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Abstract

The computation of reachable sets for hybrid systems with linear continuous dy-
namics is addressed. Zonotopes are used for the representation of reachable sets,
resulting in an algorithm with low computational complexity with respect to the
dimension of the considered system. However, zonotopes have drawbacks when be-
ing intersected with transition guards which determine the discrete behavior of the
hybrid system. For this reason, in the proposed approach, reachable sets are repre-
sented by polytopes within guard sets as an intermediate step in order to enclose
them by zonotopes afterwards. Different methods for the conservative conversion
from zonotopes to polytopes and vice versa are proposed and numerically evalu-
ated.

Key words: Reachability Analysis, Hybrid Systems, Safety Verification,
Zonotopes, Polytopes.

1 Introduction

Due to continuous technological progress, the complexity of technical systems
is steadily increasing. In order to ensure safe operation of more and more
complex systems, new verification methods have to be developed for large sys-
tems with respect to the number of continuous state variables and discrete
states. For purely discrete systems, powerful verification methods already ex-
ist, allowing to prove the safe operation of fairly complex systems, see e.g. [8].
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For hybrid systems with combined discrete and continuous dynamics, safety
assessment is an open problem for large instances of many system classes. A
straightforward way to check the safe operation of a hybrid system, is to apply
Monte-Carlo simulation as described, for instance, in [21]. While Monte-Carlo
simulation focuses on computing the probability that the system fails, there
are methods which generate test cases in such a way, that the test coverage is
maximized in order to find unsafe executions [15]. The advantage of simula-
tions is that they can be applied for a wide class of system dynamics and the
disadvantage is that they cannot prove the safety of a system. This is because
infinitely many possible executions of a system exist when the continuous ini-
tial state or continuous input/disturbance can take values within specified sets
with infinitely many elements.
A possibility to use simulation techniques for the safety verification of hybrid
systems, is to guarantee that system trajectories stay within certain regions
around exemplary trajectories, allowing to cover all possible behaviors by a
finite number of simulations [9,16]. Another method to prove safe operation,
is to compute barrier certificates [20]. If the barrier can separate the sets of
unsafe states from the sets of reachable states, the system is safe. Instead
of computing such barriers, one can directly compute the set of states, that
the system can reach in (in-)finite time. If the reachable set does not inter-
sect unsafe regions, the system is proven to be safe. In the past, numerous
approaches have been developed which use different representations for the
reachable sets: level sets [23], ellipsoids [6], polytopes [7], oriented rectangular
hulls [22] and zonotopes [11]. A problem that has to be faced in reachabil-
ity analysis is the curse of dimension. The different types of representation
suffer more or less from the problem that the propagation of the reachable
sets becomes intractable in high dimensions. For hybrid systems with linear
continuous dynamics, zonotopes have low time and memory complexity [12].
The disadvantage of zonotopes is, that they are not closed under intersection,
i.e. the intersection of two zonotopes is not a zonotope in general. In hybrid
systems, intersections with sets that enable discrete transitions (guard sets)
are inevitable, such that the intersection of zonotopes with guard sets has
to be over-approximated. In [12], this problem has been addressed for guard
sets that are modeled as hyperplanes. The previous work of the authors [4]
proposes an algorithm for guards sets that are modeled as polytopes, which in-
clude the special case of hyperplanes. The main differences between the works
in [4] and [12] is, that [4] can handle more general guard sets, whereas [12]
focuses on hyperplanes as guards sets what leads to probably more accurate
results due to the specialization. Besides reachability analysis, zonotopes are
also used e.g. for guaranteed state estimation [1] and collision detection [14].
The efficient implementation of zonotopes is due to their special represen-
tation by so called generators, which one cannot use to represent polytopes. A
common representation for zonotopes and polytopes is the so called halfspace
representation, which allows for intersection with guard sets. For this reason,
one major aspect of this work is to provide methods for the transformation of

2



zonotopes from the generator representation to the halfspace representation.
The second major aspect is the over-approximation of polytopes, resulting
from the intersection with guard sets, by zonotopes which allow to continue
the computation with zonotopes in newly reached locations.

2 Problem Statement

The considered problem is to compute the reachable set of continuous states
of a hybrid system for a time span [0, tf ]. The hybrid system is modeled as a
hybrid automaton which is similarly defined as in [22]:

Definition 1 (Hybrid Automaton.) A hybrid automaton HA = (Z, z0, X,
X0, U, inv, T, g, h, f) consists of:

• the finite set of locations Z = {z1, . . . , zξ} with an initial location z0 ∈ Z.
• the continuous state space X ⊆ R

n and the set of initial continuous states
X0 such that X0 ⊆ inv(z0).

• the continuous input space U ⊆ R
n.

• the mapping 1 inv: Z → 2X which assigns an invariant inv(z) ⊆ X to each
location z.

• the set of discrete transitions T ⊆ Z×Z. A transition from zi ∈ Z to zj ∈ Z
is denoted by (zi, zj).

• the guard function g : T → 2X that associates a guard set g((zi, zj)) for each
transition from zi to zj, where g((zi, zj)) ∩ inv(zi) �= ∅.

• the jump function h : T × X → X which returns the next continuous state
when a transition is taken.

• the flow function f : Z ×X ×U → R
n that defines a continuous vector field

for the time derivative of x: ẋ = f(z, x, u).

The invariants inv(z) and the guard sets g((zi, zj)) are modeled by polytopes.
The jump function as well as the flow function are linear:

ẋ = Azx + u, u ∈ Uz ⊆ U,

x′ = Kzx + lz,
(1)

where x′ denotes the state after the transition is taken and Az, Kz ∈ R
n×n,

lz ∈ R
n are specific for location z ∈ Z. The sets Uz are modeled by zonotopes

and are also dependent on the location z.

The evolution of the hybrid automaton is described informally: Starting from
an initial location z(0) = z0 and an initial state x(0) ∈ X0, the continuous
state evolves according to the flow function that is assigned to each location

1 2X is the powerset of X.
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z. If the continuous state is within a guard set, the corresponding transition
can be taken and has to be taken if the state would leave the invariant inv(z).
When the transition from the previous location zi to the next location zj is
taken, the system state is updated according to the jump function and the
continuous evolution within the next invariant.
The definition of a hybrid automaton HA now allows to define the set of
continuous reachable states of HA:

Definition 2 (Exact Reachable Set.) The continuous reachable set of HA
for a given initial location z0 and a set of initial states X0 at time t = r is:

Re(r) =
{
x(r)

∣∣∣ (z(t), x(t)) is a solution of HA∀t ∈ [0, r], z(0) = z0, x(0) ∈ X0
}

where z(t) and x(t) denotes the discrete and continuous state at time t.

In this work, over-approximations of reachable sets are computed which are
denoted by R(r) ⊇ Re(r). The over-approximated reachable set for a time
interval is defined as R([0, r]) =

⋃
t∈[0,r] R(t). Note that over-approximations

of reachable sets still allow to prove the safety of a system, because the original
system does not intersect an unsafe set if the over-approximation does not.
However, due to the over-approximation, one cannot decide if the system is
unsafe if an unsafe set is intersected. An illustration of a reachable set for a
hybrid automaton is given in Fig. 1.

Initial set

Reachable sets Guard sets

Guard sets

Jump

etc.
Invariant

Unsafe set

x1

x2

Location z1 Location z2

Fig. 1. Illustration of the reachable set of a hybrid automaton.

3 Preliminaries

Before the computation of reachable sets is addressed, the definitions of their
representation by convex polytopes and zonotopes are recalled. For polytopes,
there exist two representations: the halfspace representation (H-representation)
and the vertex representation (V-representation). The halfspace representation
of a hyperplane is S := {x|c · x ≤ d, c ∈ R

1×n, d ∈ R}. For a given S, let
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b := {x|c · x = d} denote the corresponding bounding hyperplane which di-
vides the n-dimensional space into two halfspaces. The vector c is the normal
vector of the hyperplane and d the scalar product of any point on the hyper-
plane with the normal vector. A polytope P is the nonempty intersection of
a finite set S := {S1, . . . , Sq} of halfspaces:

Definition 3 (H-Representation of a Polytope.) For q halfspaces, a con-
vex polytope P is the set:

P =
{
x ∈ R

n
∣∣∣C · x ≤ d, C ∈ R

q×n, d ∈ R
q×1
}
.

A polytope with vertex representation is defined as the convex hull of a finite
set of vertices vi ∈ R

n:

Definition 4 (V-Representation of a Polytope.) For r vertices vi ∈ R
n,

a convex polytope P is the set P = CH(v1, . . . , vr), with

CH(v1, . . . , vr) =
{ r∑

i=1

αivi
∣∣∣vi ∈ R

n, αi ∈ R, αi ≥ 0,
r∑

i=1

αi = 1
}
.

The halfspace and the vertex representation are illustrated in Fig. 2.

vi

CH(v1, . . . , vr)

(a) V − representation.

b = {x|c · x = d}
Si

S1 ∩ S2 . . . ∩ Sq

(b) H − representation.

Fig. 2. Possible representations of a polytope.

Zonotopes are a special case of polytopes, i.e. they can also be represented
by the halfspace or the vertex representation. A further possibility for the
representation of zonotopes is the use of so called generators g(i) ∈ R

n. The
representation via generators (G-representation) is defined as (see e.g. [24]):

Definition 5 (G-Representation of a Zonotope.) A zonotope is a set:

Z =
{
x ∈ R

n
∣∣∣x = c +

p∑
i=1

βi · g(i), −1 ≤ βi ≤ 1
}

with c, g(1), . . . , g(p) ∈ R
n. The order of a zonotope is defined as o = p

n
and the

short notation is Z = (c, g(1), . . . , g(p)).

The vector c is the center of the zonotope, to which the latter is always cen-
trally symmetric. An alternative definition of a zonotope is the Minkowski

5



sum 2 of a finite set of line segments li = [−1, 1]g(i), which allows to illus-
trate how a zonotope is built step-by-step by adding further generators. This
is shown in Fig. 3, where from the left to the right further two-dimensional
generators are added.

0 1 2
0

1

2

c

l1

(a) c + l1.
−1 0 1 2 3

−1

0

1

2

3

c

l1 l2

(b) c + l1 + l2.
−2 0 2 4

−1

0

1

2

3

c

l1 l2

l3

(c) c+l1+l2+l3.

Fig. 3. Construction of a zonotope.

4 Computing Over-Approximated Reachable Sets

First, the over-approximation of reachable sets is discussed for purely linear
continuous dynamics, and in the second part of this section, the intersection
with guard sets is addressed. Reachable sets of linear systems with uncertain
parameters and inputs have been computed in an earlier work of the authors
[2]. The basic steps that are undertaken in order to compute the reachable sets
are recalled in the following. These steps are in common with other approaches,
such as e.g. [11,7,22]. The reachable set of a time interval t ∈ [0, r], (r ∈ R

+),
is obtained by

(1) computation of the reachable set R̂ without input (u = 0) for t = r based
on the initial set X0,

(2) generation of the convex hull of the time point solutions,
(3) enlargement of the convex hull to ensure enclosure of all trajectories for

the time interval t ∈ [0, r] under all possible inputs.

These basic steps are illustrated in Fig. 4.

The reachable set for a time interval [tk, tk+1] starting from the one for [tk−1, tk]
is obtained as R([tk, tk+1]) = eArR([tk−1, tk]) + R̄([0, r]), where tk = k · r
(k ∈ N

+), eAr is the matrix exponential of the system matrix A and R̄([0, r])
is the reachable set due to the input, see [2]. The reachable set for [0, tf ], where
tf = kf · r is the final time, is obtained by the union of the reachable sets for

the time intervals indexed by k: R([0, tf ]) =
⋃kf

k=1 R([tk−1, tk]).
The procedure for linear continuous systems is now extended to hybrid sys-
tems with linear continuous dynamics, which has to account for the intersec-
tion with invariant sets and guard sets. The reachable set within a location

2 Minkowski sum of two sets A,B: A + B = {a + b|a ∈ A, b ∈ B}
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X0

R̂(r)
convex
hull of
X0, R̂(r)

R([0, r])

➀ ➁ ➂

enlargement

Fig. 4. Computation of the reachable set for a time interval.

is computed as presented above, until it has completely left the invariant at
tl, such that R(tl−1) ∩ Inv �= ∅ and R(tl) ∩ Inv = ∅ or until the final time is
reached (t = tf). In this work, the reachable sets are represented by zonotopes
and the guard sets g((zi, zj)) by polytopes. Thus, their intersection cannot be
computed exactly in general. In order to continue the computation with zono-
topes, the intersection with guard sets and the subsequent mapping according
to the jump function has to be over-approximated by a zonotope. The first
and last time step when the guard set g((zi, zj)) is intersected by the reachable
set are denoted by tje, tjl respectively. The next steps to be taken in order to
obtain an over-approximation after a transition are:

(1) The zonotopes which intersect with a guard set, i.e. those establishing
R([tje, t

j
l ]), are converted from generator to halfspace representation.

(2) This conversion enables the computation of the intersection of the reach-
able set with the guard set g((zi, zj)) using standard algorithms.

(3) The intersected reachable sets are mapped according to the jump function
h. As the jump function is restricted to a linear mapping as defined in
(1), the halfspace representations are exactly mapped to new halfspace
representations.

(4) The union of the mapped reachable sets is enclosed by a zonotope R′
j .

These steps are illustrated in Fig. 5 for the case when the jump function is
an identity mapping, i.e. h((zi, zj), x) = x. The time interval [tje, t

j
l ] when the

reachable set intersects the guard g((zi, zj)) is over-approximated by checking
the intersection of the guard set with axis-oriented boxes enclosing the reach-
able sets in order to save computational time. In order to formulate the overall
procedure for the computation of reachable sets within one location in Alg. 1,
the following operators are introduced: The operator over-approximating the
time interval of guard intersection is denoted by intersectionTimes() and
the operators for the conversion to H- and G-representation are denoted by
hConv() and gConv() respectively. The superscript h of the reachable sets Rh

in Alg. 1 indicates that the reachable set has a halfspace representation.

It should be mentioned that the proposed procedure also allows to verify hy-
brid systems with nonlinear continuous dynamics, when computing the contin-

7



Guard set

Reachable
set R([tje, t

j
l ])

(a) Reachable sets.

Over-approximative
H-representation

(b) H-representation.

Intersection

(c) Intersection.

Over-appr.
zonotope R′

j

(d) Over-approximating
zonotope.

Fig. 5. Over-approximation of the intersection of zonotopes with a polytope by a
single zonotope.

Algorithm 1 Compute R′
j within a location zi

Input: Reachable sets R([0, r]), R̄([0, r]), invariant inv, guard set g((zi, zj))

Output: Rh[0, tl], R′
j

k := 1, Rh([0, r]) = hConv
(
R([0, r])

)
∩ inv

while Rh([tk−1, tk]) �= ∅ or t < tf do

R([tk, tk+1]) = eArR([tk−1, tk]) + R̄([0, r])

Rh([tk, tk+1]) = hConv
(
R([tk, tk+1])

)
∩ inv

k := k + 1

end while

tl = (k − 1) · r
Rh([0, tl]) =

⋃tl/r
k=1 Rh([tk−1, tk])

[tje, t
j
l ] = intersectionTimes

(
Rh([0, tl]), g((zi, zj))

)
R′

j = gConv
(
Rh([tje, t

j
l ]) ∩ g((zi, zj))

)

uous reachable set as presented in a previous work of the authors [3]. However,
the main focus of this paper is to investigate the use of zonotopes for hybrid
systems w.r.t. the discrete transitions, such that the continuous dynamics
plays only a limited role. In the next section, the conversion from generator
to halfspace representation of zonotopes is presented in detail.
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5 Over-Approximative Halfspace Representations of Zonotopes

Since zonotopes are a special case of polytopes, there exists an exact halfspace
representation of zonotopes. However, the conversion is computationally ex-
pensive, as there might exist up to 2

(
p

n−1

)
facets, where p is the number of

generators and n is the dimension, see e.g. [13]. The formula for the number of
facets becomes evident later in this section. Due to the large number of facets,
zonotopes are over-approximated by a halfspace representation, which uses less
facets. In a first step, the zonotopes are over-approximated by parallelotopes,
which are zonotopes of order o = 1, i.e. the number of generators p equals the
system dimension n (see Def. 5), resulting in 2n facets. In a second step, the
zonotopes are over-approximated by zonotopes of smaller order (but of order
greater than one) – the tradeoff between accuracy and computational effort
will be discussed. In order to assess the quality of the over-approximations, the
zonotopes to be transformed are randomly generated and assessed according
to an over-approximation measure.

5.1 Exact Halfspace Conversion of Zonotopes

In this subsection, the exact conversion of zonotopes from G- to H-representation
is presented. The halfspace representation C · x ≤ d contains the normal vec-
tors of the i-th halfspace as the i-th row vector of C and the i-th element of
d is the scalar product of any point on the i-th seperating hyperplane with
the corresponding normal vector. Thus, the absolute value of d is the distance
from the origin to the halfspace. For the computation of the normal vectors,
the n-dimensional cross product is introduced as in e.g. [18]. Given are n − 1
vectors hi ∈ R

n which are stored in a matrix H = [h1, . . . , hn−1] ∈ R
n×n−1,

and if the ith row is removed, the matrix is denoted by H [i] ∈ R
n−1×n−1. The

cross product nX(H) of the vectors stored in H is defined as:

y = nX(H) =
[
. . . , (−1)i+1 det(H [i]), . . .

]T

The H-representation is computed for parallelotopes (zonotopes of order o = 1)
first, and then for general zonotopes.

5.1.1 Parallelotopes

Parallelotopes have 2n facets where n of them are non-parallel, and each of the
facets is spanned by n − 1 generators g(i) ∈ R

n. In order to obtain a concise
notation, the matrix of generators is introduced as G = [g(1), . . . , g(n)] and
G〈i〉 ∈ R

n×n−1 is defined as a matrix in which the ith generator is removed,
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such that G〈i〉 3 contains the generators of the ith facet. The normal vectors
and distances of the facets to the origin are computed as follows:

Lemma 6 (Halfspace Representation of Parallelotopes.) The halfspace
representation C · x ≤ d of a parallelotope with n independent generators is

C =

⎡
⎢⎣ C+

−C+

⎤
⎥⎦ , d =

⎡
⎢⎣d+

d−

⎤
⎥⎦

with:

C+
i = nX(G〈i〉)T /‖nX(G〈i〉)‖2,

d+
i = C+

i · c + Δdi, d−
i = −C+

i · c + Δdi, Δdi = |C+
i · g(i)|.

C+
i denotes the ith row of C+ and di the ith element of d. The computational

complexity of computing the H-representation for a given G is O(n5).

Proof: The ith facet of a parallelotope can be reached by addition of a single
generator to the center c (see Fig. 6) . As there are only n generators, the
facet must be spanned by the matrix of remaining generators G〈i〉. Thus, the
normal vectors are computed as C+

i = nX(G〈i〉)T /‖nX(G〈i〉)‖2. It is sufficient
to compute n normal vectors denoted by a superscript ’+’, as the remaining
n normal vectors denoted by a superscript ’−’, differ only in sign due to the
central symmetry of zonotopes.
The elements d+

i are the scalar products of any point on the i-th halfspace
with its normal vector. A possible point on the i-th halfspace is c+ g(i). Thus,
the values of d+

i can be computed as d+
i = C+

i ·c+Δdi and d−
i = −C+

i ·c+Δdi

with Δdi = |C+
i · g(i)|.

The computational complexity is derived as follows: The computation of the
determinants is O((n − 1)3) = O(n3) when applying LU decomposition, and
thus the computation of the n-dimensional cross product is n ·O(n3) = O(n4).
As n non-parallel hyperplanes have to be computed, the overall complexity is
O(n5). �

5.1.2 Zonotopes

The extension to the conversion of general zonotopes from G- to H- represen-
tation is straightforward. For a general zonotope, the G-matrix is of dimension
n×p. Because n−1 generators have to be selected from p generators for each
non-parallel facet, the result are 2

(
p

n−1

)
facets. The generators that span a

facet are obtained by cancelling p− n + 1 generators from the G-matrix. This

3 Here, the removal is denoted by 〈 〉 and not by [ ] because a column instead of a
row is removed.
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c g(1)

g(2)

g(3)

C+
1

Fig. 6. Generators and normal vector of a parallelotope.

is denoted by G〈γ,...,η〉, where γ, . . . , η are the p − n + 1 indices of the gener-
ators that are taken out of G. The extended computation for the halfspace
representation is:

Theorem 7 (Halfspace Representation of Zonotopes.) The halfspace re-
presentation C · x ≤ d of a zonotope with p independent generators is

C =

⎡
⎢⎣ C+

−C+

⎤
⎥⎦ , d =

⎡
⎢⎣d+

d−

⎤
⎥⎦

with:

C+
i = nX(G〈γ,...,η〉)T /‖nX(G〈γ,...,η〉)‖2,

d+
i = C+

i · c + Δdi, d−
i = −C+

i · c + Δdi, Δdi =
p∑

υ=1

|C+
i · g(υ)|.

The index i varies from 1 to
(

p
n−1

)
. The complexity of the computation with

respect to the number p of generators is O(
(

p
n−1

)
· p), which is linear in the

number of facets.

Proof: The computation of C+
i , d+

i , d−
i is analog to lemma 6. The difference for

the computation of Δdi is that p generators contribute to pushing the facets
outwards.
The complexity result is obtained as follows: The computational complexity
for computing the normal vectors is O(

(
p

n−1

)
· n4) since the complexity for

a single facet is O(n4) (see lemma 6). The computational complexity for the

computation of Δd is O(
(

p
n−1

)
·p) as p generators have to be considered for each

element Δdi. The overall complexity with respect to the number of generators
is O(

(
p

n−1

)
· n4) + O(

(
p

n−1

)
· p) = O(

(
p

n−1

)
· p). �

The authors do not know any reference where an algorithm of similar complex-
ity has been proposed. As the number of halfspaces is 2

(
p

n−1

)
, order reduction

techniques for zonotopes are proposed in the following.
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5.2 Order Reduction of Zonotopes

The order of zonotopes Zorig is reduced in an over-approximating way, i.e. the
reduced zonotope Zred is described by less generators (r < p) while ensur-
ing that Zred ⊇ Zorig. In this work, the r generators are selected from the p
original generators, which are then stretched in order to ensure Zred ⊇ Zorig.
The order reduction of zonotopes is motivated by saving computational time,
what is achieved when using r < p generators for the change of the zonotopes
to halfspace representation. Computational time is also reduced for the en-
closure of polytopes obtained from the intersection of zonotopes with guard
sets (see Fig. 5(d)). The enclosure is based on the vertex representation of the
polytopes, which requires less vertices when the zonotopes are represented by
less generators before the intersection.
First, reduction techniques are assessed for the reduction of zonotopes to par-
allelotopes, and later for the reduction to zonotopes of order greater than
one. For the reduction of the zonotope order, it is useful to introduce how to
over-approximate a zonotope Z = (c, g(1), . . . , g(p)) by an axis-aligned box in
G-representation, as presented e.g. in [11]:

H = box(Z) = (c, b(1), . . . , b(n)) (2)

with b
(i)
j =

⎧⎨
⎩
∑p

υ=1 |g(υ)
j |, for i = j

0, for i �= j
(3)

The subscript j of b
(i)
j denotes the jth element of b(i). The box() operator allows

to compute the over-approximation of a zonotope by a parallelotope:

Proposition 8 (Order Reduction to a Parallelotope.) An over-approximating
parallelotope Ψ is obtained from a zonotope Z by:

Ψ = Γ · box(Γ−1Z)

where Γ ∈ R
n×n is a matrix of n generators g(i) taken out of the set of all p

generators. Γ has to have full rank.

Sketch of Proof: This approach first transforms the coordinates of Z by the lin-
ear map Γ−1, where the new coordinate axes are the n chosen generators within
Γ. Note that this coordinate system is not orthogonal in general. Within the
transformed coordinate system, the zonotope is over-approximated by a box
(box(Γ−1Z)) aligned to the coordinate axes. As a final step, the zonotope is
transformed back to the original coordinate system. The over-approximation is
guaranteed by the fact, that the zonotope is over-approximated in the trans-
formed coordinate system by the box() operator, such that it is also over-
approximated after the transformation to the original coordinate system. �
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For the reduction to zonotopes of order greater than 1, the following scheme
is applied:

Proposition 9 (Order Reduction of a Zonotope.) An over-approximating
zonotope with reduced number of generators Zred is obtained by splitting the
zonotope Z = Ž + Z̃ into Ž and Z̃, and by reducing Z̃ to a parallelotope
afterwards:

Zred = Ž + Ψ, Ψ = Γ · box(Γ−1 · Z̃).

The split into (Ž,Z̃) and the selection of Γ (which has to have full rank) has
to be decided by an order reduction scheme.

Note that the addition of zonotopes Ž = (č, ǧ(1), . . . , ǧ(p̌)) and Z̃ = (c̃, g̃(1), . . . , g̃(p̃))
is simply computed by adding the centers and concatenating the generators:
Ž + Z̃ = (č + c̃, ǧ(1), . . . , ǧ(p̌), g̃(1), . . . , g̃(p̃)). This is because of the nature of
zonotopes which are defined by the Minkowski addition of generators. It re-
mains to find heuristics that select the generators of Γ in Prop. 8 and 9 as
well as generators of Ž in Prop. 9 (which remain unchanged).

5.3 Generator Selection

This subsection presents heuristics that allow to efficiently select generators
for the order reduction of zonotopes. First, the generator selection for the over-
approximation to parallelotopes (Prop. 8) is addressed. The generalization for
the abstraction to zonotopes of order greater than one (Prop. 9) is considered
afterwards. In order to assess the quality of the order reduction, an over-
approximation index is introduced next.

5.3.1 Over-Approximation Index

The proposed over-approximation measure Θ is based on the ratio of the vol-
ume of the over-approximating set Sred compared to the original set Sorig:
V (Sred)/V (Sorig) and V () is the operator returning the volume of a set. It
is additionally considered, that each dimension represents a variable whose
values may differ in scale, such that they have to be normalized. For this rea-
son, the considered sets are weighted by some weighting matrix W = diag(w),
w ∈ R

n, resulting in the ratio V (W ·Sred)/V (W ·Sorig). Another aspect of the
over-approximation measure is that the measure should allow to compare the
results of over-approximations obtained in vector spaces of different dimension.
For this reason, the nth root of the volume ratio is taken, which is equivalent
to the ratio of the edge length of n-dimensional cubes containing the corre-
sponding volumes. Combining the mentioned aspects, the over-approximation
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measure is computed as:

Θ =

(
V (W · Sred)

V (W · Sorig)

) 1
n

, W = diag(w), w ∈ R
n.

In order to simplify the notation, it is assumed from now on, that all sets S
are represented in a normalized vector space, where the original sets have been
mapped to Sorig := W · Sorig beforehand, such that the weighting matrix in
the normalized state space is the identity matrix (W = I).

5.3.2 Generator Selection for Parallelotopes

Given is the task to select n out of p generators for the generator matrix Γ
in order to compute over-approximating parallelotopes as shown in Prop. 8.
The selection should minimize the over-approximation index Θ of the result-
ing parallelotopes Ψ. A straightforward approach is an exhaustive search by
computing the over-approximation value Θ for all possible combinations of n
out of p generators:

Proposition 10 (Exhaustive Search.) The exhaustive search for the best
combination of n out of p generators for the over-approximation of a zono-
tope by a parallelotope (Prop. 8) has complexity O(

(
p
n

)
· p) with respect to

the number of generators p. Instead of searching generators which minimize
the over-approximation measure Θ, one can alternatively evaluate the over-
approximation measure Θ∗ = V (Sred) which is computationally less expensive.

Proof: The exhaustive search allows to generate
(

p
n

)
different parallelotopes.

The complexity for the computation of the parallelotopes with respect to the
number of generators according to Prop. 8 is O(p). The complexity for the
sorting of the Θ values of all parallelotopes is at worst O(i· log(i)) when apply-
ing e.g. a merge-sort algorithm, where i is the number of parallelotopes. Thus,
the overall complexity of the exhaustive search is O(

(
p
n

)
·p)+O(

(
p
n

)
log

(
p
n

)
) =

O(
(

p
n

)
· p).

As all parallelotopes are over-approximations of the same zonotope, the vol-
ume V (Sorig) and the dimension n are equal for all parallelotopes. Thus, the
over-approximation index Θ∗ = V (Sred) is minimal if Θ = (V (Sred)/V (Sorig))1/n

is minimal. �

Clearly, the exhaustive search is infeasible in high dimensions and for zono-
topes of high order. For this reason, the number of possible combinations

(
p
n

)
for the exhaustive search has to be reduced. Two approaches are discussed,
where one approach reduces the number of generators p̃ < p for the exhaustive
search. The other approach passes only a subset of reasonable combinations
of n generators, which is then evaluated by Θ∗.
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Reduction of the Number of Generators A method which has proven effec-
tive for extracting p̃ promising generators g(i1), . . . , g(ip̃) is to select the longest
generators, such that ‖g(i1)‖2 ≥ . . . ≥ ‖g(ip̃)‖2 ≥ ‖g(ip̃+1)‖2 ≥ . . . ≥ ‖g(ip)‖2.
The importance for selecting promising generators is apparent when investi-
gating the complexity for p̃ = n + κ (κ ∈ N

+) generators:

Proposition 11 If p̃ is chosen as p̃ = n + κ, the complexity with respect to κ
is O(κn+1), i.e. polynomial in κ for fixed n.

Proof: The complexity of the exhaustive search is according to Prop. 10

O
((

n + κ

n

)
· (n + κ)

)
= O ((n + κ)n · (n + κ)) = O(κn+1). �

Besides extracting the longest generators, clustering methods like k-means
have also been investigated. The data points of the clusters have been defined
as the end points of the generators starting in the origin. Next, the vectors
from the origin to the cluster centers have been chosen as the reduced set of
generators. However, in numerical experiments this approach did not perform
better than the selection based on the length of the generators.

Reduction of the Number of Combinations of Generators The second men-
tioned possibility to accelerate the generator selection is to compute the over-
approximation index Θ∗ on a subset of possible combinations of generators.
The subset of combinations of generators is selected by an alternative over-
approximation index Θ̃ which is computationally less expensive and is com-
puted on all

(
p
n

)
combinations of generators. In this work, the alternative mea-

sure is computed as: Θ̃ = | det[g(i1), . . . , g(in)]|−1, where | det[g(i1), . . . , g(in)]| is
the volume spanned by the n selected generators. By picking the combination
with the lowest over-approximation index, the generator combination span-
ning the largest volume is selected. This is motivated by the observation that
a volume maximization of the parallelotope spanned by the selected genera-
tors tends to minimize the volume of the overall obtained parallelotope Ψ.

It is remarked that the proposed order reduction techniques are not stable
if the representation of the zonotope is changed. Consider a zonotope with
longest generator gmax. After replacing this generator by 1

2
gmax and 1

2
gmax,

the zonotope is unchanged (only its representation is changed). However, it
is likely that the generators 1

2
gmax will not be selected such that the over-

approximation computed by the algorithm will not be the same as before.
This problem will be subject of future research.
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5.3.3 Generator Selection for Zonotopes

In this subsection, the generator selection for parallelotopes is extended to
zonotopes of order greater than one, so that Prop. 9 can be applied. According
to Prop. 9, the generator selection can be split into two subtasks: the selection
of u generators for Ž which are not reduced and the selection of generators
which are over-approximated by the parallelotope Ψ. The center of the original
zonotope can be assigned to either Ž or Ψ. The generator selection for Ψ is
performed as previously shown in Sec. 5.3.2. The remaining generators of Ž
are chosen as the longest generators, what has also been applied in Sec. 5.3.2
for the preselection of generators.

5.4 Numerical Results

This subsection combines techniques for the order reduction of zonotopes with
the conversion from generator to halfspace representation and shows numerical
results. The halfspace representation can be obtained in a direct way or by
intersection of different halfspace representations. In order to evaluate the
proposed methods, one has to randomly generate zonotopes, which is described
next.

5.4.1 Randomly Generated Zonotopes

For the evaluation of the over-approximating methods, zonotopes are gener-
ated by independent randomized generators g(i). In a first step, randomized
points are obtained, which are uniformly distributed on a unit hypersphere.
These random points are generated by computing x/‖x‖2, where each element
of x ∈ R

n is a Gaussian random variable, see [19]. Next, the generator is de-
fined as the vector from the origin to a point on the hypersphere, which is
stretched by the length of the generators l̂i = ‖g(i)‖2 and l̂i has a uniform
distribution within the interval 0 < l̂i ≤ lmax.

5.4.2 Direct Conversion

The direct conversion of zonotopes, which over-approximates the zonotopes
by a halfspace representation, is performed the following:

(1) Reduce the order of the zonotope as shown in Prop. 9.
(2) Apply the conversion from generator to halfspace representation as pre-

sented in theorem 7.
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The numerical results for the evaluation of the direct conversion are separately
discussed for the case when the zonotopes are reduced to parallelotopes or to
zonotopes of order greater than one. For the reduction to parallelotopes, three
methods are evaluated:

• Method A This method denotes the exhaustive search.
• Method B The exhaustive search is performed on the p̃ = n + κ longest

generators, where n is the system dimension and κ is chosen to κ = 8.
• Method C Method C is based on method B. Instead of computing the

over-approximation index Θ∗ on all combinations of the reduced set of p̃ =
n + κ generators (κ = 8), the alternative measure Θ̃ is computed on the
combinations of p̃ = n + κ generators, from which the best λ = n + κ̃
combinations are chosen and κ̃ = 3. Next, the over-approximation measure
Θ∗ is computed only on those λ combinations.

The results of the evaluation of the introduced methods are presented in Tab.
1. The over-approximation index Θ as well as the overall computational time
tcomp are obtained from 100 randomized zonotopes, where the randomization
is performed as described previously in Sec. 5.4.1. The computations were
performed on a 3.7 GHz single core desktop computer in Matlab. Due to the
computational complexity for the computation of the volume of the original
zonotopes, which is necessary to obtain the over-approximation index Θ, the
evaluation for dimensions greater than 8 is intractable. It can be observed
that the performance limitation from method A to C is small compared to
the considerable reduction of computational time. For this reason, method C
is suggested for the over-approximative halfspace conversion using parallelo-
topes.

The extension to the halfspace conversion of zonotopes with order greater than
one is based on method C, which provides the parallelotope Ψ of Prop. 9. The
extended method is denoted by Du, where u denotes the number of unreduced
generators in Ž.
Analogously, to the previous results for parallelotopes, 100 randomized zono-
topes have been generated. The results for the computational time tcomp and
the over-approximation index Θ are displayed in Tab. 2. Note that method D2

is faster computed compared to D0 for 8 dimensions, because the computation
for Ψ saves more time (due to less combinations for Γ) than the more com-
plicated halfspace conversion adds. Compared to the previous results in Tab.
1, the computational costs are much higher due to the halfspace conversion
of zonotopes of greater order. On the other hand, the increase in accuracy is
marginal, hence the reduction methods Du are not favored.
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Table 1
Results for conversion to halfspace representation via parallelotopes.

Meth. mean of mean [min,max] variance
tcomp [sec]: of Θ: of Θ: of Θ:

dimension n = 2, zonotope order o = 2
A,B,C: 0.056 1.0582 [1.0030, 1.1349] 0.0011
dimension n = 2, zonotope order o = 6
A: 0.0289 1.0858 [1.0362, 1.1164] 0.0003
B: 0.0204 1.0859 [1.0362, 1.1164] 0.0003
C: 0.0056 1.0908 [1.0369, 1.1522] 0.0005
dimension n = 4, zonotope order o = 2
A,B: 0.0325 1.1550 [1.0343, 1.2606] 0.0022
C: 0.0078 1.1560 [1.0343, 1.2899] 0.0024
dimension n = 4, zonotope order o = 6
A: 5.0297 1.2687 [1.2101, 1.3096] 0.0004
B: 0.2019 1.2838 [1.2101, 1.3743] 0.0010
C: 0.0060 1.2967 [1.2143, 1.3995] 0.0015
dimension n = 6, zonotope order o = 2
A,B: 0.3876 1.2556 [1.0779, 1.3868] 0.0037
C: 0.0221 1.2574 [1.0779, 1.4088] 0.0039
dimension n = 8, zonotope order o = 2
A: > 10min − [−,−] −
B: 7.1025 1.3641 [1.1845, 1.5247] 0.0041
C: 1.1140 1.3670 [1.1845, 1.5756] 0.0046

5.4.3 Intersection of Halfspace Representations

In order to improve the accuracy of the over-approximation to parallelotopes,
zonotopes of order greater than one have been investigated previously in Sec.
5.4.2. An alternative approach, which is much more efficient, is based on par-
allelotopes:

(1) Compute the ζ best over-approximations of zonotopes by parallelotopes.
(2) Convert the generator representation of the parallelotopes to the half-

space representation as presented in lemma 6.
(3) Intersect the ζ best parallelotopes in halfspace representation in order to

obtain the over-approximating halfspace representation.

The method that intersects parallelotopes is denoted by Eζ , where ζ is the
number of intersected parallelotopes. For the over-approximation to parallelo-
topes, method C is applied. Using again 100 randomized zonotopes, the results
for the over-approximation index Θ and the computational time tcomp are listed
in Tab. 3. The intersections of the halfspace representations have been per-
formed using the MPT-Toolbox [17]. Compared to the results for zonotopes
of order greater than one in Tab. 2, the results for the intersections of par-
allelotopes are computationally less costly and more accurate. Thus, method
Eζ is the preferred method for the computation of halfspace representations.
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Table 2
Results for conversion to halfspace representation via reduced zonotopes.

Meth. mean of mean [min,max] variance
tcomp [sec]: of Θ: of Θ: of Θ:

dimension n = 2, zonotope order o = 6
D0: 0.0063 1.0888 [1.0433, 1.1346] 0.0004
D2: 0.0062 1.0853 [1.0291, 1.1846] 0.0007
D4: 0.0067 1.0727 [1.0174, 1.2506] 0.0012
dimension n = 4, zonotope order o = 2
D0: 0.0084 1.1615 [1.0250, 1.2830] 0.0030
D2: 0.0156 1.0925 [1.0087, 1.2588] 0.0028
D4: 0.0600 1.0000 [1.0000, 1.0000] 0.0000
dimension n = 4, zonotope order o = 6
D0: 0.0145 1.3001 [1.1930, 1.4498] 0.0018
D2: 0.0235 1.2857 [1.1782, 1.4827] 0.0018
D4: 0.0728 1.2607 [1.1699, 1.3860] 0.0018
dimension n = 6, zonotope order o = 2
D0: 0.0225 1.2675 [1.0797, 1.4112] 0.0040
D2: 0.0795 1.1979 [1.0431, 1.4076] 0.0050
D4: 1.6178 1.1056 [1.0222, 1.3337] 0.0032
dimension n = 8, zonotope order o = 2
D0: 0.9876 1.3638 [1.1706, 1.5302] 0.0054
D2: 0.5163 1.3150 [1.1653, 1.5132] 0.0049
D4: 39.189 1.2126 [1.0227, 1.4069] 0.0053

The difference in accuracy is also illustrated in Fig. 7 for a three-dimensional
zonotope. The left halfspace representation is obtained using method E1(=̂ C)
and the right one is obtained using method E4.

Zorig

Zred

(a) Method E1.

Zorig

Zred

(b) Method E4.

Fig. 7. Over-approximative halfspace representations.

As method Eζ has been found to be the most efficient method to obtain
a halfspace representation of a zonotope, the performance of the method is
evaluated according to different categories of randomly generated zonotopes.
The randomized zonotopes used so far had a uniform distribution of the length
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Table 3
Results for conversion to halfspace representation via parallelotope intersections.

Meth. mean of mean [min,max] variance
tcomp [sec]: of Θ: of Θ: of Θ:

dimension n = 2, zonotope order o = 6
E1: 0.0064 1.0918 [1.0352, 1.1380] 0.0005
E2: 0.0109 1.0548 [1.0088, 1.1368] 0.0003
E4: 0.0223 1.0191 [1.0025, 1.0561] 0.0002
dimension n = 4, zonotope order o = 2
E1: 0.0085 1.1528 [1.0438, 1.2868] 0.0031
E2: 0.0168 1.0774 [1.0136, 1.1739] 0.0014
E4: 0.0382 1.0288 [1.0019, 1.0836] 0.0003
dimension n = 4, zonotope order o = 6
E1: 0.0142 1.2948 [1.2294, 1.4025] 0.0014
E2: 0.0218 1.2106 [1.1191, 1.3932] 0.0019
E4: 0.0421 1.1383 [1.0808, 1.2892] 0.0010
dimension n = 6, zonotope order o = 2
E1: 0.0234 1.2661 [1.1316, 1.4260] 0.0047
E2: 0.0363 1.1638 [1.0778, 1.2604] 0.0021
E4: 0.0739 1.0964 [1.0251, 1.1759] 0.0010

of the generators, see Sec. 5.4.1. If the length is e.g. exponentially distributed,
there would be only a few dominant generators while the remaining generators
have much smaller length. For this reason, the reduction performance is addi-
tionally evaluated for the distributions plotted in Fig. 8. The mean values of
the over-approximation measure for the reduction of zonotopes generated by
these distributions are shown in Tab. 4. It can be observed that distributions
which thin out for high values (such as the exponential distribution) result in
zonotopes that can be better reduced as those having only few characteristic
generators. The performance of the halfspace conversion will also be evaluated
with reachable sets of the numerical example at the end of this work. In the
next section, the reverse problem of finding an over-approximative zonotope
for a set of polytopes is studied.
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x f(l̂i) f(l̂i)f(l̂i)

Uniform Distribution:
0 ≤ l̂i ≤ 5

Gamma Distribution:
f(l̂i) = l̂i · e−l̂i/Γ(2)

Exponential Distribution:
f(l̂i) = e−l̂i

Fig. 8. Probability distributions of the generator lengths of randomized zonotopes.
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Table 4
Results for conversion to halfspace representation using different randomized zono-
tope categories.

mean of Θ for dimension n and order o
Meth. distr. n : 2, o : 6 n : 4, o : 2 n : 4, o : 6 n : 6, o : 2
E1: uniform 1.0845 1.1625 1.2892 1.2678
E1: gamma 1.0872 1.1574 1.2816 1.2502
E1: exponential 1.0794 1.1217 1.2536 1.2060
E4: uniform 1.0178 1.0336 1.1355 1.1026
E4: gamma 1.0148 1.0355 1.1201 1.0955
E4: exponential 1.0106 1.0216 1.1013 1.0709

6 Over-Approximative Generator Representations of Polytopes

Following the scheme in Fig. 5, the over-approximation of zonotopes by a half-
space representation has been addressed in the previous section. The intersec-
tion of the reachable sets with the guard sets is performed by a standard soft-
ware package for polytopes (MPT-Toolbox [17]). Due to the intersection with
the guard sets, the zonotopes in halfspace representation become polytopes
in halfspace representation. In case of jumps, the halfspace representation has
to be changed according to the jump function, which has been limited to lin-
ear jumps, such that the mapping is exact. It remains to over-approximate
the reachable sets by a a single or several zonotopes, in order to continue the
reachable set computations for the next continuous dynamics. The compu-
tation of the enclosing zonotope is carried out by computing the vertices of
the polytopes, such that the problem is to tightly enclose points in R

n by a
zonotope. Much previous work solved the problem of finding tightly enclos-
ing, oriented boxes in three-dimensional space, see e.g. [5]. For n-dimensions,
enclosures of points have been investigated in [22].
The following subsections are structured as follows: the enclosure of polytopes
by a single zonotope is discussed first in general. Next, some specific meth-
ods are presented, and finally the enclosure of the reachable set by several
zonotopes is discussed.

6.1 General Approach

The enclosure of polytopes by one or several zonotopes is carried out by the
following proposition, which is analogous to the order reduction of zonotopes
(Prop. 8), except that the box() operator is generalized for polytopes:

Proposition 12 (Enclosure of Polytopes.) An over-approximating zono-
tope Zencl of μ polytopes Pl is obtained as:

Zencl = Λ · box(Λ−1P1, . . . , Λ
−1Pμ),
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where Λ ∈ R
n×n is of full rank and Pl is the lth polytope. The box()-operator

for several polytopes, returning an n-dimensional interval in generator repre-
sentation, is computed as follows:

(1) Compute the vertices vj ∈ R
n (V-representation) of all μ polytopes P ′

l =
Λ−1Pl.

(2) Obtain the minimum and maximum values of each dimension i:

mi = min(v1
i , . . . , v

ν
i ), mi = max(v1

i , . . . , v
ν
i ),

where vj
i is the ith component of vj and ν is the number of the vertices of

all polytopes.
(3) Compute a generator representation of the n-dimensional interval [m, m]:

[m, m] =
{
x = c +

n∑
i=1

βi · g(i), −1 ≤ βi ≤ 1
}
,

where

c = 0.5(m + m), g
(j)
i =

⎧⎨
⎩0.5(mi − mi), if i = j

0, otherwise

The proof is omitted as it is analogous to Prop. 8. Similar to the order re-
duction of zonotopes, the challenge is to find a linear map Λ, which over-
approximates the polytopes in a good or the best way. Note, that the column
vectors of Λ determine the direction of the generators of the over-approximating
zonotope. The choice of the Λ matrix, and hence the selection of generators
for the over-approximating zonotope, is addressed next.

6.2 Generator Selection for the Enclosing Zonotope

In order to obtain tight enclosures of the polytopes intersected with a guard
set, the direction of the flow vector f(z, x, u) of the continuous dynamics

ẋ = f(z, x, u) = Azx + u, u ∈ Uz

is taken into account, where z was the index referring to the location. There are
two reasonable choices of flow vectors: the flow vector of the location which is
active before the transition is taken, and the one after the transition is taken.
First, the flow vector that is active after the transition is taken, is considered.
The direction ρ of the flow vector is taken at the center of the enclosing boxes
of the reachable set and the input:

ρ =
f(z, x∗, u∗)

‖f(z, x∗, u∗)‖2
, x∗ = center (box(P1, . . . , Pμ)) , u∗ = center (Uz) ,
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where box() is defined as in Prop. 12 and center() returns the volumetric
center of a set. By choosing ρ as one of the column vectors of Λ, the enclosing
zonotope is oriented in the direction of the flow vector. The remaining column
vectors are chosen as n − 1 unit vectors ej of the coordinate system, where
ej

i = 1 if j = i and ej
i = 0 otherwise. The replaced unit vector ej is the one,

that is best aligned with ρ, such that:

Λ = [. . . , ej−1, ρ, ej+1, . . .], |(ej)
T · ρ| ≥ |(em)T · ρ|, ∀m = 1 . . . n.

The procedure for the enclosure of the polytopes is illustrated for a simple
two-dimensional example, where f before = [1,−1]T and fafter = [−1,−1]T are
the constant flow vectors before and after the transition without a jump. The
reachable sets are illustrated in Fig. 9(a) - 9(d).
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Fig. 9. Enclosure of the reachable set by a single zonotope.

Besides this method, there are alternative possibilities to obtain reasonable Λ
matrices:

• Instead of replacing a unit vector ej by the direction vector ρ, one can
construct the Λ matrix as a n-dimensional rotation matrix (det(Λ) = 1)
that maps the direction ρ to e1.
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• One can also apply principal component analysis (PCA) as presented in
[22]. The Λ matrix then results from a singular value decomposition.

In the next subsection, it is outlined how these alternative approaches can be
integrated.

6.3 Computing with Several Enclosing Zonotopes

In order to combine the advantages of different approaches for the enclosure
of points, one can compute several alternative enclosures Zencl,1, . . . , Zencl,ω.
From this follows, that starting from these enclosures, many reachable sets
have to be computed in parallel within the active location. Note, that in this
case, an unsafe set is only reached if the intersections of reachable sets (of
common time intervals) intersect the unsafe set.
The slightly modified procedure for the computation of the intersection with
guard sets is explained for the case where only two enclosing zonotopes Zencl,1,
Zencl,2 are used (what can be extended in a straightforward way to more en-
closing zonotopes). One difference to the previous description is that the guard
set is only reached, if it is intersected with both reachable sets R1([tk−1, tk]),
R2([tk−1, tk]) . The polytopes obtained from the intersection with a guard
set are denoted by P 1([te1 , te1+1]), . . . , P 1([tl1−1, tl1 ]) and P 2([te2 , te2+1]), . . . ,
P 2([tl2−1, tl2]). Because of the parallel computation, the combined entry and
exit time of the guard set are te = max(te1 , te2) and tl = min(tl1 , tl2). Further,
the combined polytopes within a guard set are: P ([tk−1, tk]) = P 1[tk−1, tk] ∩
P 2[tk−1, tk] with tk−1 ≥ te, tk ≤ tl. After obtaining the sets P ([tk−1, tk]), the
enclosure of the reachable sets is performed as shown in the previous subsec-
tion.
The tighter enclosure of the reachable set when using two enclosing zonotopes
is shown for the same example that has been used in Fig. 9. The additional
zonotope is obtained by the same method, but the flow vector of the pre-
vious location is additionally used. Both enclosing zonotopes as well as the
intersected reachable sets R1([tk−1, tk]) ∩ R2([tk−1, tk]), are illustrated in Fig.
10.

7 Numerical Example

The presented techniques are applied to a benchmark example proposed in
[10]: It considers a room heating scenario, where in each room there is one or
no heater. In contrast to the proposed benchmark example, it is not consid-
ered that heaters can be moved from one room into another. Extensions of
the proposed example are that the input is modeled uncertain and that the
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Fig. 10. Enclosure of the reachable set by a single zonotope.

switching is not deterministic. The example considered in this work consists
of 6 rooms with heaters in the rooms 1 and 6, see Fig. 11. The heaters are
switched on if the temperature drops below T low + ΔT and switched off if
the temperature exceeds T high − ΔT with T low = 22◦C, T high = 24◦C and
ΔT = [0, 0.05]◦C. The temperature dynamics in room i is:

ẋi = c · hi + bi(u − xi) +
∑
i�=j

aij(xj − xi)

with constants aij, bi and c. The rate of heat exchange aij between two adja-
cent rooms is 1. The transfer rate bi from inside the building to the outside is
0.16 for rooms at corners and 0.08 for other rooms. The outside temperature
u is in the interval of [0, 0.1] including modeling uncertainties, and the heating
power is c = 15 for both heaters. The variable hi is 1 if a heater is switched
on in room i and 0 otherwise. The reachable sets are computed for the time
interval t ∈ [0, 1].
The over-approximation of the zonotopes to a halfspace representation has
been performed with method C with κ = 5 for the preselection of generators
by length. The enclosure of the polytopes within the guard sets has been per-
formed by two zonotopes as explained in Sec. 6.3, where the flow vector of
the location before and after the transition has been applied. The time step
size has been set to r = 0.01 and the computation time was 16.3 seconds on a
single core desktop computer with 3.7 GHz for an implementation in Matlab.
In order to assess the halfspace conversion of this example, the zonotopes con-
verted to halfspace representation have been recorded. As the uncertain input
is small compared to the uncertainty arising from the switching of the system
dynamics, the recorded zonotopes have only few dominant generators. This
can be observed in the histogram in Fig. 12 showing the distribution of the
generator length. From this follows that the halfspace conversion can be per-
formed with high accuracy. The mean values of the relative over-approximation
index (Θ/ΘC), where ΘC is the over-approximation index of method C, as well
as the computational time for different halfspace conversion methods are pre-
sented in Tab. 5. The reason for the relative over-approximation index is that
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the absolute value cannot be computed – this requires the computation of the
volume of the zonotopes of dimension 6 and order 10, which is intractable.
The reachable sets are shown as gray areas for selected projections in Fig.
13. Exemplary trajectories within the reachable set are plotted in black and
have been computed for randomized initial states and inputs. In comparison
with the trajectories, the reachable sets seem to have been computed for a
longer time horizon. This is because the time point for a transition enabled
by a guard g((zi, zj)) is uncertain within [tje, t

j
l ] as discussed in Sec. 4, so that

the uncertainty of computed time adds up to [tf , tf + δ] and δ is the total
time uncertainty. A possible verification scenario would be to analyze whether
a certain combination of room temperatures is enabled (or avoided) by the
switching controller.
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4 5 6
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Fig. 11. Room layout.

0 0.2 0.4 0.6
0

0.02

0.04

pr
ob

ab
ili

ty
p

p = 0.9

‖l̂i‖2

Fig. 12. Histogram of generator length ‖l̂i‖2.

8 Conclusion

The presented work has presented an approach which allows to represent
reachable sets of hybrid systems by zonotopes. The arising challenge when us-
ing zonotopes for hybrid systems is that reachable sets have to be intersected
with guard sets and zonotopes are not closed under intersection. For this rea-
son, methods have been developed allowing to over-approximate zonotopes by

Table 5
Results for the conversion to halfspace representation using zonotopes from the
room heating example.

method B method C method D2 method E2

mean of (κ = 3) (κ = 8, κ̃ = 3) (κ = 8, κ̃ = 3) (κ = 8, κ̃ = 3)
Θ/ΘC : 1.0007 1.0000 1.0406 0.9203
tcomp [sec]: 0.0442 0.0701 0.1549 0.0841
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Fig. 13. Reachable sets of the room heating scenario.

a halfspace representation, which then allows to intersect the reachable sets
with guards sets. In order to continue the computation with zonotopes, the
inverse problem of finding an over-approximating zonotope for a halfspace re-
presentation has been addressed.
An advantage of the proposed techniques is that they scale well with the di-
mension n. For the transformation of zonotopes to halfspace representation
and vice versa, one can tune the algorithms according to a tradeoff between
accuracy and computational time. This allows using the approach for systems
of order greater than 10, if high accuracy is not required. As a by-product,
effective order reduction techniques for zonotopes have been presented which
are useful for other applications, such as collision detectors using zonotopes.
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