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Abstract— Knowledge about the future development of a
certain road traffic situation is indispensable for safe path
planning of autonomous ground vehicles or action selection
of intelligent driver assistance systems. Due to a significant
uncertainty about the future behavior of traffic participants, the
prediction of traffic situations should be computed in a proba-
bilistic setting. Under consideration of the dynamics of traffic
participants, their future position is computed probabilistically
by Markov chains that are obtained with methods known from
hybrid verification. The characteristic feature of the presented
approach is that all possible behaviors of traffic participants are
considered, allowing to identify any dangerous future situation.
The novel contribution of this work is the explicit modeling
of the interaction of traffic participants, which leads to a more
accurate prediction of their positions. Results are demonstrated
for different traffic situations.

I. INTRODUCTION

A general trend in automotive research is the detection
of the vehicle environment in order to restrict, advice or
automate driving maneuvers to improve driving safety and
comfort. Exemplary systems using information about sur-
rounding traffic participants are, e.g. adaptive cruise control,
lane change assistance, collision mitigation and avoidance
[1], [2], [3]. The knowledge about the actual traffic situation
becomes even more important in the future, when more
sophisticated driver assistance systems will be developed. Es-
pecially for current research in the field of fully autonomous
driving, knowledge of the traffic situation is crucial. In
order to plan or restrict driving maneuvers of intelligent
driver assistance systems or fully autonomous cars, it is
not sufficient to only have knowledge about the current
situation. The more advanced the systems become, the more
important is a prediction of the traffic situation. Assume a
situation in which a dynamic obstacle suddenly appears in
front of a car. A prediction of the motion of objects in the
environment can support the decision whether changing lanes
or immediate braking (possibly taken a collision with the
obstacle at reduced speed into account) is a better option.
However, measured data (e.g. position, velocity, ...) from
other traffic participants is subject to uncertainties. Addi-
tionally, the future behavior of other traffic participants is
barely known. Due to the high level of uncertainty, it is not
sufficient to consider single driving maneuvers but multiple
possibilities must be evaluated, e.g. by using Monte Carlo
techniques in [4], [5], [6]. The advantage of these techniques
is that complicated highly nonlinear vehicle dynamics can
be considered, but the techniques usually require many
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simulation runs for suitably capturing the possible evolutions.
Nevertheless, these methods can, in principle, not cover all
possible behaviors (except of very simple configurations). In
contrast, methods for algorithmic verification can guarantee
to detect any dangerous situation. The basic principle of
algorithmic verification of continuous and hybrid systems
is as follows: First, the set of all possible states which a
system can reach is computed starting from a set of initial
conditions for a given set of input trajectories. Second, the
reachable set is intersected with regions in the state space that
are unsafe. If the intersection is empty, the system is safe.
For an online verification algorithm operating in a vehicle,
unsafe sets are road areas which are occupied by surrounding
traffic participants. Verification techniques can be extended to
stochastic model components, what means that the probabil-
ity for reaching a given set is obtained in addition. Stochastic
verification techniques have been investigated to increase air
traffic safety in [7], [8]. In previous works of the authors,
an online method for stochastic verification of road traffic
scenarios has been developed [9], [10].
In order to obtain sound verification results for traffic sce-
narios that involve several traffic participants, their possible
interactions should be considered. For example, if for a
chain of cars, the vehicle driving in front decelerates, it
is likely that the following cars brake. If braking would
not be enforced, the car following the braking car would
share equal road regions with high probability after a cer-
tain time interval. Thus, negligence of interaction leads to
wrong probability distributions, where road regions may be
occupied by traffic participants with a computed probability
greater than one. Interactions between traffic participants
are considered in microscopic traffic simulations, such as in
e.g. [11], [12]. However, microscopic traffic simulations take
only single driving behaviors into account. Applying Monte
Carlo techniques to simulations which consider interaction
between traffic participants results in a fast growing tree
of possible situations to be considered [13]. For instance,
if a vehicle is considered by n simulations for a certain
time interval, one would have to compute n2 simulations
for possible combinations of behaviors for two vehicles
(if all combinations were possible). At last, there is no
or very little work on threat assessment by considering
interacting traffic participants. With respect to the context of
stochastic verification of traffic situations, the consideration
of interacting objects has not yet been considered, to the
authors’ knowledge. Thus, the novel contribution of this
work is to propose a method allowing to compute stochastic
reachable sets of interacting traffic participants. The proposed
approach is efficient in the sense that it can be applied online.



II. PROBLEM STATEMENT AND OBJECTIVE

Given the probability distribution of positions and veloci-
ties of traffic participants on a section of a road network, the
objective is to compute the approximative probability distri-
bution of the position of the traffic participants for a limited
predicted horizon. The values of the initial states (position,
velocity) of the traffic participants and their possible inputs
(acceleration values) are restricted to bounded sets. This
restriction is considered by computing the probability distri-
butions in a way, in which the possible states of each traffic
participant are guaranteed to stay within the region of non-
zero probability. This region together with the probability
distribution is referred to as the stochastic reachable set. In
contrast to the overapproximative computation of the region
of non-zero probability (i.e. no trajectory leaves this region),
the probability distribution within this region is computed
approximatively1.
The stochastic reachable sets of traffic participants are used
to evaluate the safety of planned paths of autonomous cars by
checking if it is likely to drive into a reachable set of another
traffic participant. If the reachable set of the autonomous
car does not intersect any of the reachable sets of other
traffic participants, one can guarantee that the planned path
is safe. The situation in Fig. 1(a) is not safe, as the stochastic
reachable sets for the second time interval τi+2 = [ti+1, ti+2]
of both vehicles intersect. The prediction of future traffic
situations is limited to a time horizon tf and repeated in any
discrete time ti using a prediction horizon [ti, ti + tf ], see
Fig. 1(b).
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Fig. 1. Illustration of reachable sets and the resulting prediction horizon.

The computation of the probability distribution of the
future position of traffic participants is based on the assump-
tion that traffic regulations are met. This excludes behaviors
such as vehicles crashing into other vehicles on purpose,
or that vehicles are driving backwards on a lane. However,
if such behavior is observed by the autonomous car, the
stochastic reachable set has to be computed based on all
possible behaviors considering the possible set of steering
and acceleration inputs. This work considers only permitted
behavior, although the stochastic reachable set obtained by
regarding all possible behaviors, can be computed by the
same approach. In order to focus on the new aspect of the
interaction between traffic participants, the autonomous car

1An overapproximative computation of the probability distribution would
not be a probability distribution anymore as the overall integral would be
greater than one.

is not explicitly considered in the sequel. The autonomous
car is just a special case of a traffic participant as its planned
trajectory is known within the prediction horizon.

III. MODELING CONCEPT OF TRAFFIC PARTICIPANTS

The motion of traffic participants is modeled in two stages.
First, the paths which a vehicle can follow are generated.
They do naturally arise from the possible routes that the
vehicle can take in the examined road network segment,
see Fig. 2(a) for a T-intersection. These paths are broken
up into equidistant segments. Besides the possible paths of
a vehicle, the deviation from these paths is modeled by a
static piecewise constant probability distribution that varies
between road user types. Examples for these probabilities are
given for a car/truck on the left and a bicycle on the right
lane of a road in Fig. 2(b). The variable Δs denotes the
length of the path segments, δ the deviation from the paths
and p(s, δ) the value of the probability density distribution
of the position of the vehicle.
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Fig. 2. Path generation and deviation of traffic participants.

A. Dynamic Model of a Single Vehicle

In a second step, the longitudinal dynamics of the vehicles
along the paths is considered. The dynamics is modeled
by a hybrid automaton [14] which combines discrete and
continuous dynamics. The discrete dynamics is modeled by
four modes: acceleration, deceleration, standstill and speed
limit. The mode changes from deceleration to standstill if
the velocity of the vehicle is zero and from acceleration to
speed limit, if the vehicle has reached the speed limit. The
mode acceleration is active, if the acceleration command u ∈
[−1, 1] of the driver is positive or equal zero (u ∈ [0, 1]) and
the deceleration mode is active if u is negative (u ∈ [−1, 0[),
see Fig. 3. The value u = −1 represents full braking, u = 1
full acceleration, and the continuous dynamics is modeled
as:

ṡ = v, v̇ = fd(v, u)

where s is the position on the path and v is the velocity of
the vehicle. The dynamics of the speed fd(v, u) depends on
the discrete mode d ∈ {1, 2, 3, 4} which are numbered in
Fig. 3:

f1(v, u) = c1(1− (v/c2)2)u, f2 = f4 = 0, f3(u) = c1u



and c1, c2 are vehicle specific constants which vary for
trucks, cars and bicycles. The models for the system dynam-
ics are exemplary and can be exchanged by other nonlinear
models. For pedestrians, the split-up in path generation and
path following does only make sense for designated paths
which cross a road (e.g. crosswalks). In other cases, an
approach for human motion in free space has to be used.
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Fig. 3. Hybrid vehicle dynamics.

B. Interaction between two Vehicles on a Lane

In order to study interaction between two vehicles on a
lane, one has to consider two instances of the hybrid vehicle
model. The scenario of two vehicles driving on a lane is
regarded as the archetype of vehicle-to-vehicle interaction,
from which more complicated scenarios like an intersection
scenario can be built, as shown later. The two investigated
vehicles are referred to as vehicle A and vehicle B, where
A follows B on the same lane. The position and velocities
are indexed as sA, vA for car A and sB , vB for car B. The
distance d between both cars is computed as d = sB−sA−L
where L is the distance of the centers of mass of both
cars when they stand bumper-to-bumper (sA, sB refer to the
position of the center of mass).
The goal of the scenario is to determine if a constant
acceleration command uA of car A for a time interval
t ∈ [0, T ] (T ∈ R

+) results in an accident for a given uB ,
where the initial velocity and position of both vehicles are
known. Therefore, the hybrid model of car A and B are
simulated for a time interval t ∈ [0, T ]. Next, it is computed
whether car A can avoid a crash if car B fully brakes at time
t = T . Due to the reaction time δ of vehicle A, it is further
simulated for t ∈ [T, T + δ] with the previous acceleration
command uA, where vehicle B is simulated for uB = −1.
Next, both vehicles are simulated for uA = uB = −1 until
car A is in mode standstill which happens at time ts. The
acceleration command uA is safe for t ∈ [0, T ] if the distance
is positive (d > 0) for t ∈ [0, ts]. In case, that v̇B ≤ v̇A

for uA = uB = −1, it is sufficient to check the distance
at the final time (d(ts) > 0) to determine whether a crash
can occurr. The information, whether a crash occurs on a
lane for a given situation of two vehicles, is used later for
the computation of stochastic reachable sets of interacting
traffic participants.

IV. COMPUTING STOCHASTIC REACHABLE SETS USING

MARKOV CHAINS

So far, the model for a traffic participant has been set
up. It remains to compute the stochastic reachable set of a

traffic participant, given its initial probability distribution. In
this work, stochastic reachable sets are computed by Markov
chains, where each chain approximates the behavior of a
single traffic participant. Markov chains can be built for
different types of traffic participants, such as trucks, cars,
bicycles and pedestrians. E.g. for a traffic scene with one
truck and two cars, one Markov chain for the truck, and two
Markov chains for the two cars would be instantiated.

A. Approximating Uncertain Hybrid Dynamics by Markov
Chains

Markov chains are dynamic systems with a discrete state
z = i ∈ {1, . . . , l} where for each time point only the
probability distribution2 pi = P (z = i) of the possible
states is known. For discrete time Markov chains, as they
are used in this work, the probability distribution for the
next time point depends only on the probability distribution
of the current time. Probability distributions of neighbored
time points tk = kT and tk+1 = (k+1)T (k ∈ N

+, T ∈ R
+

is the time increment) are connected via a transition matrix
Φ: p((k+1)T ) = Φp(kT ). The discrete states of the Markov
chains for the road vehicles are obtained by discretizing the
original continuous state space into cells. Thus, each discrete
state of the Markov chain represents a certain region of the
originally continuous state space of the traffic participants.
The discretization of the continuous state space of a hybrid
system, as well as the approximation of its dynamics by a
Markov chain is performed offline as presented in [9], [10].
The state space is discretized rectangularly and equidistantly
so that all cells Xi are interval hulls of equal size: Xi =
]xi, xi], xi − xi = c, xi, xi, c ∈ R

n. The index i
refers to the number of the discrete state z that the cell
is associated with. In particular, for a vehicle driving on a
path, each index i represents a two-dimensional cell, where
one dimension represents a segment on the path and the
other dimension a velocity interval. It is once more noted
that the one-dimensional value of the position on the path is
sufficient to obtain the probability distribution of the vehicle
in two-dimensional space, because the deviation probability
distribution is equal for all path segments (see Sec. III).
Besides the state space, the continuous input u of the system
is also equidistantly discretized. The cells of the input space
are denoted Uj and j refers to a discrete input mode, such
that u ∈ Uj if the discrete input y = j is active. In case
of the traffic scenario, each input interval Uj represents
an acceleration interval of a vehicle. The transition matrix
which approximates the original hybrid dynamics for a time
step with input j is denoted by Φj(T ) and Φj([0, T ]) for a
time interval. The discrete probability vector that represents
the stochastic reachable set at a time point t = kT is
denoted by p(kT ) and the one representing a time interval
t ∈ [(k − 1)T, kT ] is denoted by p([(k − 1)T, kT ]). Both
probability vectors are computed as:

p((k + 1)T ) = Φj(T )p(kT ),

p([kT, (k + 1)T ]) = Φj([0, T ])p(kT ),

2P () is the operator returning the probability of an event



for y = j in t ∈ [kT, (k + 1)T ]. Note that p((k + 1)T )
and p([kT, (k+1)T ]) are computed based on the probability
vector of the previous time point p(kT ). In many cases, not
only the system state, but also the system input interval
y is uncertain: the probability vector q for the input is
defined analogously to p by qj = P (y = j). The modified
computation of the probability distribution of the Markov
chain is:

p((k + 1)T ) =
∑

j

Φj(T )qj([kT, (k + 1)T ])p(kT ),

p([kT, (k + 1)T ]) =
∑

j

Φj([0, T ])qj([kT, (k + 1)T ])p(kT ).

(1)

The probability distribution qj([kT, (k + 1)T ]) is assumed
to be constant for one time interval. In the following, it is
presented how the probability distribution qj([kT, (k+1)T ])
of the acceleration input of a vehicle varies based on the own
state distribution and the state and input distribution of the
vehicle driving ahead.

B. Interaction between two Traffic Participants

In this subsection, the interaction between two vehicles,
modeled as Markov chains, is considered. The vehicles are
referred to as vehicle A and B, analogously to Sec. III-B. The
interaction is performed by obtaining the input probability
qA of vehicle A based on the probability vector pA, pB of
vehicles A, B and the input probability qB of vehicle B. In
other words, the probability distribution of the acceleration
intervals of the following vehicle is determined based on the
current state of both vehicles and the acceleration behavior of
the vehicle driving in front. Thus, the aim is to calculate the
conditional probability P (yA = j|yB = m, zA = i, zB =
o). The conditional probabilities for yA are obtained, based
on the number of collision-free inputs yA, when zA = i,
zB = o and yB = m are given. The number of collision free
inputs is denoted by h. It is clear, that the h collision free
inputs are those that exhibit the highest negative acceleration.
The probabilities for the inputs which result in a collision
are set to zero and the remaining non-zero probabilities are
stored in a look-up table based on heuristics or on results
obtained from driving experiments. For example, the action
of heavy braking is chosen with a higher probability, if heavy
acceleration is not allowed, compared to a situation in which
it is allowed. Further heuristics that may be applied are that
full braking and full acceleration is unlikely (unless it is the
only option) and that it is more likely that vehicles accel-
erate until speed-limit rather than decelerating. The general
form of the look-up table is given in table I: the discrete
input probability qA

1 in table I represents the probability
for strongest possible braking and qA

e for highest possible
acceleration. For the values in between, the acceleration is
gradually increased. It is emphasized that a change in the
values of the non-zero probabilities in the look-up table
does only affect the probability distribution within the region
of non-zero probability. The region of non-zero probability
is unaffected, such that a collision free trajectory of the

TABLE I

INPUT PROBABILITIES BASED ON THE NUMBER OF COLLISION-FREE

INPUTS.

collision-free
acceleration intervals h qA

1 qA
2 . . . qA

e
e �= 0 �= 0 . . . �= 0
e − 1 �= 0 �= 0 . . . 0
...
1 1 0 . . . 0
0 1 0 . . . 0

autonomous car (i.e. the non-zero probability region is not
entered) can be guaranteed even if the probability values of
the look-up table differ from the exact values.

The number h of acceleration intervals leading to a
possible accident are obtained by a worst case analysis.
For vehicle A, the maximum possible values for position,
velocity and acceleration within the cells of the discrete
states and inputs are chosen. For the leading vehicle B, the
minimum values are selected:[

sA(0)
vA(0)

]
= max(Xi), uA = max(Uj),[

sB(0)
vB(0)

]
= min(Xo), uB = min(Um),

for zA = i, zB = o, yA = j, yB = m

The result whether a crash occurs, is computed as previously
described in Sec. III-B, using the above presented worst case
initial conditions. As mentioned in Sec. III-B, the reaction
time of traffic participants is also taken into account.
For further computations, the conditional probabilities
P (yA = j|yB = m, zA = i, zB = o) for all combinations of
discrete states and inputs of vehicle A and B are stored in
an j ×m array of i× o matrices denoted as Ωjm

io , such that

Ωjm
io =̂P (yA = j|yB = m, zA = i, zB = o). (2)

This matrix array is also referred to as the array of in-
teraction matrices. It is noted that the array of interaction
matrices is computed offline. Further, the joint probability
P (yB = m, zB = o) is denoted pB,m

o and events such
as zA = i are abbreviated by zA

i in the following to
achieve a concise notation for the next derivations. The joint
probability P (yA

j , yB
m, zA

i , zB
o ) is obtained as:

P (yA
j , yB

m, zA
i , zB

o ) = P (yA
j |yB

m, zA
i , zB

o )P (yB
m, zA

i , zB
o ).

It is further assumed that P (yB
m, zB

o ) and P (zA
i ) are inde-

pendent such that P (yB
m, zA

i , zB
o ) = P (yB

m, zB
o )P (zA

i ). This
assumption is a good approximation in practice as P (yB

m, zB
o )

and P (zA
i ) are only strongly correlated if the combination

yB = m, zB = o and zA = i would result in an accident:
In that case, yB = m, zB = o has a low probability if
zA = i would have high probability and vice versa, as
the probability of an accident is unlikely. This effect is the
more important, the longer the prediction horizon is chosen.
This is because the probabilistic reachable sets overlap at



the end of long prediction intervals, such that accident
situations arise in the overlapping area, see Fig. 5. The exact
probability P (yB

m, zA
i , zB

o ) within the overlapping areas is
lower than the computed probability P (yB

m, zB
o )P (zA

i ) due
to the assumption of independency.
Next, the joint probability P (yA

j , zA
i ) is computed from

P (yA
j , yB

m, zA
i , zB

o ) by

P (yA
j , zA

i ) =
∑
m

∑
o

P (yA
j , yB

m, zA
i , zB

o )

=
∑
m

∑
o

P (yA
j |yB

m, zA
i , zB

o )P (yB
m, zB

o )P (zA
i )

(2)=
∑
m

∑
o

Ωjm
io pB,m

o pA
i =

∑
m

[ΩjmpB,m]i pA
i ,

as yB
m, zB

o are mutually exclusive events. After defining the
vector

M j :=
∑
m

ΩjmpB,m

which is referred to as the selection vector in the following,
one can rewrite the above statement as:

P (yA
j , zA

i ) = M j
i pA

i =: pA,j
i ,

or in matrix notation:

pA,j = diag(M j)pA.

In (1), the joint probability is computed by pj(kT ) =
qj([kT, (k + 1)T ])p(kT ). Replacing this term by the re-
sult obtained with the interaction matrix pA,j(kT ) =
diag(M j(kT ))pA(kT ) allows to extend (1), such that in-
teraction between two vehicles is considered given by:

M j(kT ) =
∑
m

ΩjmpB,m(kT ),

pA((k + 1)T ) =
∑

j

Φj(T )diag(M j(kT ))pA(kT ),

pA([kT, (k + 1)T ]) =
∑

j

Φj([0, T ])diag(M j(kT ))pA(kT ).

(3)

Equation (3) is the only equation that has to be computed
online in order to obtain the stochastic reachable sets of
the interacting traffic participants. It is further emphasized,
that interaction is not considered in a global manner, i.e.
for each vehicle a single probability distribution of possible
acceleration inputs is computed. As shown by the derivations
for (3), interaction is considered by computing different
probabilities of acceleration intervals for each discrete state
of the traffic participants.

C. Interaction on Lanes and Intersections

The interaction results for two vehicles driving on a lane
are extended to two scenarios in this subsection: interaction
of several vehicles driving on a lane and interaction at in-
tersections. Interaction on a lane is extended straightforward
from two to more vehicles by defining a leading vehicle.
The leading vehicle is defined as the vehicle that has the
shortest traveling distance to the border of the considered

road network. As the leading vehicle cannot orient its ve-
locity based on a vehicle driving ahead, an input probability
distribution for free traffic flow qfree is defined and equation
(1) is executed. Each vehicle that drives behind the leading
vehicle interacts with the vehicle driving ahead, such that for
these vehicles (3) is applied.
The interaction at intersections is more complex and modeled
in different ways for vehicles that have right of way and
those that have not. The reachable set on lanes having
right of way are computed as described for the interaction
on a lane. The reachable set for the vehicles that do not
have right of way are computed in two phases (modes):
approaching and crossing. The interaction at intersections
is discussed for a simple example with two vehicles A and
B as depicted in Fig. 4. Note, that for each vehicle only one
path is considered for simplicity. This setup means no loss
of generality, as further combinations of driving paths and
settings with further vehicles are computed the same way.
The mode approaching is active if the vehicle cannot evaluate
the traffic situation due to a limited region of visibility3 of
the intersection, see Fig. 4 where the approaching vehicle
B is labeled by a question mark as it cannot be detected
by vehicle A. In approaching mode, a virtual vehicle V
with zero velocity is put on the paths that do not have right
of way where a path with right of way is crossing. This
point is also referred to as the crossing position scross. As
a consequence of the virtual vehicle, approaching vehicles
(vehicle A in Fig. 4) are forced to decrease their speed
when approaching a crossing. As soon as the approaching
vehicle A has a sufficiently large region of visibility, the
mode crossing is active, see Fig. 4. In mode crossing, the
virtual vehicle V is replaced by a probabilistic virtual vehicle
pV . This vehicle has also zero velocity, but its presence
is modeled by a certain probability pV . This probability is
derived from the probability that vehicle B will cross the
path within a certain time interval ξ · T . Therefor a set of
indices B = {i|Xi ≤ scross} is defined for which the cells
Xi of vehicle B have position intervals with lower values
than the crossing position scross. The crossing probability
of car B in the time interval t ∈ [(k − ξ)T, kT ] is obtained
by:

pV (kT ) =
∑
b∈B

pB
b ((k − ξ)T ) − pB

b (kT ), k, ξ ∈ N
+. (4)

The crossing procedure has to be enhanced, when several
vehicles that do not have right of way, approach a crossing. It
is clear, that these cars have to consider the car driving ahead
and the virtual cars V/pV simultaneously. In this case, only
actions are allowed that do not result in a crash with neither
the car ahead nor the virtual car. The selection vector due to
the car driving ahead is denoted MA and the one due to the
virtual car representing the crossing traffic is denoted MV .
The elementwise multiplication M∗

i = MA
i MV

i results in an
overall selection matrix considering both situations, because
the nonzero elements are non-zero elements in MA and MV .

3Region of the road network that can be seen.



Thus, only behavior that is allowed by consideration of both
cars is executed. As

∑
i M∗

i ≤ 1, the overall selection matrix
has to be normalized:

Mi =
MA

i MV
i∑

i MA
i MV

i

It is remarked that the region, in which a vehicle transitions
from approaching to crossing mode (see Fig. 4) is in general
not known exactly or is not known at all. In the latter case,
one can assume a default region that is e.g. 10 meters away
from the intersection.

AA V
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Fig. 4. Intersection scenario: Approaching and crossing mode.

V. NUMERICAL EXAMPLES

A numerical example for a lane following scenario and an
intersection scenario is given. In the lane following scenario,
three cars drive on a single lane, see Fig. 5(a). The stochastic
reachable sets can be found in Fig. 5(b)-5(e) of each car
for cars driving in one lane (separated into three only for
illustration). Each subfigure shows the stochastic reachable
sets for a certain time interval and the cars A, B and C
are displayed from left to right. The table determining the
acceleration interval probabilities based on the number of
collision-free acceleration intervals (as presented in Tab. I)
is specified as follows for this scenario:

collision-free
acc. intervals h qA

1 qA
2 qA

3 qA
4 qA

5 qA
6

6 0.05 0.05 0.1 0.3 0.4 0.1
5 0.05 0.05 0.2 0.5 0.2 0
4 0.05 0.15 0.6 0.2 0 0
3 0.1 0.6 0.3 0 0 0
2 0.4 0.6 0 0 0 0
1 1 0 0 0 0 0
0 1 0 0 0 0 0

The acceleration interval qA
1 encloses the highest negative

acceleration and is gradually increasing until qA
6 which

encloses the highest positive acceleration values. In order to
show interaction on a single lane, the leading car A brakes,
such that the following cars B and C are forced to brake as
well. This can be clearly observed by the mean velocities v̄
of the cars for different time intervals, shown on top of Fig.
5(b)-5(e). The labeling on the left side of each subfigure
shows the distance on the lane to the origin in meters.
Although the stochastic reachable sets of cars A, B and C
intersect, the probability that two cars are in the intersection
area at the same time is low. This is because the behavior of

the traffic participants is restricted to collision-free driving
in this work. The computation time is 1.4 seconds for 16
seconds in real time performed with Matlab using a single
core desktop computer with 3.7 GHz.
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Fig. 5. Reachable sets of the braking scenario.

The intersection scenario consists of an intersection as de-
picted in Fig. 6(a) showing the initial setting of the scenario.
The cars A and B approach the crossing from a street that
has no right of way while the cars C and D have right of
way. In Fig. 6(b)-6(d), one can see the stochastic reachable
sets for selected time intervals. It is clearly recognizable, that
cars A and B decrease their velocity when they approach
the crossing and that they wait until the crossing cars have
passed. The probability that the cars C and D will cross
within the next ξ ·T seconds is plotted in Fig. 7. The required
crossing time ξ · T for the cars A and B is set to 2 seconds
for this scenario and is used to determine the probability that
the cars C and D cross within the next ξ · T seconds, see
(4). The computation time of this scenario is 1.1 seconds
for 12.5 seconds in real time using the same software and
computer as for the previous example.
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Fig. 6. Reachable sets of the intersection scenario

VI. CONCLUSION

A method for the computation of stochastic reachable sets
of interacting traffic participants has been presented. The
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approach is efficient enough to be implemented online when
several traffic participants are regarded. The approach can be
extended to multi-lane traffic where traffic participants can
change lanes. A sketch of the extension is the following: A
vehicle A is changing to lane e with high probability, if it
would not crash into a vehicle B driving ahead on lane e
and if another vehicle C that would follow on lane e after
the lane change, is not forced to brake. The probability, that
vehicle C has to brake on lane e when vehicle A is driving
ahead after the lane change, can be obtained by summation
of the selection vector M of vehicle C.
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