
An Ontology-based Plug-and-Play Approach for In-Vehicle
Time-Sensitive Networking (TSN)

Morteza Hashemi Farzaneh and Alois Knoll

Abstract— Time-Sensitive Networking (TSN) standards aim
to support hard real-time communication with minimum la-
tency based on Ethernet technology. They can also support
the automotive domain considering upcoming and challenging
application requirements in intelligent vehicles of the future.
Despite all advantages, Time-Aware Shaper (TAS), a significant
feature of TSN, increases the network configuration overhead.
This configuration is required to guarantee deterministic net-
work behavior.
In this paper, an ontology-based approach is presented that ex-
tends TSN capabilities regarding Plug-and-Play and automatic
network configuration. The developed ontology meta-models
can be used by automotive experts (e.g. network designers
or engineers) to design a concrete in-vehicle network based
on TSN including knowledge that is required for automatic
configuration.

I. INTRODUCTION

Time-Sensitive Networking (TSN) [1] is a set of standards
in development by Institute of Electrical and Electronics
Engineers (IEEE) targeting hard real-time communication
with minimal latency based on Ethernet technology. These
standards will help to overcome challenging requirements
from automotive domain considering upcoming innovative
applications such as autonomous driving and infotainment
that require e.g. fully deterministic network behavior, high
bandwidth, fail-operational and etc. Increasing the number
of such applications and increasing number of sensors, actu-
ators and Electronic Control Units (ECU) that are involved
cause high network engineering overhead for the experts.
Considering an in-vehicle network and its communication
schedule, modifications can be required when a new appli-
cation (including hardware and software) has to be integrated
in the architecture. In worst-case, an network engineer has to
recalculate all the scheduling-related parameters to be sure
that all timing or bandwidth requirements are fulfilled.
In spite of all advantages of these standards, a concept for
Plug-and-Play in TSN is missing to deal with the mentioned
configuration overhead challenge. Time-Aware Shaper (TAS)
[1] follows the time-driven scheduling principle and guar-
antees that high-priority data are not interrupted by low-
priority data during the transmission. This requires a static
predefined schedule that causes a lot of engineering work
for the network configuration. For example, schedule of TAS
gate drivers has to be manually configured based on the QoS
requirements of the applications and involved data.
To confront this problem, an ontology-based approach is

Robotics and Embedded Systems, Technische Universität München {
hashemif, knoll} @in.tum.de

presented in this paper to enhance automatic network config-
uration of TSN in order to achieve Plug-and-Play abilities.
Contributions are: (1) an overall Plug-and-Play procedure,
(2) a proposal to integrate the approach in a data-centric
middleware, (3) modeling details of applications, devices,
data, QoS requirements and TSN features specially TAS in
an ontology and (4) introducing a simple modeling use case.
The rest of the paper is structured as follows: in the next
section, the background and related work are discussed and
in section III the Plug-and-Play procedure is described. The
ontology models are explained in IV and finally in V the
conclusion and future work are discussed.

II. BACKGROUND AND RELATED WORK

A. Real-time Ethernet and Time-Sensitive Networking

Standard Switched Ethernet is a wide-spread, successful,
low-cost, high-bandwidth and future-oriented infrastructure
that is used in home and office networks. Due to the lack of
real-time capabilities, standard Ethernet is not able to be used
in applications with real-time requirements. The main issue
is the best effort strategy of Ethernet which leads to indeter-
ministic packet transmission that is not acceptable for time-
critical applications. Based on the advantages of Ethernet, the
factory automation domain started to adapt it for real-time
communication. Examples for adapted Ethernet technologies
such as Ethernet Powerlink, EtherCAT , Time-Triggered
Ethernet and Profinet are analyzed and compared in [2]. Each
of these technologies has advantages and shortcomings but
all of them are similar in one point. All of them are almost
proprietary solutions (except openPowerlink) and usually
modify the standard Ethernet in hardware or in software
stack to achieve real-time guarantees. Ethernet Powerlink for
instance, uses obsolete network hubs to achieve the lowest
latency and do not use the capabilities of switched Ethernet
in duplex mode which is a waste of bandwidth. EtherCAT
slave stack is implemented in (Field Programmable Gate
Array) FPGAs and uses only the physical layer of the
standard Ethernet and builds its protocol on top of it. Profinet
IRT modifies the Ethernet switches in order to support
isochronous hard real-time communication which increases
the switch hardware costs significantly.
Based on the mentioned problems, IEEE decided to work on
developing standard real-time Ethernet Audio Video Bridging
(AVB) [3]. AVB proposed solutions in order to achieve
real-time guaranties for the highest priority data class A
(maximum latency of 2 ms) and Class B (maximum latency
of 50 ms). The main use case for AVB was transmission of
audio and video data in the entertainment domain. The timing

978-1-5090-0996-1/16/$31.00 ©2016 IEEE

guarantees were possible using the Credit-based Shaper
(CBS), Stream Reservation Protocol (SRP) and time syn-
chronization. The idea of AVB motivated also other domains
such as factory automation domain to contribute in further
developing of new features to meet requirements of industrial
communication. The motivation was to reduce the maximum
latency down to microsecond range and to develop important
additional features such as fault-tolerance mechanisms to
meet safety-relevant requirements.
Based on this motivation, TSN task group [1] has been ini-
tiated. Various standards are still in development to achieve
the mentioned objectives.
802.1 Qbv Time-Aware Shaper (TAS) proposes a time-
triggered approach which uses gate drivers to prioritize data
forwarding of the switches on each switch port. Thus, delay
of high-priority and critical Ethernet frames in a switch is
minimized. To achieve this, it is mandatory to (1) reserve
enough bandwidth for such critical data using 802.1Qca Path
Control and Reservation and 802.1Qcc Stream Reservation
Protocol (SRP) Enhancements and Performance Improve-
ments and (2) to develop a Frame Preemption mechanism
called 802.1Qbu to interrupt low-priority frame transmission
to the advantage of high-priority frames. In this context,
Timing and Synchronization for Time-Sensitive Applications
in Bridged Local Area Networks 802.1AS-Revision plays a
significant role to control the gate drivers. To support fault
tolerance features, TSN proposes 802.1CB Frame Replica-
tion and Elimination standard. The content of this paper is
based on the current and updated drafts of the standards.
The mentioned standards focus more on fulfilling timing
and QoS requirements such as minimum latency or support
of fault-tolerance behavior with disjoint paths and not on
automatic network configuration and Plug-and-Play function-
alities.

B. Plug-and-Play in Real-time Ethernet

Discussed real-time Ethernet technologies suffer all from
high manual configuration effort. There are several attempts
to enhance Plug-and-Play capabilities of real-time Ethernet.
Reinhart et al. [4] propose a five-step-model for recon-
figuration of Ethernet Powerlink. However, the approach
depends on specific components of the Ethernet Powerlink
architecture and it is not clear how to apply it for other real-
time Ethernet technologies. Moreover, it is not clear how the
recently connected slave and network master know about the
application logic and to which other slaves the data should be
sent after connection. The approach presented in [5] proposes
a Plug-and-Play solution for Profinet based on Device Profile
for Web Services (DPWS) [6] and further in [7] based on
OPC Unified Architecture [8]. These proposals also suffer
from the generalizability issue and are not applicable for
TSN. This issue is identified in [9] and general functionalities
required for auto configuration are derived. The result is
a four-phase procedure including IP-Connectivity, Device
Discovery, Requesting RTE-specific parameters and Cloning
engineering tool functionality.
The reviewed approaches focus on field bus systems that

usually have similarities regarding network participants e.g.
Programmable Logic Controller (PLC), Bus Coupler, etc.
In such systems, the network configuration and control
application logic are implemented and executed on PLCs.
The role of network switches are negligible in contrast to
TSN where switches and their configuration play a significant
role to meet the QoS requirements. Thus, a novel approach
is required that focuses on the TSN properties and features
(e.g. TAS) improving Plug-and-Play capabilities.

C. Ontology-based Network Management

There are several related works that apply ontologies for
network management tasks [10], [11], [12], [13]. In [14]
these proposals are analyzed regarding their advantages and
shortcomings. The results show, that an ontology-based in-
teroperability framework can help to ease several tasks in the
network management. It relieves the network administrators
and help to automate the management tasks. In [15] and [16]
ontologies are applied to describe the network policies such
as firewall policies. Management of complex 5G networks
using ontologies is proposed in [17]. Martinez et al. [18]
propose an ontology-based information extraction system for
bridging the configuration gap in hybrid Software-Defined
Networks (SDN). The focus is on formalization of switch
and router configuration domain to ease the configuration
overhead for administrators.
To the best of our knowledge, there is no solution or proposal
that deals with TSN and responds to the question of how to
improve Plug-and-Play capabilities and automatic network
configuration. It is justifiable because the standardization
process of TSN is still in development and first products
are expected in 2017.

III. PLUG-AND-PLAY APPROACH FOR TSN

In order to achieve Plug-and-Play capability with TSN
the contributions of this paper are as follows. Firstly, re-
quired network services are defined and explained. These
services interact with TSN knowledgebase that contains
information about the applications, consumed and published
data, QoS requirements, networked hardware (network hosts
and switches), TSN specific device properties and TSN
network configuration. Secondly, a procedure is defined that
explains the required steps after a new device joins the
network. Thirdly, the Plug-and-Play approach is embedded
in a data-centric middleware to use its strengths regarding
the higher application layer. Finally, using ontologies, the
knowledgebase is explained in details.

A. Required Network Services

Based on the review of the literature, the following net-
work services are defined which have to be available to
support Plug-and-Play in TSN:
Device Discovery: is responsible for (1) assigning an ade-
quate network address to the new device, (2) discovery of
the device location in the network topology and finally (3)
registration of device profiles.
Application Management: explores the device profiles and

Device

Data

QoS Req

TSN property

publishes/consumes

has requirement

has TSN-spesific
property

Simple IO

Applicationbelongs to

Simple IO

Application Device

Extends the
knowledgebase
of the TSN
network

Fig. 1. Network Devices are analyzed by the application management
service and the obtained new knowledge extends relevant parts (application,
data, device, QoS requirement, device TSN-specific property) of the TSN
network knowledgebase.

updates (extends) the TSN knowledgebase including infor-
mation about applications, published and consumed data
of the devices, QoS requirements on those data and TSN
specific properties of the devices. In the context of this
paper, each application is defined by the data which are
consumed or published by the application (a similar concept
to [19] and [20]). Each application defines a set of QoS
requirements on the consumed data. These requirements
are exemplified by: Deadline, Durability, Destination Order,
Reliability, Transport Priority. For example, reliability means
that a data should be replicated on two or more disjoint
network paths to guarantee the fail-operational for a specific
safety-relevant application.
We define there device types in a TSN Network. Simple
IO devices such as pure sensors or actuators their data
is consumed/published by other applications of other de-
vices, Application devices that have their own applications
publishing or consuming data and TSN network switches
transmitting the Ethernet frames in the network. Figure 1
demonstrates how the device profiles are used by the ap-
plication management service to update parts (related to
applications, data, devices, QoS requirements and device
TSN-specific property) of the TSN network knowledgebase.
TSN Plug-and-Play Management: is the core service to
support Plug-and-Play. The main functionality of this service
is to use reasoning methods on the available TSN network
knowledgebase and derive commands for automatic network
configuration based on predefined rules. Compared to the
application management service which analyzes the relation
between applications, devices, QoS requirements,etc., the
TSN Plug-and-Play management deals with relation between
TSN features and the requirements. It is also responsible to
define logical rules so that the relation between chained TSN
configuration parameters can be formalized. This formaliza-
tion in the form of ontology-based knowledge representation
allows reasoning to derive commands to configure the TSN

Fig. 2. Sequence diagram of the Plug Phase

devices (specially switches). The reasoning aims to replace
step by step the TSN network administrator that has to master
complex engineering tasks.

B. Plug-and-Play Procedure

The Plug-and-Play procedure is divided in (1) Plug Phase
and (2) Play Phase. In the plug phase, a new network device,
device discovery service, and application management ser-
vice are involved. A recently joined device sends a Dynamic
Host Configuration Protocol (DHCP) request to the network
and device discovery service assigns an Internet Protocol
(IP) to the device. Device discovery service sends a device
profile request to the new device and it responds with its
profile that already has been discussed. Another task of the
device discovery service is to find the location of the new
device in the current network topology. This information
is required when TSN Plug-and-Play management service
wants to find out which devices are relevant to send TSN
configuration parameters. Here, knowledge about physical
connection of the devices is significant. Link Layer Discovery
Protocol (LLDP) [21] is used to manage this task. The
obtained information is used to update the knowledgebase.
Finally, the device discovery service sends a registration re-
quest including the new device profile to the application man-
agement service and it obtains all the new knowledge from
the profile and extends the TSN knowledgebase. Figure 2
demonstrates the sequence diagram of the plug phase.
In the play phase, after a network application is triggered,

an execution request is sent to the application management
service. It initializes and sends a TSN configuration request
to the TSN Plug-and-Play management service. First, the
TSN knowledgebase is loaded. Second, the involved TSN
devices are extracted applying queries on the knowledgebase
about the application and published or consumed data and
consequently the involved devices (data is published or
consumed by device). Third, based on the QoS requirements,
queries are made about the affected TSN features. For
example, if there is a deadline requirement, the Time-aware

shaper, frame preemption and stream reservation features are
affected. Such relations are predefined in the TSN knowl-
edgebase. Fourth, based on the current TSN configuration
parameters (e.g. the event list of the gate driver in the Time-
aware shaper feature) and predefined rules new configuration
commands are derived and sent to the involved devices and
the knowledgebase is updated after modification of config-
uration parameters. Finally, application management service
and the application are notified that the TSN configuration is
accomplished successfully. The play phase is demonstrated
in Figure 3 using a sequence diagram.

Fig. 3. Sequence diagram of the Play Phase

C. Integration in a Data-centric Middlware

The approach presented in this paper deals with the
question how to configure a TSN network automatically so
that all QoS requirements of the applications are fulfilled and
the network engineering effort is reduced. Considering a TSN
network, however there other tasks that are less related to
network configuration. For example, application execution,
device resource management, data handling, etc. Such tasks
are mostly done by a middleware which offers abstractions
(from hardware, operating system, etc.) to applications. Data-
centric middleware such as Data Distribution Service (DDS)
[19], [20] and service-oriented middleware such as DPWS
and OPC UA (mentioned previously), continuously gain
in importance in the communities of computer networks,
automation, automotive, robotics and medical. As mentioned
before, one of the key points of the presented approach here
is data. Data is related to all other elements (see Figure 1).
Data is in relation to applications, devices and QoS require-
ments. TSN automatic configuration is intended to fulfill
QoS requirements of a Data with less network configuration
effort. In order to have a full Plug-and-Play support in a TSN
network, we propose to integrate the automatic configuration
approach based on the TSN network knowledgebase into the
data-centric middleware CHROMOSOME [20] to extend its
capabilities.
The main component of the CHROMOSOME middlware is

its run-time environment XME. There are the following main
components in XME: (1) Data Handler that offers an API
to the applications to publish and subscribe their data in the
network, (2) Broker that monitors the availability of the data
in the Data Handler and checks if the QoS requirements
are fulfilled and (3) Execution Manager that executes the
applications which are enabled by the broker.
Login Manager and Login Client are defined to recognize
when a new device joins. The device discovery service of the
proposed approach is similar to these components and can
directly be integrated. The device discovery service, however
has an additional task to find the physical topology of the new
device using LLDP as applied in [21]. The middleware also
implements Plug&Play Manager and Client. The Plug&Play
client is responsible to announce the pluggable application
components to the Plug&Play Manager. The manager cal-
culates the available network bandwidth and changes the
XME configuration when all bandwidth requirements can
be fulfilled. The information exchange between client and
manager is accomplished using manifests. Compared to the
solution proposed in this paper, the manifests are the device
profiles. The device discovery service extends Login Man-
ager and Client. Also application management service and
TSN Plug-and-Play Management service extend Plug&Play
Manager and Client of CHROMOSOME. The architectural
components are demonstrated in Figure 4.

TSN Device Discovery
Service

Application Management
Service

&
TSN PnP Management

Service

To be extended
CHROMOSOME

Plug & Play
Services

Fig. 4. CHROMOSOME architecture with its components and to be
extended Plug-and-Play features. Figure is adapted from Buckel et al. [20]

IV. ONTOLOGY-BASED MODELING OF TSN

A. Approach overview

Automatic configuration of TSN components requires
acquiring knowledge about the available components and
their properties in the network. Additionally, some rules are
required to define the relation between those components.
Based on the available knowledge, a reasoner is able to
infer interesting new knowledge that is used for automatic
configuration and enhancing the Plug-and-Play capabilities.
As discussed in the related work, ontologies and reasoning

Automatic TSN Configurator Software

LatencyReq(?x),
relatedToSwitch(?x, ?y),
supportTSN(?y, “TAS“) ->
toUpdateTASGateDriver(?y)

Ontology + Rules (e.g. SWRL)

TSN Knowledgebase

Ontology Instance

Application Management Serivce

TSN PnP Management Service

Reasoner e.g. HermiT

TSN expert

1- develops meta-model and rules

Automotive
expert

2- uses meta-
model and

develops instance

3-new Sensor joins

4,5- TSN Knowledgebase
gets updated and reasoner

is executed

6- Using queries on TSN
Knowledgebase,

configuration commands
are derived

Device
Profile

Fig. 5. Ontology-based approach for automatic TSN configuration. The figure uses RACE [22] in-vehicle communication architecture as an example that
can be an use case of the developed approach in this paper.

have been successfully used for network management tasks
and they can also be applied in TSN automatic configuration
procedure. Figure 5 depicts the details of the proposed
procedure.
First, TSN ontology and configuration rules are defined and
developed by an TSN Expert (this is one the contribution
of this paper). Second, a Domain Expert (in this case an
automotive engineer) uses the defined classes and relations
from the TSN ontology as meta-model and develops a
TSN network Instance (individual) e.g. a concrete in-vehicle
network of a specific car. The union of the ontology (includ-
ing classes, object and data properties), rules and instance
is called here TSN Knowledgebase. Third, when a new
device joins the network, Application Management Service
uses the device profile of the recently joined device and
updated the TSN knowledgebase and executes the reasoner.
Finally, after reasoning, the knowledgebase is updated and
TSN Plug-and-Play Management Service do queries on the
knowledgebase to derive configuration commands. Except
the first and second step, no other human interactions are
required to achieve the automatic configuration. Instead of
using SWRL as rule definition language we plan to transform
the ontology model into a Logic programming (LP) model
such as Prolog. Considering the advantages of LP-models
regarding expressiveness, the generated facts and rules can
be used for verification and configuration use cases in the
network.

B. Modeling of devices, topics and requirements

The TSN knowledgebase consists of information about
topics, devices, switches, QoS requirements and TSN general
features. Using ontologies, these information are modeled
so that they can be used as meta-model to initiate individ-
uals. Topic class is the super class of Domain for existing
data domains such as airbag domain which is depicted by
dom airbag, the cameras domain represented by dom cam
and the media domain for multimedia devices used inside of
the car, shown by dom media. The t topic representation is
used for different generated traffic streams by each device in
the network. t topic is also a subclass of QoS and Topic.

To each Device there is at least one Port assigned. The
relation between ports and devices is defined as object
property isLinked. Similarly, device behavior when publishes
or consumes t topic is defined as object property. A t topic
can have QoS requirements such as vlan showing its priority,
size of each frame, Topic type for periodic or event-based
behavior, period of frame arrival and QoS type, which in
this scenario appears to be latency, described with the data
property QoS type.

These relations are depicted in Figure 6. The knowledge
about the generated data topics by each device and QoS
requirements of data, plays a significant role in the procedure
of automatic network configuration. This knowledge is also
modeled in the ontology. For instance, QoS requirement la-
tency is depicted through data property Qos type within each
topic. Similarly, Qos requirements like publisher and con-

Fig. 6. An excerpt of the developed ontology. Device, Topic, QoS, Switches
and etc. are defined as classes and subclasses and the relation between them
such as publishes is expressed using object properties.

sumer are presented through object properties publishes and
consumes. For example, the rear camera device publishes
the t rear camera topic which afterwards gets consumed by
dacam.

This means that to fulfill network requirements, at the
beginning, this information is required for configuration of
e.g TSN switches. In the next steps, it should be clear which
data properties have to be modified in the device e.g switch.

Fig. 7. The detailed relation between QoS requirements and network Topic
beside the switches is an important knowledge that is required for automatic
network configuration. An excerpt of the ontology modeling this knowledge
is presented.

C. Modeling of Time-Aware Shaper

Time-Aware Shaper (TAS) applies a time-driven schedul-
ing approach to manage the link access resulting in highly
deterministic communication latency between network de-
vices. Each port has 8 time-aware gates for 8 priority classes.
Gate driver opens and closes the gates based on a predefined
schedule (event list). As presented in Figure 8, for a given

time, gates can be either closed (0) or opened (1). The
important aspect here is that if a data has the highest priority
(i.e. it is a TAS-scheduled data), its transmission must not be
interrupted by a non-TAS data. In other words, when a gate
is opened for TAS-scheduled data, all other gates are closed.
In the given example, at T1 Gate 2 is open for high-priority
data and other gates are closed.
To achieve the lowest latency, it is also very important that
all TAS nodes in the network are synchronized very pre-
cisely, enough bandwidth is reserved and low-priority frames
can be preempted. When these conditions are satisfied, a
high-priority data can be transmitted with minimum latency
through the network.
The mentioned knowledge about TAS (Gate driver, event list,
gate status, etc.) are required for correct network config-
uration. To automate this process, this knowledge is also
modeled in the ontology using data properties. Figure 9
shows an excerpt of the modeled properties.

Gate 1 Gate 2 Gate 8

TAS-scheduled
DataBest effort Best effort

. . .
Event list:
T0: 10111111
T1: 01000000
T2: 10111111
…
Tn: 10111111

Gate Driver

8 Gates for 8
Priority Classes

Fig. 8. TAS architecture contains 8 gates for 8 priority classes on each
port. The Gate Driver decides which port has to be opened or closed
based on a predefined event list. For example, at T1, only Gate 2 is
open for transmission of high-priority data (Ethernet frames) without any
interruptions by low-priority best effort data.

Fig. 9. Ontology data properties are used to model the properties of TAS.
They build the most important knowledge for automatic configuration of
TAS. An excerpt of the model is presented here.

Automotive

expert

1- Analyzes the system

2- Uses ontology and models a

concrete architecture

Fig. 10. This example shows how to use ontology classes and object properties to generate instances (individuals). An ADAS TSN network (right)
introduced by [23] which is slightly changed with and airbag domain added into and analyzed using the ontology.

D. A simple modeling use case

Following the ontology-based approach, a concrete and
simple TSN network is modeled using the ontology classes.
There are two TSN switches, one with eleven and the other
with seven Ethernet ports (e.g. sw1 p1). Two airbag sensors
beside a sensor trigger ECU, are connected to switch1 (e.g.
airbag sensor1). Four IP cameras, one navigation camera
and one Lane Departure Warning/Traffic Sign Recognition
(LDW/TSR) camera are connected to the rest of the ports of
the switch1 (e.g. right camera p1 is connected to sw1 p8).
On the other hand, one airbag device, one HU and four other
multimedia devices, including a video player, video screen,
audio player and audio amplifier are connected to switch2.
The link in between switch1 and switch2 is considered to
be symmetric. An excerpt of the model is presented in
Figure 10.

V. CONCLUSION AND FUTURE WORK

The advantages of Time-Sensitive Networking (TSN) and
its challenges regarding network configuration overhead
caused by Time-Aware Shaper are discussed. An ontology-
based approach is presented to improve the support of auto-
matic network configuration and Plug-and-Play capabilities

in TSN.
Definition of ontology-based configuration rules are very
important for the automatic configuration of TSN. In a
future work, the expressiveness of ontology rules have to be
investigated to decide if they alone are able to describe all
required TSN configuration rules or they have to be extended
by other tools. We also intend to transform Ontology models
to Logic Programming models to increase the expressiveness.
The engineer can model the network using the graph-based
ontology and transform it automatically into e.g. Prolog facts
and rules. These are used for configuration and verification
use cases.

ACKNOWLEDGMENT

I would like to thank my student Sina Shafaei for his
support during his master thesis.

REFERENCES

[1] “Time-Sensitive Networking.” [Online]. Available:
http://www.ieee802.org/1/pages/tsn.html

[2] M. Hashemi Farzaneh, S. Nair, M. A. Nasseri, and A. Knoll, “Reduc-
ing Communication-related Complexity in Heterogeneous Networked
Medical Systems Considering Non-functional Requirements,” 16th
International Conference on Advanced Communication Technology,
pp. 547–552, 2014.

[3] “Audio Video Bridging.” [Online]. Available:
http://www.ieee802.org/1/pages/avbridges.html

[4] G. Reinhart, S. Krug, S. Huettner, Z. Mari, F. Riedelbauch, and
M. Schloegel, “Automatic configuration (Plug & Produce) of Indus-
trial Ethernet networks,” 9th IEEE/IAS International Conference on
Industry Applications, INDUSCON, 2010.

[5] L. Duerkop, H. Trsek, J. Jasperneite, and L. Wisniewski, “Towards
autoconfiguration of industrial automation systems: A case study using
Profinet IO,” in Proceedings of 17th International Conference on
Emerging Technologies & Factory Automation (ETFA). IEEE, sep
2012, pp. 1–8.

[6] F. Jammes, A. Mensch, and H. Smit, “Service-oriented device commu-
nications using the devices profile for web services,” in Proceedings
of the 3rd international workshop on Middleware for pervasive and
ad-hoc computing. ACM, 2005, pp. 1–8.

[7] L. Durkop, J. Imtiaz, H. Trsek, L. Wisniewski, and J. Jasperneite, “Us-
ing OPC-UA for the autoconfiguration of real-time Ethernet systems,”
in International Conference on Industrial Informatics (INDIN). IEEE,
jul 2013, pp. 248–253.

[8] W. Mahnke, S.-H. Leitner, and M. Damm, OPC unified architecture.
Springer Science & Business Media, 2009.

[9] L. Durkop, J. Jasperneite, and A. Fay, “An analysis of real-time
ethernets with regard to their automatic configuration,” in IEEE World
Conference on Factory Communication Systems (WFCS. IEEE, 2015,
pp. 1–8.

[10] A. Guerrero, V. A. Villagrá, J. E. L. De Vergara, and J. Berrocal,
“Ontology-based integration of management behaviour and informa-
tion definitions using swrl and owl,” in Ambient Networks. Springer,
2005, pp. 12–23.

[11] S. Van der Meer, B. Jennings, D. O’Sullivan, D. Lewis, and N. Agoul-
mine, “Ontology based policy mobility for pervasive computing,”
2005.

[12] J. Keeney, D. Lewis, D. O’Sullivan, A. Roelens, V. Wade, A. Boran,
and R. Richardson, “Runtime semantic interoperability for gathering
ontology-based network context,” in 10th IEEE/IFIP Network Opera-
tions and Management Symposium (NOMS). IEEE, 2006, pp. 56–65.

[13] P. Ray, N. Parameswaran, J. Strassner, et al., “Ontology mapping for
the interoperability problem in network management,” IEEE Journal
on Selected Areas in Communications, vol. 23, no. 10, pp. 2058–2068,
2005.

[14] J. E. L. De Vergara, A. Guerrero, V. A. Villagrá, and J. Berro-
cal, “Ontology-based network management: study cases and lessons
learned,” Journal of Network and Systems Management, vol. 17, no. 3,
pp. 234–254, 2009.

[15] A. K. Bandara, A. Kakas, E. C. Lupu, and A. Russo, “Using argu-
mentation logic for firewall policy specification and analysis,” in Large
Scale Management of Distributed Systems. Springer, 2006, pp. 185–
196.

[16] T. Klie, F. Gebhard, and S. Fischer, “Towards automatic composition
of network management web services,” in 10th IFIP/IEEE Interna-
tional Symposium on Integrated Network Management. IEEE, 2007,
pp. 769–772.

[17] K. Apajalahti, E. Hyvönen, J. Niiranen, and V. Räisänen, “Stare:
Statistical reasoning tool for 5g network management,” Submitted to
ESWC, 2016.

[18] A. Martinez, M. Yannuzzi, J. Lopez de Vergara, R. Serral-Gracia,
and W. Ramirez, “An ontology-based information extraction system
for bridging the configuration gap in hybrid sdn environments,” in
IFIP/IEEE International Symposium on Integrated Network Manage-
ment (IM). IEEE, 2015, pp. 441–449.

[19] G. Pardo-Castellote, “Omg data-distribution service: Architectural
overview,” in Proceedings. 23rd International Conference on Dis-
tributed Computing Systems Workshops. IEEE, 2003, pp. 200–206.

[20] C. Buckl, M. Geisinger, D. Gulati, F. J. Ruiz-Bertol, and A. Knoll,
“Chromosome: a run-time environment for plug & play-capable em-
bedded real-time systems,” ACM SIGBED Review, vol. 11, no. 3, pp.
36–39, 2014.

[21] I. Schafer and M. Felser, “Topology discovery in profinet,” in
IEEE Conference on Emerging Technologies and Factory Automation
(ETFA). IEEE, 2007, pp. 704–707.

[22] M. Buechel, J. Frtunikj, K. Becker, S. Sommer, C. Buckl, M. Arm-
bruster, A. Marek, A. Zirkler, C. Klein, and A. Knoll, “An automated
electric vehicle prototype showing new trends in automotive architec-
tures,” in 18th International Conference on Intelligent Transportation
Systems (ITSC). IEEE, 2015, pp. 1274–1279.

[23] G. Alderisi, G. Iannizzotto, and L. Lo Bello, “Towards ieee 802.1
ethernet avb for advanced driver assistance systems: a preliminary
assessment,” Proceedings of 2012 IEEE 17th International Conference
on Emerging Technologies & Factory Automation (ETFA 2012), p. 4,
2012.

