
Online Safety Verification of Trajectories for Unmanned Flight
with Offline Computed Robust Invariant Sets

Daniel Althoff1 Matthias Althoff2 Sebastian Scherer3

Abstract— We address the problem of verifying motion plans
for aerial robots in uncertain and partially-known environ-
ments. Thereby, the initial state of the robot is uncertain due to
errors from the state estimation and the motion is uncertain due
to wind disturbances and control errors caused by sensor noise.
Since the environment is perceived at runtime, the verification
of partial motion plans must be performed online (i.e. during
operation) to ensure safety within the planning horizon and
beyond. This is achieved by efficiently generating robust control
invariant sets based on so-called loiter circles, where the position
of the aerial robot follows a circular pattern. Verification of
aerial robots is challenging due to the nonlinearity of their
dynamics, the high dimensionality of their state space, and their
potentially high velocities.

We use novel techniques from reachability analysis to over-
come those challenges. In order to ensure that the robot never
finds itself in a situation for which no safe maneuver exists,
we provide a technique that ensures safety of aerial robots
beyond the planning horizon. Our method is applicable to all
kinds of robotic systems that follow reference trajectories, such
as bipedal robotic walking, robotic manipulators, automated
vehicles, and the like. We evaluate our method by simulations
of high speed helicopter flights.

I. INTRODUCTION

Unmanned aerial vehicles (UAVs) provide huge benefits
compared to manned vehicles. Examples are increased pay-
load capabilities due to the lack of a cabin, unique flight
envelopes since there are no g-force restrictions, no loss of
life in dangerous missions, the possibility of long surveil-
lance missions, and personal aerial deliveries by drones. An
example is the Boeing Unmanned Little Bird (ULB, Fig. 1)
which is equipped with a LIDAR and flies autonomously
in unknown environments [1]. The aforementioned benefits
can only be realized if safety challenges can be overcome.
Different from unmanned ground vehicles, standstill is often
not a safe option since fixed-wing aircraft or rotorcraft with
a high payload have to move to stay airborne. Furthermore,
transitioning to a standstill of a rotorcraft is impractical since
so-called loiter patterns can handle shorter sensor ranges,
which in turn allows one to operate the rotorcraft at higher
speeds [1]. Another challenge is that aerial vehicles face
stronger disturbances than ground vehicles since winds are
stronger at higher altitudes. To enable UAVs to operate in
the airspace and to develop trust it is necessary to guarantee
safety of these systems. One critical component is to ensure
that a safe alternative trajectory always exists that can be
executed in case the intended trajectory is infeasible. We

1,3 are with the Robotics Institute, Carnegie Mellon Univ., Pittsburgh,
USA, {althoff1,basti3}@andrew.cmu.edu
2 is with the Faculty of Computer Science, Technische Universität München,
85748 Garching, Germany, althoff@in.tum.de

Fig. 1: Automatic landing of the Unmanned Little Bird.

ensure this safety through emergency maneuvers that are safe
for an infinite time horizon. These emergency maneuvers,
however, are affected by sensor noise and disturbances (e.g.
wind) and need to respect obstacles, consider the limited
sensor capabilities, and still allow fast flight with the limited
acceleration of a typical UAV.

Previous work addresses the challenges to ensure safety
by limiting the acceleration and increasing clearance to
obstacles, leading to potentially unsafe behavior. Here we
explicitly model the influence of disturbances on the vehicle
and can therefore compute the set of possible behaviors
during the intended trajectory and for a potential subsequent
loiter circle. Only when all possible behaviors are collision-
free, we execute the plan to guarantee safety. The set of
possible behaviors of the closed-loop system is computed
via reachability analysis, which returns the set of states that
are reachable from a set of initial states subject to a set of
uncertain inputs (disturbances and sensor noise). Since the
aerial robot can move along a loiter circle forever, we are
able to verify the maneuver for an infinite time horizon. Due
to a constant replanning of the intended maneuver and the
subsequent loiter circle, the loiter circle is only executed if no
new and safe intended maneuver can be found. Once a new
safe maneuver exists, the aerial robot exits the loiter circle
and continues on its intended trajectory. Since loiter circles
are typically longer trajectories than the intended trajectories,
especially at high speeds, they take substantial time to verify.
We verify those maneuvers offline and use them to online
verify intended trajectories. To the best knowledge of the
authors, this is the first work that formally guarantees safety
for UAVs in the presence of disturbances and sensor noise for
a nonlinear model with a challenging number of dimensions
for formal verification.

II. RELATED WORK

The idea of computing invariant sets [2] (i.e. sets in
which a system stays forever) to ensure safety or stability of

finite-horizon plans is not new. In control theory, invariant
sets are used to prove stability of model predictive control
(also called receding horizon control), as shown in [3].
In [4] a nonlinear model predictive control framework is
presented that guarantees nominal feasibility using invariant
sets by providing necessary and sufficient conditions on the
control horizon, the prediction horizon and the constraint set.
Receding horizon control for UAVs based on mixed integer
linear programming is presented in [5]. Loiter circles are
added to the mixed integer linear programming formulation
to ensure safety for an infinite time horizon. A library
of precomputed emergency loiter circles for a full-scale
autonomous helicopter is suggested in [1]. The emergency
maneuvers are optimized regarding their path diversity, i.e.
the difference of paths according to some measure.

In order to ensure safe movements of the aerial robot
under bounded disturbances, one can apply robust model
predictive control approaches. In [6], feasibility conditions
for model predictive control subject to disturbances are
presented. The idea of that work and later work (e.g. [7]) is to
formulate input constraints that are tighter than the physical
limits to reserve stronger control actions in the presence of
disturbances. In [8] a robust model predictive controller using
mixed-integer linear programming (MILP) is presented that
provides a very general framework for problems involving
both discrete decisions and continuous variables. An example
for a discrete decision is to whether pass an obstacle to
the left or the right. Tube-based model predictive control
introduces tightened constraint sets for the input and state
space of the robot system resulting in the so-called nominal
system. The optimized trajectories based on the nominal
system ensure feasibility for the actual (uncertain) system
[9]–[11]. To guarantee safe movement for an infinite time
horizon under bounded disturbances, an appropriate method
is to steer the system into a robust positive control invariant
set (RPCIS), e.g. [12]. A RPCIS ensures that there exists a
controller such that the system never leaves the invariant set
subject to arbitrary disturbances within a bounded set.

An alternative is to directly find regions in which a
collision is inevitable as opposed to determining RPCIS. The
goal of the controller is to avoid those regions of inevitable
collision [13], which are defined as the union of inevitable
collision states [14], within its finite planning horizon. Most
of the work on regions of inevitable collision has focused
on static environments, however, the concept has already
been applied in dynamic environments for car-like vehi-
cles [15], [16]. Additionally, in [17], [18] an extension for
stochastic environments is presented taking into account the
uncertain motion prediction of obstacles in the workspace,
which calculates the probability that a state is an inevitable
collision state. Other related work deals with the problem
of the existence of an infinite long collision-free trajectory.
This problem is discussed in [19] by the means of the
ergodic forest scenario by finding criteria such as the size
of obstacles, the distribution of obstacles and the maximum
velocity of the robot under which almost surely an infinite
time trajectory exists.

Another line of work provides formal methods to synthe-
size trajectories based on temporal logic specifications that
are provably correct. In [20], temporal logic specifications
are used to specify requirements on missions for UAVs.
Trajectories for automated vehicles in static environments
are synthesized in [21] within a discretized environment.
Discrete environments are also used in [22], where a special
focus is on dealing with an unknown workspace of the robot.
A discrete environment is also used in [23] to synthesize
plans for teams of robots. Motion primitives instead of grid-
based movement is used in [24] for multi-robot systems
planning from linear temporal logic specifications. Another
work synthesizes robotic motion for a point mass (double
integrator) by bounding the error to an abstract kinematic
model and using the abstraction for the planning task [25].
In [26] so-called barrier certificates are used for validating
nonlinear models with uncertain parameters. This method
is applicable to polynomial vector fields with polynomial
equalities and inequalities by the sum of squares (SOS)
decomposition [27]. Recent advances of this approach are
also used to perform stochastic verification [28]. SOS pro-
gramming is also used in robust control to construct robust
funnels which rely on time-varying Lyapunov functions [29].

None of the previously mentioned works can formally
guarantee safe motion of complicated nonlinear dynamics
for an infinite time horizon subject to bounded disturbances.
In our approach we precompute a set of RPCIS using novel
methods for reachability analysis that scales well with the
dimension of the problem [30]. In addition, we provide
guarantees for the intended plan using reachability analysis.

III. PROBLEM FORMULATION

The main challenges for verifying the safety of UAVs
arise from their limited perception capabilities as well as
disturbances and sensor noise acting on them. First we
describe the model of the robot and the environment leading
to the problem statement of this work.

A. Robot Model and Environment Description

We use a standard state space formulation to model our
UAV over time t using the state x(t), the control input u(t),
the bounded sensor noise ν(t) ∈ N ⊂ Rr, the system output
y(t) ∈ Rp, and the bounded external input (disturbance)
w(t) ∈ W ⊂ Rq:

ẋ(t) = f(x(t),u(t),w(t)), x(0) = x0

y(t) = g(x(t),ν(t))
(1)

Dynamic and kinematic constraints of the robot are con-
sidered by the restricted state space x(t) ∈ X ⊂ Rn and
the constrained input space u(t) ∈ U ⊂ Rm. The motion
model has a unique solution x(t) for all x(0),w,ν and u if
f: Rn×Rm×Rq → Rn and g: Rn×Rr → Rp are Lipschitz
and u(t),w(t) are piecewise continuous functions [2].

The workspace of the robot is denoted by W and the subset
of the workspace occupied by the robot is referred to A ⊂W
and as A(x(t)) at the state x(t). The occupancy of the ith
obstacle in the workspace is denoted by Bi ⊂W, the union

of all obstacles is denoted as B =
⋃

i Bi, where all obstacles
are considered as static in this work.

The limitations of the perception system is modeled by a
field of view region FOV ⊂W. Any obstacle which is inside
the FOV, Bi ∩ FOV(x(t)) 6= ∅, at state x(t) is assumed
to be detected by the perception system. Thus, the known
workspace Wk is the union of FOVs starting at time t0 and
is a subset of the workspace: Wk =

⋃
t FOV ⊂W.

Due to sensor noise, the initial state of the robot is un-
certain and is represented by the bounded set R0 ⊂ X . The
solution χ(t;x0, ζ(t)) of the closed-loop system consisting
of (1) and the controller u(t) = Φ(y(t), ζ(t)) is affected by
the disturbance and sensor noise while tracking a certain state
reference trajectory ζ. Thus, the reachable set for a reference
trajectory ζ∗(t) during the time span [t0, tf] and uncertain
sets R0, W , N describes the future set of states

Re([t0, tf];R0, ζ,W,N) :=
{
χ(t;x0, ζ(t),ν(t),w(t)) |

t ∈ [t0, tf],x0 ∈ R0, ζ(t) = ζ∗(t),ν(t) ∈ N ,w(t) ∈ W
}
.

We employ the semicolon to distinguish between the argu-
ment (time interval) of the reachable set and the parameters
such as reference trajectory, initial set, bounded disturbance
and sensor noise. In the following we will omit the explicit
notation of the bounded disturbance and sensor noise for
the sake of a more compact notation. Since, one cannot
compute the set of reachable states Re exactly [31], we use
overapproximations R ⊇ Re as described in Sec. V.

B. Problem Statement

Since we assume partially-known environments, the refer-
ence trajectory constitutes only a partial motion plan, which
is referred to partial motion planning [32]. We verify whether
the behavior of an aerial vehicle can lead to a collision during
the planning horizon and beyond. As mentioned earlier, we
can guarantee collision avoidance if the aerial vehicle enters
a Robust Positive Control Invariant Set (RPCIS) and this set
does not contain any obstacles.

Definition 1 (Robust Positive Control Invariant Set (RP-
CIS) (based on [2])): The set Ω is a robust positive control
invariant set if ∀x(0) ∈ Ω, w(t) ∈ W , and ν(t) ∈ N there
exists a reference trajectory ζ(t) and a continuous feedback
control law u(t) = Φ(y(t), ζ(t)) for the system (1), which
assures x(t) ∈ Ω for t > 0.

It is noted, that the definition from [2] refers to the
existence of a state feedback controller, while we later fix the
controller, but refer to the existence of a reference trajectory.
As it becomes clear from the definition, there exists a control
law and a reference trajectory that the robot can follow for
an infinite time horizon once the state is within a RPCIS.
A given initial set R0 is feasible for the system (1) for an
infinite time horizon in the presence of bounded disturbance
W and sensor noise N if there exists a RPCIS Ω with
R0 ⊂ Ω that lies within Wk, is free of obstacles and respects
the state and input constraints. This is formalized as follows.

intended reference
trajectories

valid robust positive
control invariant set

emergency reference
trajectories

border of
known space

invalid robust positive
control invariant set

obstacles

: reachable set of emergency trajectories
: reachable set of intended trajectories

Fig. 2: Decoupling of trajectory verification into ensuring safety during the
planning horizon (intended trajectory) and ensuring feasibility beyond the
planning horizon. The reference trajectories of the intended plans are the
dashed lines and the solid lines illustrate the reference trajectories for the
emergency maneuvers. The associated reachable sets are depicted as shaded
gray areas around the reference trajectories. Both emergency reference
trajectories are not colliding, but the reachable set of the right emergency
maneuver is overlapping with an obstacle and thus it is not safe.

Problem 1 (Verifying Safety for an Intended Trajectory in
Uncertain Environments): Given the initial set of states
of the robot R0, the bounded disturbances W , the bounded
sensor noise N , the intended reference trajectory ζ, and the
known workspace Wk, the problem is to construct a RPCIS
Ω (Def. 1) for the system (1), such that ∀t u(t) ∈ U ,R0 ⊂ Ω,
∀x ∈ Ω : x ∈ X ∧ A(x) ∩ B = ∅ ∧ A(x) ⊂Wk.

IV. GENERAL IDEA

The general idea to efficiently construct a RPCIS as
described in Prob. 1 is to split its construction into two
parts. First, we compute the reachable set of the intended
trajectory online, followed by attaching the RPCIS of a
precomputed loiter circle as depicted in Fig. 2. The RPCIS is
constructed by computing reachable sets until the reachable
set of the current time interval is fully enclosed by a subset
of previously reached states:

Proposition 1. The reachable set R([0, t];R0, ζe) =⋃
t̃∈[0,t]R(t̃;R0, ζe) along the reference trajectory ζe con-

stitute a RPCIS if

∃t ∈ [t0,∞),∃ti ∈ (t0, t) :

R(t;R0, ζe) ⊆ R([t0, ti];R0, ζe).

Proof. According to the semi-group property of reachable
sets [33, p. 39] and with R[0,t]

0 := R([0, t];R0, ζe) one can
iteratively compute reachable sets as

R([0, t+ ∆t];R0, ζe)=R[0,t]
0 ∪R([t, t+ ∆t];R[0,t]

0 , ζe)

= R[0,t]
0 ∪

(
R([t, t+ ∆t];R[0,t]

0 , ζe) \ R[0,t]
0

)
.

(2)

Since RPCISs are defined for an infinite time we have
to repeat (2) forever, unless a fixed point is reached,
i.e. R([0, t+ ∆t];R0, ζe) = R([0, t];R0, ζe). From (2) one
can directly see that a fixed point is reached for
R([t, t+ ∆t];R[0,t]

0 , ζe) \ R[0,t]
0 = ∅. Since

R(t;R0, ζe) ⊆ R([t0, ti];R0, ζe) ⊆ R([0, t];R0, ζe)

Fig. 3: The three components of the loiter maneuver. The reference
trajectories are the solid black lines and the associated reachable sets are
depicted as shaded gray areas around the reference trajectories.

it directly follows that R([t, t + ∆t];R[0,t]
0 , ζe) \ R[0,t]

0 = ∅
so that we reached a fixed point.

With the result from Prop. 1 we can reformulate Prob. 1
into the problem of verifying the intended trajectory and
finding an emergency reference trajectory ζe:

Problem 2 (Robust Emergency Trajectory): Given is an
initial set R0, the motion model (1), the constrained sets
X , U , the known workspace Wk, the bounded sets W , N
and the intended reference trajectory ζn for the time horizon
[t0, te]. The robust emergency trajectory problem is to find
an emergency reference trajectory ζe for the time horizon
[te,∞) with the initial set Rte

0 such that
1) R(te;R0, ζn) ⊆ Rte

0

(initial set of ζe is superset)
2) ∃t ∈ [te,∞),∃ti ∈ (te, t) :
R(t;Rte

0 , ζe) ⊆ R([te, ti];Rte
0 , ζe)

(reachable set of ζe is a RPCIS, Prop. 1)
3) ∀x ∈ R([te, ti];Rte

0 , ζe) :
x ∈ X ∧ A(x) ⊂Wk ∧ A(x) ∩ B = ∅
(reachable set of ζe is feasible and collision-free)

The online verification of the intended trajectory and the
concatenation of a valid robust emergency trajectory result
in a RPCIS according to Prob. 1 for both trajectories.
The emergency trajectory is split into a snap trajectory, a
transition trajectory, and a loiter trajectory (see Fig. 3). The
loiter trajectory ensures a cyclic (infinite time) emergency
maneuver and the transition trajectory describes the transition
from the intended trajectory to the loiter trajectory. In order
to ensure that we can attract a larger set of final states of the
intended trajectory onto a single emergency maneuver, we
construct a snap trajectory. In the next section, we discuss the
problem to verify reference trajectories during the planning
horizon leading to RPCISs.

V. VERIFICATION OF REFERENCE TRAJECTORIES

In this section we briefly describe how reference trajecto-
ries are verified. As previously described and shown in Fig. 2,
our reference trajectories consist of an intended trajectory,
and an emergency trajectory. We compute the reachable set
of the intended trajectory online since it is also computed
online by the trajectory planner. The reachable set of the
emergency trajectories are computed offline since they are
more time consuming due to the length of the maneuver and
the sufficiency to choose from a finite set of precomputed
emergency maneuvers.

Fig. 4: Steps for the computation of an overapproximation of the reachable
set for a linear system.

A. Reachability Analysis

We adopt the method from [30] for online and offline com-
putation of reachable sets for consecutive time intervals Tk =
[tk, tk+1]. To efficiently compute the reachable set of the
nonlinear system (1), we continuously linearize the dynamics
for each time interval Tk as described in [30]. After introduc-
ing the Minkowski addition C ⊕ D := {c+ d|c ∈ C, d ∈ D},
we obtain a linear differential inclusion, which represents all
possible solutions for the time interval Tk of the original
system (1) by ˙̃x ∈ Ãx̃(t)⊕ Ũ(t), where x̃(t) := x(t) − x∗

and x∗ is the linearization point for t ∈ Tk. Ũ(t) is
a set of uncertain inputs that contains the sensor noise,
disturbance, and the linearization errors. For simplicity, we
restrict ourselves to the time interval Tk and later repeat
the presented procedure for all times. For the reachabilty
analysis, we split the effect of Û(t) into its center ûc and the
translated set Û∆ = Û(t)⊕ (−ûc). The following algorithm
(see Fig. 4) takes advantage of the superposition principle
for linear dynamics:

1) Starting from Rtk , compute the set of all solutions
Rtk+1

h for the affine dynamics ẋ = Ax(t) + ûc at time
tk+1.

2) Obtain the convex hull of Rtk and Rtk+1

h . This encloses
all solutions for the current time interval assuming that
trajectories from Rtk to Rtk+1

h are straight lines and
that the input is certain (Û∆ = 0).

3) Compute RTk by enlarging the convex hull of 2) to
account for the error made by the assumption that
trajectories are straight lines and account for the set of
uncertain inputs Û∆ 6= 0.

Details of this algorithm can be found in [30]. As stated
in that work, we use zonotopes as an efficient representation
of reachable sets since they are closed under linear maps
and Minkowski addition, the two main operations of the
presented reachability analysis technique. They are also a
very compact representations of sets in many dimensions as
opposed to e.g. convex sets spanned by vertices.

B. Connectivity of Reachable Sets

In order to guarantee that the reachable set for the
complete trajectory (intended plus emergency trajectory) is
overapproximative, we have to ensure that the final reachable
set of the intended trajectory R(te;R0, ζn) is a subset of the
initial set of the emergency trajectory Rte

0 :

R(te;R0, ζn) ⊆ Rte
0 . (3)

The precomputed (offline) reachable sets of the emergency
trajectory are invariant with respect to position and orien-
tation so that we can arbitrarily translate and rotate the

emergency maneuver such that the connectivity condition
(3) is fulfilled. Additionally, it must be checked that the
offline RPCIS is obstacle-free by intersecting the workspace
occupancy of the RPCIS with the workspace obstacles. It
can be guaranteed that the combination of intended and
robust emergency trajectory is a RPCIS if (3) is fulfilled,
since the robust emergency trajectory is already constructed
as proposed in Prop. 1 and thus is a RPCIS. Thus, it is
possible to generate a library of offline generated RPCIS in
order to online verify intended trajectories.

VI. IMPLEMENTATION
In this section we present a possible implementation of our

novel approach for generating RPCISs for aerial robots. We
use a fixed-wing model, which is applicable for helicopter
flights at high speed, and we generate circular-shaped loiter
trajectories with constant speed. It is noted that the presented
algorithm is independent of the used model, as long as the
model can be described in the form of (1).

A. Fixed-Wing Model for Constant Wind
The state of the robotic system is defined as

x = [x, y, z, ψ, vxy, vz, θ]
ᵀ,

where x, y, z describe the position in W, vxy is the absolute
velocity of the UAV in the xy-plane, vz is the velocity in
the z-direction, ψ is the heading and θ is the roll angle. The
differential equations of the motion model are

ẋ = vxy cos (ψ) + wx, ẏ = vxy sin (ψ) + wy

ż = vz, ψ̇ =
g

vxy
tan (θ), v̇xy = axy, v̇z = az,

(4)

where wx, wy are the constant wind speeds in x and y-
direction and g is the standard gravity. The control input
is

u = [axy, az, θ̇]
ᵀ,

where axy is the acceleration in the xy-plane, az is the
acceleration in the z-direction and θ̇ is the roll rate. The
lateral, longitudinal and altitude error term εx, εy and εz ,
respectively, are given as

εx = cos (ψd)(xd − x) + sin (ψd)(yd − y)

εy = − sin (ψd)(xd − x) + cos (ψd)(yd − y)

εz = zd − z,

where xd, yd, zd are the desired positions. The desired roll
angle θd is given as

θd = k1εy + k2(ψd − ψ) + k3(ψ̇d − ψ̇),

where ψd, ψ̇d are the desired heading and heading rate,
respectively. The control inputs are calculated based on the
desired velocities vxy,d, vz,d:

axy = k5εx + k6(vxy,d − vxy),

az = k7εz + k8(vz,d − vz), θ̇ = k4(θd − θ).

The parameters are chosen as k1 = 0.05, k2 = 5.0, k3 = 5.0,
k4 = 1.0, k5 = 0.1, k6 = 1.0, k7 = 0.13, and k8 = 1.0 to

balance control performance, sensor noise reduction, and
actuator limitations. It is noted that a simple feedback con-
troller, which is not optimized for windy conditions, is used
since the focus of this work lies on the RPCIS generation.

B. Emergency Maneuver

We generate an emergency trajectory as described in
Sec. IV that solves Prob. 2 for a set of uncertain wind
conditions W , sensor noise N , and initial set R0. The
wind uncertainty is represented by two closed intervals
W =

[
[wmin

x , wmax
x], [wmin

y , wmax
y]

]ᵀ
. The wind is defined

relative to the initial heading of the robot, thus the emergency
maneuver is orientation invariant. Without loss of generality,
the initial heading of the emergency maneuver is set to
zero for this implementation. In the following paragraphs
we describe the generation of the reference trajectories to
construct the RPCIS.

Algorithm 1 Iterative Robust Emergency Maneuver

Input: R0,W,N , θ̇, axy, b,N,∆t, k
1: Reference Trajectories
2: [ζt, tt]← transitionTraj(R0, axy, θ̇)
3: [ζl, tl]← loiterTraj(ζt)

4: Determine Reachable Sets
5: Rt ← R(tt;R0, ζt)
6: Rl ← R(tl;Rt, ζl)

7: Check for Steady Set
8: t← tl
9: while do

10: Rl′ ← Rl

11: Rl ← R(tl;Rl′ , ζl)
12: if dist(Rl,Rl′) ≤ τd then
13: break
14: t← t+ tl
15: Inclusion Check
16: R̂b ← Ih(Rl′ , b)
17: Rinit ← R̂b

18: R̂0 ← R̂b

19: for i← 1,N do
20: R̂i = Ih

(
R([(i− 1)∆t, i∆t]; R̂i−1, ζl)

)
21: Rinit ← {Rinit, R̂i} (Concatenation)
22: Rc ← R(tl; R̂N , ζl)
23: for i← 1,N do
24: R̂c ← Ih(Rc)
25: if R̂c \Rinit == ∅ then
26: return R([0, t];R0, {ζt, ζl}) ∪Rinit∪

R([N∆t, tl + i∆t]; R̂N , ζl)
27: else
28: Rc ← R(i∆t;Rc, ζl)

29: b← k b go to 15

1) Transition and Loiter Trajectory: The transition and
the loiter reference trajectory are generated together as
described in Alg. 1. The transition trajectory starts at the
center of R0 and ends in a loiter trajectory (lines 2 to 3) as

shown in Fig. 3. The time horizon of the transition trajectory
and the loiter trajectory are tt and tl, respectively. The
transition trajectory is generated by a constant deceleration
in the xy−plane axy and a constant change of the roll angle
θ̇ (line 2). As shown in [1], this results in compact loiter
patterns and increases the likelihood that they fit inside Wk.
Furthermore, the acceleration in z−direction is determined,
thus that the robot reaches level flight at the end of the
transition trajectory (vz = 0). The following loiter trajectory
is defined as a circular trajectory starting at the end state of
the transition trajectory with constant roll angle and speed
of the robot (line 3). Next, the reachable sets at the end of
the transition and loiter reference trajectory are calculated
(lines 5 to 6). The set inclusion, formalized in Prop. 1,
can only be achieved after the reachable sets sufficiently
converged to a limit cycle [34]. We detect this in lines 8 to 14
after computing the final reachable set of each full turn Rl′

along the loiter circle ζl by checking whether the Euclidean
distance dist() of centers of reachable sets from consecutive
turns is below the threshold τd (line 12). Once the reachable
sets have sufficiently converged to the limit cycle, we return
to the reachable set at the beginning of the previous turn
Rl′ and over-approximate that reachable set by an interval
hull R̂ = Ih(R) ⊇ R for computational reasons. The ith
coordinate of the interval hull R̂ is enlarged by bi, which are
stored in the vector b ∈ Rn resulting in the enlarged set R̂b

(line 16). We perform this valid interval hull approximation
(overapproximation) because set inclusion of zonotopes is
infeasible in high dimensional space, while set inclusion of
interval hulls is computationally cheap. Since it is unlikely
that the reachable set after one turn ends in exactly that
interval hull, we over-approximate the successor reachable
set of a time interval ∆t by another interval hull, which is
repeated N times (lines 18 to 21). This results in the set
of the N + 1 interval hulls Rinit = {R̂b, R̂1, · · · , R̂N} with
R̂i = Ih

(
R([(i− 1)∆t, i∆t]; R̂i−1, ζl)

)
. Next, the reach-

able set is continued from the last interval hull R̂N of
Rinit until the turn is completed resulting in the set Rc in
line 22. This set is over-approximated by its interval hull
R̂c in line 24. This is valid since if the overapproximation
is included, the original set is included, too. The inclusion
check of Prop. 1 (line 25) is performed by the compliment
between R̂c and Rinit. If the inclusion check fails, the set Rc

is propagated one time step further (line 28) and the inclusion
check is repeated with its overapproximating interval hull
R̂c, which is repeated for up to N times. If all inclusion
checks fail, the size of the initial set R̂b is increased by
increasing b (line 29) by a constant factor k > 1. This
step is repeated until the inclusion check passes or until the
constraints of the system (1) are violated, which aborts the
algorithm. In that event, the reference trajectories must be
adopted by reducing the roll rate θ̇ or the deceleration axy
of the transition trajectory resulting in a larger loiter radius
of the reference trajectory and Alg. 1 is initialized again. If
the inclusion check in line 25 is true, we return the RPCIS
according to Def. 1.

This algorithm is used to offline determine a valid RPCIS
and thus it does not affect the online capabilities of the
overall verification of intended trajectories.

2) Snap Trajectory: As described in [35] we use a param-
eterized reference trajectory with linear change in curvature
and speed. Additionally, we extended the reference trajectory
by the z-dimension. The state reference trajectory needs to
provide information about the position x(t), y(t), z(t) the
heading ψ(t) and the heading rate (roll angle) ψ̇(t) which
are obtained by integrating the following equations

ẋ = cos(ψ)vxy(t), ẏ = sin(ψ)vxy(t), ż = vz, ψ̇ = v(t)κ(t).

The resulting reference trajectory depends on the speed
vxy(t), vz(t) and curvature κ(t), which are defined as

vxy(t) = vxy(0) + axyt, vz(t) = vz(0) + azt, vz(0) = 0

κ(t) = κ(0) + κ̇t,

where axy, az and κ̇ are the parameters of the reference
trajectory. The parameters are added to the reachability
analysis by defining new state variables to the system with
zero dynamics. The initial values vxy(0), vz(0), κ(0) ensure
that the final state of the snap trajectory is the initial state of
the transition trajectory. In order to perform the reachability
analysis, the dynamics of the system are described relative to
the parameterized reference trajectory. The 13 dimensional
state space consists of the longitudinal error, lateral error,
error in altitude, heading error, error in vxy , error in vz , error
in roll angle, and 6 error terms describing the values of the
parameterized reference trajectory and their first derivative.
The reader is referred to [35] for a more detailed description.
Therefore, we verify the snap trajectory for a continuous
(infinite) set of initial curvatures and speeds. In contrast
to [35] we use the parameterized reference trajectory to
compute the backward reachable set [36].

C. Validity of the Emergency Maneuver

According to Prob. 2 we still need to ensure that the
resulting reachable sets of the reference trajectories are
collision-free and do not violate the constraints of the robot
in order to be a valid RPCIS. The state constraints are
checked by projecting the reachable set of each consecutive
time interval to the corresponding dimension and comparing
it to the valid range of the corresponding state. The reachable
sets are overapproximated by interval hulls for the x, y and
z−direction which allows one to perform an efficient colli-
sion checking with the obstacles in the workspace. In order
to account for the robot shape A, the obstacles are enlarged,
which is often referred to as the free space (configuration
space) of the robot. The collision checking is performed by
sequentially checking the intersection between the interval
hulls and the enlarged obstacles. The same method is used to
ensure that all reachable sets are inside the known workspace
Wk by treating the compliment W \Wk as an obstacle.

VII. SIMULATION

We use simulation scenarios to evaluate the novel approach
from Sec. VI. The rotorcraft is described by the fixed-wind

model from Sec. VI-A and has the following relevant con-
straints for generating the emergency maneuver: maximum
roll angle |θ|≤0.52 (30◦), maximum roll rate |θ̇|≤0.26 rad/s
(15

◦
/s), maximum accelerations |axy|≤1 m/s2, |az|≤1 m/s2.

These are the same constraints as used for the ULB platform
[1]. In order to construct robust emergency maneuvers, we
need to initialize Alg. 1. Therefore, the disturbance is set
to W =

[
[−0.5, 0.5]m/s, [−0.5, 0.5]m/s

]ᵀ
and the initial set

is set to
R0 =

[
[−3.45, 3.45]m, [−2.45, 2.45]m,

[−7.49e−4, 7.49e−4]m, [−2.89e−2, 2.89e−2]rad,

[49.66, 50.31]m/s, [−8.75e−5, 8.75e−5]m/s,

[−0.11, 0.11]rad
]ᵀ
.

The initial set results from the reachability analysis of the
robot following a straight line oriented in the x−direction
with 50 m/s ending at the origin (intended trajectory). The
bounded sensor noise N for this scenario is set to

N =
[
[−0.1, 0.1]m, [−0.1, 0.1]m, [−0.1, 0.1]m,

[−0.01, 0.01]rad, [−0.1, 0.1]m/s, [−0.1, 0.1]m/s,

[−0.01, 0.01]rad
]ᵀ
,

and the noise gets added to the motion model (4) of the
robot. We generate the transition and loiter trajectory as
described in Sec. VI-B.1 with the maximum allowed roll
angle. The transition trajectory is generated with a roll
rate of 0.22 rad/s and a deceleration of axy = −0.8 m/s2

starting at position [0; 0; 0] with heading ψ = 0 until
the heading reaches ψ = π while the roll angle is
saturated at its maximum allowed value. The speed of
the robot at the end of the transition trajectory is 28.4 m/s
resulting in a loiter circle with radius of 174.5 m. Alg. 1
is not able to verify the resulting emergency trajectory,
since the maximum roll constraints are violated. Thus,
the maximum roll angle of the transition trajectory is
sequentially decreased until it reaches 0.436 rad, resulting
in a valid emergency trajectory. The corresponding loiter
circle has a radius of 176.1 m. For the inclusion check from
Sec. VI-B.1, the reachable set is converted to an interval
hull and increased by b = [1.3, 1.3, 1.3, 1.05, 1.1, 1.1, 1.1].
The resulting emergency maneuver together with example
plots from the inclusion check are shown in Fig. 5. The
reachable sets are computed for a time interval of 0.01 s
which is equivalent to a 100 Hz tracking frequency. The
snap trajectory is constructed by simulating the system
for 0.9 s until the roll constraint of the system is violated.
Therefore, the intervals κ̇(t) ∈ [−2.5e−4, 2.5e−4]1/ms,
axy ∈ [−0.25, 0.25]m/s2, az ∈ [−0.5,+0.5]m/s2 are used
for the parameterized reference trajectory. This emergency
maneuver can be used to verify any intended trajectory
ending with a curvature of κ ∈ [−2.25e−4, 2.25e−4]1/m,
speed of vxy ∈ [49.4, 50.5]m/s, vz ∈ [−1.05, 1.05]m/s as
long as the final reachable set of the intended trajectory is
a subset of the initial set of the emergency maneuver.

In the following we briefly discuss the presented approach

for the application to the ULB equipped with a LIDAR
as described in [1]. The LIDAR has a range of 800 m
and the maximum speed is 60 m/s. Due to the limited
sensor range and high speeds, the intended trajectories are
typically verified for a horizon of 2–4 s. The verification
of the intended trajectories can be performed online, since
the current implementation (single threaded) takes approx.
80% of the time of the trajectory. However, since the loiter
maneuvers at high speeds can take up to 70 s, we use our
precomputed emergency maneuvers. The calculation of an
emergency maneuver takes about 3 to 5 times longer than
the actual time span of the emergency maneuver, since for
the inclusion check the reachable sets need to be calculated
for multiple loiter turns as described in Alg. 1.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper we discuss the problem of safety for a robotic
system in uncertain and partially-known environments. To
the best of the authors’ knowledge, this is the first time
that safety for aerial robots in the presence of bounded
disturbances and bounded sensor noise is verified for an
infinite time horizon. Therefore, we propose a new algorithm
to generate robust control invariant sets based on recent
advances in reachability analysis. The example implemen-
tation for aerial vehicles uses loiter circles to ensure that
the robot will stay inside the partially-known workspace.
Each generated emergency maneuver can guarantee safety
for a set of intended trajectories. Furthermore, simulation
scenarios are presented, verifying the novel concept and the
implementation.

In future work we want to use this approach to offline
generate an extended library of emergency maneuvers al-
lowing to online verify trajectories at high speeds. We also
plan to verify different closed-loop models to validate our
new approach.

ACKNOWLEDGMENT

This work is supported by ONR under contract N00014-
12-C-0671 and by the German Research Foundation under
grant AL 1185/3-1.

REFERENCES

[1] S. Arora, S. Choudhury, D. Althoff, and S. Scherer, “A principled
approach to enable safe and high performance maneuvers for au-
tonomous rotorcraft,” in AHS 70th Annual Forum, Montreal, Quebec,
Canada, May 20-22, 2014.

[2] F. Blachini, “Set invariance in control,” Automatica, vol. 35, no. 11,
pp. 1747–1767, 1999.

[3] H. Michalska and D. Mayne, “Robust receding horizon control of con-
strained systems,” IEEE Transactions on Automatic Control, vol. 38,
no. 11, pp. 1623–1633, 1993.

[4] E. C. Kerrigan and J. M. Maciejowski, “Invariant sets for constrained
nonlinear discrete-time systems with application to feasibility in model
preditctive control,” in Proc. of the IEEE Conf. on Decision and
Control, 2000, pp. 4951–4956.

[5] T. Schouwenaars, “Safe trajectory planning of autonomous vehicles,”
Ph.D. dissertation, Massachusetts Institute of Technology, 2006.

[6] J. R. Gossner, B. Kouvaritakis, and J. A. Rossiter, “Stable generalized
predictive control with constraints and bounded disturbances,” Auto-
matica, vol. 33, no. 4, pp. 551–568, 1997.

[7] A. G. Richards and J. P. How, “Robust stable model predictive control
with constraint tightening,” in Proc. of the IEEE American Control
Conference, 2006, pp. 1557–1562.

Fig. 5: a) Resulting concave hull of the emergency maneuver partitioned in snap (light gray), transition (dark gray) and loiter trajectory (light gray). b) 50
Monte Carlo simulations are performed to demonstrate the performance of the reachability analysis c) The black box shows the final interval hull of the
snap trajectory and the gray area illustrates the concave hull of the corresponding reachable sets d) and e) show the valid inclusion check of the robust
loiter trajectory for the x, y and vxy , θ dimension. The black polygons represent the array of interval hulls Rinit and the solid gray polygons represent
R̂c.

[8] B. Luders, “Robust trajectory planning for unmanned aerial vehicles
in uncertain environments,” Ph.D. dissertation, Massachusetts Institute
of Technology, 2008.

[9] J. M. Bravo, T. Alamo, and E. F. Camacho, “Robust mpc of
constrained discrete-time nonlinear systems based on approximated
reachable sets,” Automatica, vol. 42, no. 10, pp. 1745–1751, 2006.

[10] D. Limon, I. Alvarado, T. Alamo, and E. Camacho, “Robust tube-
based MPC for tracking of constrained linear systems with additive
disturbances,” Journal of Process Control, vol. 20, no. 3, pp. 248 –
260, 2010.

[11] S. Raković, B. Kouvaritakis, M. Cannon, and C. Panos, “Fully
parameterized tube model predictive control,” International Journal
of Robust and Nonlinear Control, vol. 22, no. 12, pp. 1330–1361,
2012.

[12] D. Q. Mayne, M. M. Seron, and S. V. Raković, “Robust model predic-
tive control of constrained linear systems with bounded disturbances,”
Automatica, vol. 41, no. 2, pp. 219–224, 2005.

[13] S. M. LaValle and J. J. Kuffner, “Randomized kinodynamic planning,”
The Int. Journal of Robotics Research, vol. 20, pp. 378–401, 2001.

[14] T. Fraichard and H. Asama, “Inevitable collision states. a step towards
safer robots?” Advanced Robotics, vol. 18, no. 10, pp. 1001–1024,
2004.

[15] R. Parthasarathi and T. Fraichard, “An inevitable collision state-
checker for a car-like vehicle,” in Proc. of the IEEE International
Conference on Robotics and Automation, 2007, pp. 3068–3073.

[16] D. Althoff, M. Werling, N. Kaempchen, D. Wollherr, and M. Buss,
“Lane-based safety assessment of road scenes using Inevitable Col-
lision States,” in Proc. of the IEEE Intelligent Vehicles Symposium,
2012.

[17] D. Althoff, J. J. Kuffner, D. Wollherr, and M. Buss, “Safety assess-
ment of robot trajectories for navigation in uncertain and dynamic
environments,” Springer Autonomous Robots, vol. SI Motion Safety
for Robots, 2011.

[18] A. Bautin, L. Martinez-Gomez, and T. Fraichard, “Inevitable collision
states: a probabilistic perspective,” in Proc. of the IEEE Int. Conf. on
Robotics and Automation, 2010.

[19] S. Karaman and E. Frazzoli, “High-speed flight in an ergodic forest,”
in IEEE Conference on Robotics and Automation, 2012, pp. 2899–
2906.

[20] ——, “Linear temporal logic vehicle routing with applications to
multi-uav mission planning,” Journal of Robust and Nonlinear Con-
trol, vol. 21, no. 12, pp. 1372–1395, 2011.

[21] T. Wongpiromsarn, U. Topcu, and R. M. Murray, “Receding horizon
temporal logic planning,” IEEE Transactions on Automatic Control,
vol. 57, no. 11, pp. 2817–2830, 2012.

[22] A. I. M. Ayala, S. B. Andersson, and C. Belta, “Temporal logic

motion planning in unknown environments,” in Proc. of the IEEE/RSJ
International Conference on Intelligent Robots and Systems, 2013, pp.
5279 – 5284.

[23] M. Kloetzer and C. Belta, “Automatic deployment of distributed teams
of robots from temporal logic specifications,” IEEE Transactions on
Robotics, vol. 26, no. 1, pp. 48–61, 2010.

[24] I. Saha, R. Ramaithitima, V. Kumar, G. J. Pappas, and S. A. Seshia,
“Automated composition of motion primitives for multi-robot systems
from safe ltl specifications,” in Proc. of the IEEE/RSJ International
Conference on Intelligent Robots and Systems, 2014, pp. 1525 – 1532.

[25] G. E. Fainekos, A. Girard, H. Kress-Gazit, and G. J. Pappas, “Temporal
logic motion planning for dynamic robots,” Automatica, vol. 45, no. 2,
pp. 343–352, 2009.

[26] S. Prajna, “Barrier certificates for nonlinear model validation,” in
Decision and Control, 2003. Proceedings. 42nd IEEE Conference on,
vol. 3, 2003, pp. 2884–2889.

[27] P. A. Parrilo, “Structured semidenite programs and semialgebraic
geometry methods in robustness and optimization,” Ph.D. dissertation,
California Institute of Technology, 2000.

[28] S. Prajna, A. Jadbabaie, and G. Pappas, “A framework for worst-case
and stochastic safety verification using barrier certificates,” Automatic
Control, IEEE Transactions on, vol. 52, no. 8, pp. 1415–1428, 2007.

[29] A. Majumdar and R. Tedrake, “Robust online motion planning with
regions of finite time invariance,” in Algorithmic Foundations of
Robotics X, ser. Springer Tracts in Advanced Robotics. Springer
Berlin Heidelberg, 2013, vol. 86, pp. 543–558.

[30] M. Althoff and J. M. Dolan, “Online verification of automated road
vehicles using reachability analysis,” IEEE Transactions on Robotics,
vol. 30, no. 4, pp. 903–918, 2014.

[31] G. Lafferriere, G. Pappas, and S. Yovine, “A new class of decidable
hybrid systems,” in Hybrid Systems: Computation and Control,
ser. Lecture Notes in Computer Science, F. Vaandrager and J. van
Schuppen, Eds. Springer Berlin Heidelberg, 1999, vol. 1569, pp. 137–
151. [Online]. Available: http://dx.doi.org/10.1007/3-540-48983-5 15

[32] S. Petti and T. Fraichard, “Safe motion planning in dynamic envi-
ronments,” in Proc. of the IEEE Int. Conf. on Intelligent Robots and
Systems, 2005, pp. 2210–2215.

[33] T. Dang, “Vérification et synthèse des systèmes hybrides,” Ph.D.
dissertation, Institut National Polytechnique de Grenoble, 2000.

[34] H. K. Khalil, Nonlinear Systems. Prentice Hall, 2002.
[35] D. Heß, M. Althoff, and T. Sattel, “Formal verification of maneuver

automata for parameterized motion primitives,” in Proc. of the Int.
Conf. on Intelligent Robots and Systems, 2014, pp. 1474–1481.

[36] I. M. Mitchell, “Comparing forward and backward reachability as tools
for safety analysis,” in Hybrid Systems: Computation and Control, ser.
LNCS 4416. Springer, 2007, pp. 428–443.

