.

Both scenarios are created from real roads modeled in

OpenStreetMap, which we have processed with JavaOpen-

StreetMap(JOSM)4. For both scenarios we use a time step size

of ∆t = ti+1 − ti = 0.5 s, a time horizon of th = 3 s, and

an initial velocity of v(0) = 25 m/s. Please note that we do

not miss any occupancy, since we compute the occupancy for

consecutive time intervals as explained in Sec. IV.

The first scenario is shown in Fig. 13, where the consid-

ered vehicle can follow two possible lanes. To illustrate the

underlying computations, we separately plot the occupancy

4https://josm.openstreetmap.de

for going left (Fig. 13(a)) and right (Fig. 13(b)) for the time

interval [t4, t5]. The occupancy O([t0, tf]) of the entire time

horizon for both lane options is presented in Fig. 13(c).

The second scenario consists of three lanes in one direction

and one lane in the opposite direction as shown in Fig. 14,

where the considered vehicle is initially in the center lane;

hence, a lane change towards both neighboring lanes is pos-

sible. Fig. 14 shows the union of all occupied regions for all

time intervals until the prediction horizon of th = 3 s.

The computation times of both scenarios are shown in

Tab. II. It can be seen that the computations only require a

fraction of the prediction horizon (less than 10 %) and thus

make it possible to use our prediction online for planning

and verifying maneuvers as illustrated in Fig. 2. Since the

prediction of each vehicle can be performed independently,

one can easily parallelize the prediction and thus compute

in similar time the future occupancy of many surrounding

vehicles.

O1([t4, t5])

O2([t4, t5]) ∩ Oroad

O([t4, t5])

(a) Occupancy for left turn and t ∈ [t4, t5].

O1([t4, t5])

O2([t4, t5]) ∩Oroad

O([t4, t5])

(b) Occupancy for right turn and t ∈ [t4, t5].

O([0, tf])

initial position

(c) Overall occupancy of the entire prediction horizon

Fig. 13: Occupancy prediction of scenario I.

JOURNAL OF XX, VOL. X, NO. X, MONTH YEAR 12

replacements

O([0, tf])initial position

Fig. 14: Occupancy prediction of scenario II.

TABLE II: Computation Time for Scenario I and II.

Computation Prediction Fraction of

time horizon prediction horizon

Scenario I 0.19 s 3 s 6.3 %
Scenario II 0.17 s 3 s 5.7 %

B. Comparison with a High-Fidelity Vehicle Model

For the computation of our occupancy sets, the constraints

C1−C5 in Sec. III-B as well as Prop. 1, Lemma 1, 2, 3 and

Theorem 1, 2, ensure that the predicted occupancies are over-

approximative. The remaining question is how conservative

our results are. To investigate this issue, we introduce a high-

fidelity vehicle model to compute possible behaviors using

rapidly exploring random trees (RRTs) [67]. RRTs have proven

useful for computing subsets of reachable sets [69] and are

more effective compared to Monte Carlo simulation when

diversity of solutions is important, as has been demonstrated

in e.g. [70]. We would like to stress that RRTs are no

formal method so that the comparison with our set-based

prediction does not provide a proof for the over-approximative

computation.

Our high-order model considers the vertical load of all 4
wheels due to roll, pitch, and yaw, their individual spin and

slip, and nonlinear tire dynamics. The multi-body dynamics

is described by 3 masses: The unsprung mass and the sprung

mass of the front and rear axles. The forces between these

masses are described by the dynamics of the suspension and

the tire model. Our model is taken from [71, Appendix A]

and has been used in a previous publication of the authors

[72]. We use the vehicle parameters from vehicle 14 in [71,

Appendix E], which is a BMW 320i. For the tire dynamics we

use the PAC2002 Magic-Formula tire model whose parameters

are taken from the example of a PAC2002 tire property file

in [73]. We initialize the high-order model as summarized in

Tab. III, where f /r indicates front/rear. We further introduce

the initial heading Ψ0, the initial yaw rate Ψ̇0, the initial

rotational speed of the wheels ω0 = v0/R (v0: initial velocity,

R radius of the wheel), the initial velocity in x/y-direction of

the vehicle coordinate system vx,0/vy,0, the initial height over

ground z0, and the initial x/y-position sx,0/sy,0.

In contrast to standard RRT approaches, such as [69], we

slightly modify the procedure to account for the fact that we

are interested in the results for consecutive time intervals and

thus aim at a constant sampling density for each time interval,

see Fig. 15. The used approach is taken from [72]:

1) Initialize the discrete set of states for the next time

interval as X (τk+1) = ∅.

2) Generate a sample xs from the state space.

3) Find the nearest state xn according to a distance measure

ρ so that xn = argmin(ρ(xs, xi)), where xi ∈ X (τk).

TABLE III: Initial values of the high-order model (see [72]).

sprung mass unsprung mass other

init. init. init.

name val. name val. name val.

yaw ang. Ψ0 roll ang. (f) 0 wheel speed (lf) ω0

yaw rate Ψ̇0 roll rate (f) 0 wheel speed (rf) ω0

roll angle 0 roll ang. (r) 0 wheel speed (lr) ω0

roll rate 0 roll rate (r) 0 wheel speed (rr) ω0

pitch ang. 0 y-vel. (f) vyf,0 pin joint diff. (f) 0
pitch rate 0 y-vel. (r) vyr,0 pin joint diff. (r) 0
x-velocity vx,0 z-pos. (f) zf,0 x-position sx,0
y-velocity vy,0 z-vel. (f) 0 y-position sy,0
z-position 0 z-pos. (r) zr,0
z-velocity 0 z-vel. (r) 0

4) Obtain the input u which drives xn to the new state xadd

closest to xs.

5) Add xadd to the set of states for the next time interval

X (τk+1).
6) Repeat steps 2-5 for a predefined number of samples,

then go to the next time interval and start with step 1.

When initializing X (τk+1) = X (τk), one obtains the ap-

proach in [69]. The distance measure is simply chosen as the

Euclidean distance, and we only consider x-position and y-

position for the sampling space X . The optimal input u con-

sisting of the steering angle and the brake/acceleration pedal

angle, which drives xn to xs, i.e., minimizes ρ(xadd, xs), is

chosen by testing 12 combinations of steering and acceleration

so that the resulting acceleration lies on Kamm’s circle. Inputs

are changed every 0.25 s, and each time interval X (τk+1)
contains 100 samples. We use different initial states compared

to the previous subsection (Sec. V-A) to show how it affects

the prediction. The initial velocity is 10 m/s instead of 25 m/s,

and the initial position is closer to the road fork.

xn
xadd

xs

results of
different
inputs

xi

tk−2 tk−1 tk tk+1

x

t

Fig. 15: Sampling procedure of our RRT approach.

The results are illustrated in Fig. 16. It can be seen that

for each time interval, a high-fidelity vehicle model can drive

close to the borders of the predicted occupancy. The case for

turning left and right is shown separately in Fig. 16. Please

note that computing the RRT of high-fidelity models is not an

alternative for online computations since the prediction using

our model takes around 10 hours in MATLAB on the same

machine used for the occupancy prediction, which in contrast

produces results only within a fraction of a second.

JOURNAL OF XX, VOL. X, NO. X, MONTH YEAR 13

0 20 40

-30

-20

-10

0

10

x-position [m]

y
-p

o
si

ti
o
n

[m
]

(a) left: [0,0.5] s

0 20 40

-30

-20

-10

0

10

x-position [m]
y
-p

o
si

ti
o
n

[m
]

(b) left: [0.5,1] s

0 20 40

-30

-20

-10

0

10

x-position [m]

y
-p

o
si

ti
o
n

[m
]

(c) left: [1,1.5] s

0 20 40

-30

-20

-10

0

10

x-position [m]

y
-p

o
si

ti
o
n

[m
]

(d) left: [1.5,2] s

0 20 40

-30

-20

-10

0

10

x-position [m]

y
-p

o
si

ti
o
n

[m
]

(e) left: [2,2.5] s

0 20 40

-30

-20

-10

0

10

x-position [m]

y
-p

o
si

ti
o
n

[m
]

(f) left: [2.5,3] s

0 20 40

-30

-20

-10

0

10

x-position [m]

y
-p

o
si

ti
o
n

[m
]

(g) right: [0,0.5] s

0 20 40

-30

-20

-10

0

10

x-position [m]

y
-p

o
si

ti
o
n

[m
]

(h) right: [0.5,1] s

0 20 40

-30

-20

-10

0

10

x-position [m]

y
-p

o
si

ti
o
n

[m
]

(i) right: [1,1.5] s

0 20 40

-30

-20

-10

0

10

x-position [m]

y
-p

o
si

ti
o
n

[m
]

(j) right: [1.5,2] s

0 20 40

-30

-20

-10

0

10

x-position [m]

y
-p

o
si

ti
o
n

[m
]

(k) right: [2,2.5] s

0 20 40

-30

-20

-10

0

10

x-position [m]

y
-p

o
si

ti
o
n

[m
]

(l) right: [2.5,3] s

Fig. 16: Comparison of set-based occupancy prediction with results from the RRT computation for each time interval. Crosses show possible
positions of the high-fidelity model for the left turn and dots show possible positions for the right turn. Gray regions indicate the predicted
occupancy.

C. Comparison with Real Traffic Data

We evaluate the presented approach on data recorded from

a real highway by showing that the tracked occupancy of each

vehicle lies inside our predicted over-approximative occupancy

sets. For the validation we use a time step size of ∆t = ti+1−
ti = 0.4 s and a time horizon of th = 2 s. Let us denote the

time of the ith recorded set of occupancies as trec,i. Starting

from the occupancies at trec,i, we predict the occupied sets for

the time interval [trec,i, trec,i + th] and check if the recorded

occupancies are enclosed. If the enclosure is successful, we

proceed with the next time interval [trec,i+1, trec,i+1+th] until

all times trec,i have been checked.

The dataset is provided by the Next Generation Simulation

(NGSIM) program5. The traffic data was collected on a 0.6 km

segment of US highway 101 (Hollywood Freeway) located in

Los Angeles, California, on June 15th, 2005, see Fig. 17. The

dataset contains detailed trajectory data for each vehicle for

the entire time period from 07:50 am to 8:35 am. The vehicles

were tracked using eight video cameras on different buildings.

For illustration purposes, we only present the results of a

sector of the recorded highway section in Fig. 18. Otherwise,

the prediction of individual cars would not be visible due

to the length of the recorded highway section. However, the

occupancy prediction has been performed for all vehicles. The

initial occupancy of each vehicle is shown in Fig. 18 by solid

rectangles with an inner line to indicate the driving direction.

The recorded occupancy of each vehicle at the end of the time

horizon (t = trec,i + th) is represented by dashed rectangles

(see Fig. 18). The predicted occupancy is shown as polygons

with a solid border.

The average time for computing the occupancy prediction

is 0.2 s per vehicle for 5 instead of 6 time intervals as in

scenarios I and II, and thus is only slightly slower than the

results of Tab. II. In total we have considered 1074 vehicles

5http://www.fhwa.dot.gov/

and none of the recorded vehicles has breached the predicted

occupancy.

initial position
recorded position at end of time interval

O([ti, ti+1])t ∈ [0,0.4] s:

t ∈ [0.4,0.8] s:

Fig. 18: Occupancy prediction using recorded vehicles from US
highway 101.

D. Integration of Occupancy Prediction in Motion Planning

In this subsection we demonstrate how our occupancy pre-

diction sets can be embedded into a motion planning problem.

As described in Sec. II, we continuously plan a fail-safe

motion accounting for all possible behaviors of other traffic

participants (captured by our set-based prediction) to guarantee

collision avoidance. In this demonstration, we use standstill as

a safe state and thus as the final state of the fail-safe trajectory.

The basis of our scenario is from the previously used US

101 dataset with two surrounding vehicles (vehicle #1 and

vehicle #2) and the ego vehicle as shown in Fig. 19. The

initial velocity of vehicle #1 is 12.0 m/s, that of vehicle

#2 is 15.9 m/s, and that of the ego vehicle is 20 m/s.

The time horizons considered for computing the occupancy

prediction and the long-term trajectory as illustrated in Fig. 3

are tshort = 0.5 s, tlong = 5 s. The simulation of the whole

situation with continuous updates of the occupancy prediction

is performed for 10 s. Our intended trajectories consist of the

first 0.2 s of the long-term trajectory followed by the planned

JOURNAL OF XX, VOL. X, NO. X, MONTH YEAR 14

Fig. 17: Aerial photo of US highway 101 section.

fail-safe trajectory. Both the long-term trajectory and fail-safe

trajectory are computed utilizing optimal control in this work,

while any other choice of trajectory planner would also work.

Our objective function for the long-term plan penalizes the

distance to the center of the lane and the variation of the yaw

angle, whereas the objective function for the fail-safe trajectory

penalizes the velocity.

In order to create a more challenging scenario, we partially

modified the recorded motion of vehicle #1, while the recorded

motion of vehicle #2 is unchanged. The first modification

occurs at time step 2 when vehicle #1 suddenly steers towards

the left lane and quickly returns to its original lane (see

Fig. 19). However, the verification procedure of the ego vehicle

determines that the long-term trajectory continues to be safe

so that it is continued. At time step 8 the second modifi-

cation occurs: vehicle #1 again steers towards the left lane

and quickly returns to its original lane, causing a dangerous

situation. This time, the ego vehicle has to execute its fail-

safe trajectory, which avoids a potential collision. The fail-safe

trajectory is executed until a new safe trajectory is generated

for the ego vehicle. Since Fig. 19. only illustrates the position

over time, we also provide the velocity profile in Fig. 20.

This demonstration shows the benefit of keeping a fail-safe

trajectory available that is based on a set-based prediction of

other traffic participants.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
0

5

10

15

20

25

Index of time ti

V
el

o
ci

ty
[m

/s
].

Fig. 20: Velocity of the ego vehicle for the planned motion in Fig. 19.

VI. CONCLUSIONS

We present a novel framework for automatically com-

puting the occupancy prediction of other traffic participants

on arbitrary road networks. In contrast to existing work in

this area, our approach formally guarantees the bounds of

occupied regions using techniques from reachability analysis.

If we detect that a certain constraint in the model of traf-

fic participants is violated by a traffic participant, we can

remove the corresponding constraint from the model. As a

consequence, the predicted occupancy grows faster and thus

the ego vehicle has to plan more conservative trajectories to

avoid the enlarged occupancy of that traffic participant. This

reveals that our approach is inherently safe in the sense that

forgetting constraints of the model results in safer behavior of

the ego vehicle and not in less safe behavior. Please note that

this property can only be achieved by set-based techniques,

since the occupied region obtained with other techniques, such

as multiple simulations, is not monotonically growing with

respect to removing constraints.

The feasibility of our approach is demonstrated by real

traffic data, collected from a segment of US highway 101.

The validation results show the over-approximative nature of

our approach and confirm that predictions are computed in

less than 10 % of the considered time horizon, which makes

the proposed approach applicable for online planning and

verification. We have further demonstrated that our results are

tight by comparing results with a high-fidelity model and that

our approach can be easily integrated into motion planning

algorithms.

ACKNOWLEDGMENT

The authors would like to gratefully acknowledge financial

support by the German Research Foundation (DFG) grants

Graduiertenkolleg 1480 (PUMA) and AL 1185/3-1.

REFERENCES

[1] S. Mitra, T. Wongpiromsarn, and R. M. Murray, “Verifying cyber-
physical interactions in safety-critical systems,” IEEE Security and

Privacy, vol. 11, no. 4, pp. 28–37, 2013.
[2] R. Kianfar, P. Falcone, and J. Fredriksson, “Safety verification of

automated driving systems,” IEEE Intelligent Transportation Systems

Magazine, vol. 5, pp. 73–86, 2013.
[3] M. Althoff and J. M. Dolan, “Online verification of automated road

vehicles using reachability analysis,” IEEE Transactions on Robotics,
vol. 30, no. 4, pp. 903–918, 2014.

[4] S. M. LaValle, Planning Algorithms. Cambridge University Press, 2006.
[5] I. Dagli and D. Reichardt, “Motivation-based approach to behavior

prediction,” in Proc. of the Intelligent Vehicles Symposium, 2002, pp.
227–233.

[6] M. Liebner, C. Ruhhammer, F. Klanner, and C. Stiller, “Generic driver
intent inference based on parametric models,” in Proc. of the 16th

International IEEE Conference on Intelligent Transportation Systems,
2013, pp. 268–275.

[7] C.-F. Lin, A. G. Ulsoy, and D. J. LeBlanc, “Vehicle dynamics and
external disturbance estimation for vehicle path prediction,” IEEE Trans-

actions on Control Systems Technology, vol. 8, pp. 508–518, 2000.
[8] Y. U. Yim and S.-Y. Oh, “Modeling of vehicle dynamics from real

vehicle measurements using a neural network with two-stage hybrid
learning for accurate long-term prediction,” IEEE Transactions on

Vehicular Technology, vol. 53, pp. 1076–1084, 2004.

JOURNAL OF XX, VOL. X, NO. X, MONTH YEAR 15

vehicle #1

vehicle #2

ego vehicle

driving direction

Fig. 19: Fail-safe motion planning using predicted occupancy sets; numbers represent the time steps ti.

[9] A. Polychronopoulos, M. Tsogas, A. J. Amditis, and L. Andreone,
“Sensor fusion for predicting vehicles’ path for collision avoidance
systems,” IEEE Transactions on Intelligent Transportation Systems,
vol. 8, no. 3, pp. 549–562, 2007.

[10] B. Kim and K. Yi, “Probabilistic and holistic prediction of vehicle states
using sensor fusion for application to integrated vehicle safety systems,”
IEEE Transactions on Intelligent Transportation Systems, vol. 15, no. 5,
pp. 2178–2190, 2014.

[11] W. Hu, X. Xiao, Z. Fu, D. Xie, T. Tan, and S. Maybank, “A system
for learning statistical motion patterns,” IEEE Transactions on Pattern

Analysis and Machine Intelligence, vol. 28, pp. 1450–1464, 2006.

[12] N. Sumpter and A. J. Bulpitt, “Learning spatio-temporal patterns for
predicting object behaviour,” Image and Vision Computing, vol. 18, pp.
679–704, 2000.

[13] D. Vasquez, T. Fraichard, and C. Laugier, “Incremental learning of
statistical motion patterns with growing hidden Markov models,” IEEE

Transactions on Intelligent Transportation Systems, vol. 10, pp. 403–
416, 2009.

[14] S. Lefèvre, D. Vasquez, and C. Laugier, “A survey on motion prediction
and risk assessment for intelligent vehicles,” ROBOMECH journal,
vol. 1, no. 1, pp. 1–14, 2014.

[15] A. Barth and U. Franke, “Where will the oncoming vehicle be the next
second?” in Proc. of the IEEE Intelligent Vehicles Symposium, 2008, pp.
1068–1073.

[16] A. Eidehall, “Multi-target threat assessment for automotive applica-
tions,” in Proc. of the 14th Int. IEEE Conference on Intelligent Trans-

portation Systems, 2011, pp. 433–438.

[17] M. Brännström, E. Coelingh, and J. Sjöberg, “Model-based threat
assessment for avoiding arbitrary vehicle collisions,” IEEE Transactions

on Intelligent Transportation Systems, vol. 11, no. 3, pp. 658–669, 2010.

[18] J.-H. Kim and D.-S. Kum, “Threat prediction algorithm based on
local path candidates and surrounding vehicle trajectory predictions for
automated driving vehicles,” in Proc. of the IEEE Intelligent Vehicles

Symposium, 2015, pp. 1220 – 1225.

[19] J. Wei, J. M. Snider, T. Gu, J. M. Dolan, and B. Litkouhi, “A behavioral
planning framework for autonomous driving,” in Proc. of the IEEE

Intelligent Vehicles Symposium, June 2014.

[20] K. Vogel, “A comparison of headway and time to collision as safety
indicators,” Accident Analysis & Prevention, vol. 35, pp. 427–433, 2003.

[21] M. M. Minderhoud and P. H. L. Bovy, “Extended time-to-collision
measures for road traffic safety assessment,” Accident Analysis &

Prevention, vol. 33, pp. 89–97, 2001.

[22] A. Tamke, T. Dang, and G. Breuel, “A flexible method for criticality
assessment in driver assistance systems,” in Proc. of the IEEE Intelligent

Vehicles Symposium, 2011, pp. 697–702.

[23] N. Kaempchen, B. Schiele, and K. Dietmayer, “Situation assessment
of an autonomous emergency brake for arbitrary vehicle-to-vehicle
collision scenarios,” IEEE Transactions on Intelligent Transportation

Systems, vol. 10, pp. 678–687, 2009.

[24] A. Eidehall and L. Petersson, “Statistical threat assessment for general
road scenes using Monte Carlo sampling,” IEEE Transactions on Intel-

ligent Transportation Systems, vol. 9, pp. 137–147, 2008.

[25] S. Danielsson, L. Petersson, and A. Eidehall, “Monte Carlo based
threat assessment: Analysis and improvements,” in Proc. of the IEEE

Intelligent Vehicles Symposium, 2007, pp. 233–238.

[26] A. E. Broadhurst, S. Baker, and T. Kanade, “Monte Carlo road safety
reasoning,” in Proc. of the IEEE Intelligent Vehicles Symposium, 2005,
pp. 319–324.

[27] T. Kim and H.-Y. Jeong, “A novel algorithm for crash detection under
general road scenes using crash probabilities and an interactive multiple
model particle filter,” IEEE Transactions on Intelligent Transportation

Systems, vol. 15, no. 6, pp. 2480–2490, 2014.

[28] C. Hermes, C. Wöhler, K. Schenk, and F. Kummert, “Long-term vehicle
motion prediction,” in Proc. of the IEEE Intelligent Vehicles Symposium,
2009, pp. 652–657.

[29] T. Gindele, S. Brechtel, and R. Dillmann, “Learning driver behavior
models from traffic observations for decision making and planning,”
IEEE Intelligent Transportation Systems Magazine, vol. 7, no. 1, pp.
69–79, 2015.

[30] A. Lambert, D. Gruyer, G. S. Pierre, and A. N. Ndjeng, “Collision
probability assessment for speed control,” in Proc. of the 11th Inter-

national IEEE Conference on Intelligent Transportation Systems, 2008,
pp. 1043–1048.

[31] M. Althoff, O. Stursberg, and M. Buss, “Model-based probabilistic colli-
sion detection in autonomous driving,” IEEE Transactions on Intelligent

Transportation Systems, vol. 10, no. 2, pp. 299 – 310, 2009.

[32] M. Althoff and A. Mergel, “Comparison of Markov chain abstraction
and Monte Carlo simulation for the safety assessment of autonomous
cars,” IEEE Transactions on Intelligent Transportation Systems, vol. 12,
no. 4, pp. 1237–1247, 2011.

[33] B. Vanholme, D. Gruyer, B. Lusetti, S. Glaser, and S. Mammar,
“Highly automated driving on highways based on legal safety,” IEEE

Transactions on Intelligent Transportation Systems, vol. 14, no. 1, pp.
333–347, 2013.

[34] H. Täubig, U. Frese, C. Hertzberg, C. Lüth, S. Mohr, E. Vorobev, and
D. Walter, “Guaranteeing functional safety: design for provability and
computer-aided verification,” Autonomous Robots, vol. 32, no. 3, pp.
303–331, 2012.

[35] A. Chutinan and B. H. Krogh, “Computational techniques for hybrid
system verification,” IEEE Transactions on Automatic Control, vol. 48,
no. 1, pp. 64–75, 2003.

[36] M. Althoff, O. Stursberg, and M. Buss, “Reachability analysis of nonlin-
ear systems with uncertain parameters using conservative linearization,”
in Proc. of the 47th IEEE Conference on Decision and Control, 2008,
pp. 4042–4048.

[37] M. Althoff and B. H. Krogh, “Zonotope bundles for the efficient
computation of reachable sets,” in Proc. of the 50th IEEE Conference

on Decision and Control, 2011, pp. 6814–6821.

[38] T. Dang and O. Maler, “Reachability analysis via face lifting,” in Hybrid

Systems: Computation and Control, 1998, pp. 96–109.

[39] A. B. Kurzhanski and P. Varaiya, “Ellipsoidal techniques for reachability
analysis,” in Hybrid Systems: Computation and Control, ser. LNCS
1790. Springer, 2000, pp. 202–214.

JOURNAL OF XX, VOL. X, NO. X, MONTH YEAR 16

[40] A. Girard and C. Le Guernic, “Efficient reachability analysis for linear
systems using support functions,” in Proc. of the 17th IFAC World

Congress, 2008, pp. 8966–8971.
[41] O. Stursberg and B. H. Krogh, “Efficient representation and computation

of reachable sets for hybrid systems,” in Hybrid Systems: Computation

and Control, ser. LNCS 2623. Springer, 2003, pp. 482–497.
[42] T. A. Henzinger, B. Horowitz, R. Majumdar, and H. Wong-Toi, “Beyond

HyTech: Hybrid systems analysis using interval numerical methods,” in
Hybrid Systems: Computation and Control, ser. LNCS 1790. Springer,
2000, pp. 130–144.

[43] C. Schmidt, F. Oechsle, and W. Branz, “Research on trajectory planning
in emergency situations with multiple objects,” in Proc. of the IEEE

Intelligent Transportation Systems Conference, 2006, pp. 988–992.
[44] S. Söntges and M. Althoff, “Determining the nonexistence of evasive

trajectories for collision avoidance systems,” in Proc. of the 18th IEEE

International Conference on Intelligent Transportation Systems, 2015,
pp. 956 – 961.

[45] D. Greene, J. Liu, J. Reich, Y. Hirokawa, A. Shinagawa, H. Ito, and
T. Mikami, “An efficient computational architecture for a collision
early-warning system for vehicles, pedestrians, and bicyclists,” IEEE

Transactions on Intelligent Transportation Systems, vol. 12, no. 4, pp.
942–953, 2011.

[46] P. Falcone, M. Ali, and J. Sjöberg, “Predictive threat assessment via
reachability analysis and set invariance theory,” IEEE Transactions on

Intelligent Transportation Systems, vol. 12, no. 4, pp. 1352–1361, 2011.
[47] J. van den Berg, D. Ferguson, and J. Kuffner, “Anytime path planning

and replanning in dynamic environments,” in Proc. of the International

Conference on Robotics and Automation, 2006, pp. 2366–2371.
[48] S. Bouraine, T. Fraichard, and H. Salhi, “Provably safe navigation for

mobile robots with limited field-of-views in dynamic environments,”
Autonomous Robots, vol. 32, no. 3, pp. 267–283, 2012.

[49] A. Wu and J. P. How, “Guaranteed infinite horizon avoidance of
unpredictable, dynamically constrained obstacles,” Autonomous Robots,
vol. 32, no. 3, pp. 227–242, 2012.

[50] C. F. Chung, T. Furukawa, and A. H. Göktogan, “Coordinated control
for capturing a highly maneuverable evader using forward reachable
sets,” in Proc. of the IEEE International Conference on Robotics and

Automation, 2006, pp. 1336–1341.
[51] M. Althoff, D. Heß, and F. Gambert, “Road occupancy prediction of

traffic participants,” in Proc. of the 16th International IEEE Conference

on Intelligent Transportation Systems, 2013, pp. 99–105.
[52] R. Parthasarathi and T. Fraichard, “An inevitable collision state-checker

for a car-like vehicle,” in Proc. of the IEEE International Conference

on Robotics and Automation, 2007, pp. 3068–3073.
[53] A. Platzer and E. M. Clarke, “The image computation problem in hybrid

systems model checking,” in Hybrid Systems: Computation and Control,
ser. LNCS 4416. Springer, 2007, p. 473486.

[54] P. Bender, J. Ziegler, and C. Stiller, “Lanelets: Efficient map representa-
tion for autonomous driving,” in Proc. of the IEEE Intelligent Vehicles

Symposium, 2014, pp. 420–425.
[55] J. Ziegler, P. Bender, M. Schreiber, H. Lategahn, T. Strauss,

C. Stiller, T. Dang, U. Franke, N. Appenrodt, C. G. Keller, E. Kaus,
R. G.Herrtwich, C. Rabe, D. Pfeiffer, F. Lindner, F. Stein, F. Erbs,
M. Enzweiler, C. Knöppel, J. Hipp, M. Haueis, M. Trepte, C. Brenk,
A. Tamke, M. Ghanaat, M. Braun, A. Joos, H. Fritz, H. Mock, M. Hein,
and E. Zeeb, “Making Bertha drive – an autonomous journey on
a historic route,” IEEE Intelligent Transportation Systems Magazine,
vol. 6, no. 2, pp. 8–20, 2014.

[56] L. M. Surhone, M. T. Timpledon, and S. F. Marseken, Eds., Vienna

Convention on Road Traffic. VDM Publishing, 2010.
[57] A. Rizaldi and M. Althoff, “Formalising traffic rules for accountability

of autonomous vehicles,” in Proc. of the 18th IEEE International

Conference on Intelligent Transportation Systems, 2015, pp. 1658 –
1665.

[58] M. Althoff, D. Althoff, D. Wollherr, and M. Buss, “Safety verification
of autonomous vehicles for coordinated evasive maneuvers,” in Proc. of

the IEEE Intelligent Vehicles Symposium, 2010, pp. 1078–1083.
[59] L. Segel, The Physics of Tire Traction. Springer, 1974, ch. Tire Traction

on Dry, Uncontaminated Surfaces, pp. 65–98.
[60] R. Alur, C. Coucoubetis, N. Halbwachs, T. A. Henzinger, P. H. Ho,

X. Nicolin, A. Olivero, J. Sifakis, and S. Yovine, “The algorithmic
analysis of hybrid systems,” Theoretical Computer Science, vol. 138,
pp. 3–34, 1995.

[61] M. K. Agoston, Computer Graphics and Geometric Modeling: Imple-

mentation and Algorithms. Springer, 2005.
[62] G. Greiner and K. Hormann, “Efficient clipping of arbitrary polygons,”

ACM Transactions on Graphics, vol. 17, no. 2, pp. 71–83, 1998.

[63] S. K. Ghosh and D. M. Mount, “An output-sensitive algorithm for
computing visibility graphs,” SIAM Journal on Computing, vol. 20,
no. 5, pp. 888–910, 1991.

[64] J. Hershberger and S. Suri, “An optimal algorithm for Euclidean shortest
paths in the plane,” SIAM Journal on Computing, vol. 28, no. 6, pp.
2215–2256, 1999.

[65] H.-P. Huang and S.-Y. Chung, “Dynamic visibility graph for path
planning,” in Proc. of IEEE/RSJ International Conference on Intelligent

Robots and Systems, 2004, pp. 2813–2818.
[66] V. J. Lumelsky, “On fast computation of distance between line seg-

ments,” Information Processing Letters, vol. 21, no. 2, pp. 55–61, 1985.
[67] S. M. LaValle and J. J. Kuffner, “Randomized kinodynamic planning,”

International Journal of Robotics Research, vol. 20, no. 5, pp. 378–400,
2001.

[68] C.-G. Wallman and H. Åström, “Friction measurement methods and the
correlation between road friction and traffic safety,” in VTI meddelande.
Swedish National Road and Transport Research Institute, 2001.

[69] A. Bhatia and E. Frazzoli, “Incremental search methods for reachability
analysis of continuous and hybrid systems,” in Hybrid Systems: Com-

putation and Control, ser. LNCS 2993. Springer, 2004, pp. 142–156.
[70] D. Heß, M. Althoff, and T. Sattel, “Comparison of trajectory tracking

controllers for emergency situations,” in Proc. of the IEEE Intelligent

Vehicles Symposium, 2013, pp. 163–170.
[71] R. W. Allen, H. T. Szostak, D. H. Klyde, T. J. Rosenthal, and K. J.

Owens, “Vehicle dynamic stability and rollover,” U.S. Department of
Transportation, Final Report DOT HS 807 956, 1992.

[72] M. Althoff and J. M. Dolan, “Reachability computation of low-order
models for the safety verification of high-order road vehicle models,” in
Proc. of the American Control Conference, 2012, pp. 3559–3566.

[73] Adams/Tire help, MSC Software, 2 MacArthur Place, Santa Ana, CA
92707, April 2011, documentation ID: DOC9805. [Online]. Available:
http://simcompanion.mscsoftware.com/infocenter

Matthias Althoff is assistant professor in computer
science at Technische Universität München, Ger-
many. He received the diploma engineering degree
in Mechanical Engineering in 2005, and the Ph.D.
degree in Electrical Engineering in 2010, both from
Technische Universität München, Germany. From
2010 to 2012 he was a postdoctoral researcher at
Carnegie Mellon University, Pittsburgh, USA, and
from 2012 to 2013 an assistant professor at Tech-
nische Universität Ilmenau, Germany. His research
interests include formal verification of continuous

and hybrid systems, reachability analysis, planning algorithms, nonlinear
control, automated vehicles, and power systems.

Silvia Magdici is currently a Ph.D. candidate at
Technische Universität München, Germany. She re-
ceived her B.Sc. degree in Computer Engineering in
2012 and her M.Sc. degree in Systems and Control
in 2014, both from Technical University of Iasi,
Romania. She joined the Department of Informatics
at Technische Universität München in 2015. Her re-
search interests include autonomous vehicles, formal
methods, reachability analysis, and optimal control.

