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Abstract— Reachability analysis is an important technique
for formally verifying continuous systems, as well as for guaran-
teed state estimation, stability analysis, and controller synthesis.
We present a detailed assessment of the computational efficiency
for the reachability analysis of linear systems with respect to the
two most scalable set representations: zonotopes and support
functions. As a result, we propose representing reachable sets
as a combination of support functions and zonotopes. This mix
of representations can be converted to polyhedra of desired
(directional) precision, at a higher precision compared to
exclusively using support functions or zonotopes. The benefits
are shown by an in-depth analysis of computational complexity
and by numerical experiments.

I. INTRODUCTION

We consider the problem of computing the set of all the
states that are reachable in a dynamical system, which is also
known as set-based reachability analysis. Despite recent ad-
vances, the trade-off between runtime and accuracy remains
a central problem in reachability analysis, particularly for
systems with switched dynamics.

a) Contributions: We propose a novel approach with
precise control over the balance between approximation
error and scalability, particularly tailored to linear systems
with changing dynamics. Although successful approaches
have been developed for linear systems, we revisit this
problem to introduce a novel combination of zonotopes with
support functions, which provides unique advantages. The
findings of this paper for linear systems translate to nonlinear
systems since reachability analysis for nonlinear systems
often uses as an underlying technique the algorithms for
linear systems, e.g., in [1]–[3]. Those approaches obtain the
results for nonlinear systems by adding the linearization error
as an additional uncertain input to the constantly changing
underlying linear abstraction.

The main contribution of this paper is the concept of repre-
senting the reachable sets as a combination of support func-
tions and zonotopes. This representation can be converted to
constraint polyhedra of desired (directional) precision. Exist-
ing algorithms for support functions are tailored specifically
to affine dynamics (linear dynamics with nondeterministic
offsets). As already mentioned, nonlinear dynamics can
be approximated with piecewise affine dynamics, but this
requires switching the dynamics. Existing support function
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algorithms are not scalable when the dynamics change, as
will be examined in detail in this paper.

b) Related Work: The content of this paper builds on
research going back more than 20 years. Notable break-
throughs were the introduction of zonotopes for reachability
analysis in [4], recurrence equations for piecewise affine
dynamics in [5], the use of zonotopes for scalability of
uncertain systems in [6], and the use of support functions
for scalability in [7]. To the best of our knowledge, this is
the first work on combining zonotopes and support functions.
In this paper, we limit the discussion to switched dynamics,
which change only at isolated points in time. A more general
case of uncertain parameters is considered in [8] and of
time-varying parameters in [9]. Other related work is cited
throughout the paper.

c) Outline: In Sec. II, we briefly present zonotopes and
support functions, as well as the main geometric operations
on them. In Sec. III, we present the problem of approx-
imating the flowpipes of systems with affine dynamics.
In Sec. IV, we analyze and compare the complexity of
implementing the algorithm from Sec. III for zonotopes and
support functions. Our observations lead us to a combination
of support functions and zonotopes, presented in Sec. V.

II. EFFICIENT SET REPRESENTATIONS FOR
REACHABILITY ANALYSIS

We briefly introduce zonotopes and support functions,
which are known to lead to highly scalable reachability
computations. The downside of zonotopes is that they are
not closed under certain set operations used in reachability
analysis and the downside of support functions is that the
number of evaluations may increase prohibitively if geomet-
ric operations are chained.

A. Zonotopes

A zonotope Z ⊆ Rn is defined by a center c ∈ Rn and a
finite number of generators v1, . . . , vk ∈ Rn:

Z =
{
c+

k∑
i=1

αivi

∣∣∣ αi ∈ [−1, 1]
}
.

A common denotation for zonotopes is
Z = (c, 〈v1, . . . , vk〉). We introduce the order of a zonotope
as o = k

n . A zonotope can be seen as the Minkowski
addition of line segments resulting in centrally symmetric
convex polytopes as shown in Fig. 1, which illustrates how
each generator spans the zonotope.

Throughout the paper we only consider the number of re-
quired binary operations (i.e. operations where two operands
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Fig. 1: A two-dimensional zonotope with center c spanned by
generators v1, v2, v3, v4.

are required) for set-based operations. The only unary op-
erations required in this paper are absolute value com-
putation, sign changes, and concatenations of lists, whose
computational effort can be safely neglected. We introduce
the operator Op(·), which returns the number of binary
operations. For computational complexity (i.e. the bound on
the number of binary operations in the limit), we use the
well known big-O notation O (·). Please note that we have
to make certain axiomatic assumptions on the number of
operations. For instance, for the multiplication Ab, where
A ∈ Rm×n and b ∈ Rn, we assume a maximum of mn
multiplications and a maximum of mn additions, making
2mn total binary operations. Thus, we do not assume special
numerical tricks that have been developed for large matrices,
e.g. one can multiply two n × n matrices with complexity
O
(
n2.376

)
rather than O

(
n3
)
, where the latter would be

considered as the ”schoolbook method” [10].
We present in Tab. I how the geometric operations required

for reachability are implemented for zonotopes, which are
Minkowski sum X ⊕ Y = {x + y | x ∈ X , y ∈ Y}, linear
maps MX = {Mx | x ∈ X}, and convex hull CH(X ,Y) =
{(1− λ)x+ λy|x ∈ X , y ∈ Y, λ ∈ [0, 1]}. Please note that
the convex hull operation in Tab. I is not exact, but the error
is bounded by

∑
i‖vi − eAδvi‖ and sufficiently small for

typical time step sizes in reachability analysis.
Since the number of generators of a zonotope increases

during the reachability analysis due to the Minkowski sum
and other operations, it is necessary to overapproximate a
zonotope with another one that has fewer generators. The
approach from [6] reduces the number of generators so that
the resulting zonotope has a user-defined order oR (oR ≥ 1).
Note that this approximation is tight in the positive and neg-
ative axis directions. The computational cost for k generators
is O (nk log k). Zonotopes are not closed under convex hull
and intersection, which motivates the introduction of support
functions in the next subsection.

B. Support Functions

In this subsection, we provide definitions for polyhedra
and support functions, and recall some fundamental proper-
ties. A halfspace H =

{
x ∈ Rn | aTx ≤ b

}
, with normal

vector a ∈ Rn and b ∈ R is one half of the space after
dividing it by a hyperplane. A polyhedron P ⊆ Rn is the
intersection of a finite number of halfspaces, written as

P =
{
x ∈ Rn

∣∣∣∧m

i=1
aTix ≤ bi

}
,

`
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0
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Fig. 2: Evaluating the support function in a set of directions
provides a polyhedral outer approximation.

where ai ∈ Rn and bi ∈ R. A polytope is a bounded poly-
hedron. The support function of a compact set X attributes
to a direction ` ∈ Rn the scalar value

ρX (`) = max
{
`Tx

∣∣ x ∈ X}.
For a given direction `, it defines the position of a halfspace

H` =
{
x ∈ Rn|`Tx ≤ ρX (`)

}
,

which touches and contains X . If ` is of unit length, then
ρX (`) is the signed distance ofH` to the origin, see Fig. 2(a).
Evaluating the support function for a set of directions L ⊆
Rn provides an overapproximation

dXeL =
⋂
`∈L

{
x ∈ Rn|`Tx ≤ ρX (`)

}
, (1)

i.e., X ⊆ dXeL. If L = Rn, then X = dXeL, so the
support function represents any convex set X exactly. If
L is a finite set of directions L = {`1, . . . , `m}, then
dXeL is a polyhedron, as shown in Fig. 2(b). This is also
referred to as a template polyhedron with L being the
template directions. The difference between using support
functions and traditional methods for template polyhedra,
e.g., [11], lies in the fact that the overapproximation dXeL
can be refined at any time, and incrementally, by adding
more directions to L. One can interpret evaluating support
functions as the lazy, on-demand, construction of a template
polyhedron. The operations for support functions required
by our reachability algorithm are listed in Tab. II, where
we measure the number of binary operations per template
direction. The final cost will depend on how many directions

TABLE I: Required operations for zonotopes, see [6].

operands

Z1 = (c, 〈v1, . . . , vk〉),Z2 = (d, 〈w1, . . . , wm〉) ⊂ Rn,M ∈ Rm×n

realization Op(·)

Z1 ⊕Z2 = (c+ d, 〈v1, . . . , vk, w1, . . . , wm〉) n

MZ1 = (Mc, 〈Mv1, . . . ,Mvk〉) 2mn(k + 1)

CH(Z1, eAδZ1) ⊆ 1
2
(c+ eAδc, 〈v1 + eAδv1, . . . , 2n2(k + 1)+

vk + eAδvk, v1 − eAδv1, . . . , vk − eAδvk, c− eAδc〉) 2n(k + 2)



TABLE II: Required operations for support functions, see [13].

Op(·) for one
realization direction `

ρX⊕Y (`) = ρX (`) + ρY (`), (X ,Y ⊆ Rn) 1

ρMX (`) = ρX (M
T`), (M ∈ Rm×n) 2mn

ρCH(X ,Y)(`) = max{ρX (`), ρY (`)} 1

are evaluated. Evidently, support functions do not enable
us to avoid the curse of dimensionality in general: An
n-dimensional approximation with a distance of ε to the
real set requires O

(
1/εn−1

)
evaluations of the support

function [12]. To combine zonotopes with support function,
we require the support function of a zonotope.

Lemma 1 (Support function of a zonotope): The support
function of a zonotope Z = (c, 〈v1, . . . , vk〉) is

ρZ(d) = dTc+

k∑
i=1

|dTvi|,

which involves 2n(k + 1) numeric operations. �

Proof: The support function of a zonotope is [14, Prop. 2.2]

ρZ(d) = ‖MTd‖1 + dTc = dTc+

k∑
i=1

|dTvi|.

∑k
i=1 σi involves kOp(σi) operations, where σi = |dTvi|

and Op(σi) = 2n, resulting in 2nk+2n = 2n(k+1) binary
operations. �

III. FLOWPIPE APPROXIMATION

In our work, we consider linear systems of the form

ẋ(t) = Ax(t) + u(t), x(0) ∈ X0, ∀t : u(t) ∈ U , (2)

where A ∈ Rn×n and the input set U is convex. To simplify
notation, we assume that constants and input mappings are
modeled within U , e.g., dynamics of the form ẋ(t) =
Ax(t) + b + Bv(t), ∀t : v(t) ∈ V are modeled with (2)
by setting U = {b} ⊕ BV . The input signal u(t) is allowed
to be piecewise continuous. A trajectory xx0,u(·)(t) from a
state x0 is the solution of the differential equation (2) for a
given initial condition x(0) = x0 and a given input trajectory
u(·), whereas u(t) only refers to a value at time t:

xx0,u(·)(t) = eAtx0 +

∫ t

0

eA(t−s)u(s)ds. (3)

It consists of the superposition of the homogeneous solution
(u(·) = 0) and the input solution (x0 = 0). Our goal is to
compute the reachable set

Xt = {xx0,u(·)(t) | x(0) ∈ X0,∀t : u(t) ∈ U}.

For linear systems, the reachable set is (see [7], [15])

Xt =eAtX0 ⊕
∫ t

0

eA(t−s)Uds = eAtX0 ⊕
∫ t

0

eAsUds

=eAtX0 ⊕ lim
δ→0

bt/δc⊕
j=0

eAδjδU︸ ︷︷ ︸
=:Yt(A,U)

. (4)

The matrix eAδj in (4) is different for each j, so that infinitely
many Minkowski sums have to be computed as δ → 0.
Different methods for overapproximating the input solution
Yt by a finite sum have been proposed [7], [9], [14]–[16],
which in essence only require Minkowski sum and linear
transformation. Comparing the advantages and disadvantages
of the previously developed approaches is outside the scope
of this paper. Since the essence of the previously developed
algorithms is the combined use of Minkowski sums and
linear transformations. We use the approach in [7] (not the
most accurate one), since it can be compactly written as

ŶδN (A,U) :=

N−1⊕
j=0

eAδj
(
δ U ⊕ Eδ(A,U)

)
, (5)

where the derivation of the error Eδ is detailed in [7]. Note
that we use the convention

⊕−1
j=0(·) = 0.

In this work we refer to a flowpipe segment when we
particularly want to stress that we mean a reachable set for
a time interval, which we denote as

Xt,t+δ =
⋃

t≤τ≤t+δ

Xτ .

A flowpipe segment over the time interval [t, t + δ] can be
constructed from a flowpipe segment over [0, δ] using

Xt,t+δ = eAtX0,δ ⊕ Yt(A,U). (6)

We approximate X0,δ with a set Ω0(X0, U), whose construc-
tion will be discussed in detail in Section IV. Substituting
this set in (6) and considering time points t = δj, we obtain
an approximation

Ωj := eAδjΩ0(X0, U)⊕ Ŷδj(A,U) (7)

as illustrated in Fig. 3. A flowpipe segment X0,(N+1)δ is
then approximated by the union of Ω0, . . . ,ΩN . Thus, we
can represent the reachable sets for infinitely many points in
time by finitely many flowpipe segments. In the next section,
the above principles are assessed in terms of representing the
sets via zonotopes and support functions.

IV. COMPLEXITY ASSESSMENT FOR FLOWPIPE
APPROXIMATIONS

In this section, we compare zonotopes and support func-
tions in terms of the runtime cost for approximating flow-
pipes. We do not compare the results with polyhedra since
they are infeasible for larger systems due to the computa-
tional complexity of convex hulls and Minkowski addition
[17] and further since the representation of results would
be infeasible (a zonotope with k generators has 2k!/((k −
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Fig. 3: A reach set cover Ω0,Ω1, . . . computed with zonotopes
using the implementation in [8] (solid).

n + 1)!(n − 1)!) halfspaces [18]). The results are used to
optimally combine set representations in the next section.

A. Approximating the Input Solution

We discuss different ways to compute the set of input
solutions ŶδN in (5). Since zonotopes are closed under linear
map and Minkowski sum, and both can be computed very
efficiently, they are well suited for computing ŶδN . Typically,
U is a zonotope, e.g., a hyperbox. The set Eδ in (5) is a
hyperbox with n generators, when using the infinity norm
for its computation [7].

Lemma 2 (Operations for ŶδN using zonotopes):
Assuming U is a zonotope with order oU and eAδ is known,
Op(ŶδN ) is N

(
(2oU + 4)n3 + 4n2 + n

)
− 2n3. �

Proof: The matrices eAδj in (5) can be computed using
the sequence M0 = I , Mj+1 = eAδMj with (N − 1) 2n3

operations, assuming that eAδ is known. Each term Z∗j =
eAδj(δU⊕Eδ) is computed with 2n2(oU n+n+2) operations
(see Tab. I). The summation

⊕N−1
j=0 Z∗j consists of N n

binary operations (see Tab. I) and computing N times Z∗j
(NOp(Z∗j ) operations). Thus, in total, we have

Op(ŶδN ) =NOp(Z∗j ) +N n+ Op(eAδj)

=N 2n2(oU n+ n+ 2) +N n+ (N − 1) 2n3

=N
(
(2oU + 4)n3 + 4n2 + n

)
− 2n3. �

The next lemma provides the number of required binary oper-
ations for computing ŶδN when using support functions. For
convenience, we denote the number of operations required
to obtain a support function of X with

L(X ) = Op(ρX (`)).

Lemma 3 (Operations for ŶδN using supp. functions):
Assuming U is a zonotope with order oU and eAδ is known,
Op(ρŶδN (`)) is N((oU + 1)2n2 + 3n). �

Proof: Computing ρŶδN (`) involves N(2n2 + L(U) + n)
operations [16]. If U is a zonotope with order oU generators,
then L(U) = 2n(oU n+1) according to Lemma 1, so that we
obtain N(2n2+2n(oU n+1)+n) = N((oU+1)2n2+3n).�

Next, we compare the results of the computation of ŶδN
when using zonotopes and support functions.

Theorem 1 (Comparing operations for ŶδN ): The set of
input solutions ŶδN in (5) can be computed using zonotopes

with less operations than a bounding box approximation of
ŶδN using support functions. At the same time, the compu-
tation with zonotopes is tighter since it exactly evaluates (5)
rather than bounding the result by a box. �

Proof: A bounding box has 2n directions. Thus, when using
support functions, we have to evaluate the support 2n times,
which results in 2nN((oU + 1)2n2 + 3n) operations using
Lemma 3. Dividing the number of operations by the ones
required for using zonotopes results in

lim
n→∞

µ = lim
n→∞

N n((oU + 1)4n2 + 6n)

N ((2oU + 4)n3 + 4n2 + n)− 2n3

=
N(4oU + 4)

N(2oU + 4)− 2︸ ︷︷ ︸
>1

.
�

B. Approximating the Affine Solution

It remains to discuss the effects of the set representation
on the affine solution (see (7) for Ŷδj = 0). The difficulty
lies in the initial set Ω0. Most approximation models (see
e.g. in [6], [15]) use an overapproximation based on

Ω0(X0, U) = CH
(
X0, e

AδX0

)
⊕ EU ⊕ EΩ, (8)

where EU compensates for errors due to the set of inputs
U and EΩ compensates for errors due to the curvature of
solutions since the convex hull assumes straight lines. We
denote the order of X0 by oX . An illustration of the zonotope
approximation is shown in Fig. 3.

Lemma 4 (Affine solution with zonotopes): The number
of operations to compute Ω0, . . . ,ΩN using zonotopes is
2n2(oX n+ 1) + 2n(oX n+ 4) for the initial set in (8) and
N 2n2(2oX n + oU n + n + 2) for the propagation eAδjΩ0

with j = 1, . . . , N . �

Proof: The convex hull computation requires 2n2(oX n +
1) + 2n(oX n + 2) operations (see Tab. I) and Minkowski
addition requires n operations (see Tab. I), which is used
twice. Summing the operations yields the result of the lemma
for the initial set. The propagation in (6) for Yt = 0
(homogeneous solution) requires to perform a linear map
N times, where each map requires 2n2(k + 1) operations
(see Tab. I) and the number of generators after the convex
hull computation is 2oX n + 1 (see Tab. I), resulting in
k = 2oX n + oU n + n + 1 for Ω0(X0, U) (see (8)). Thus,
we have 2n2(2oX n + oU n + n + 2) operations for one
propagation. �

Lemma 5 (Affine solution with support functions): The
number of operations to compute Ω0, . . . ,ΩN using support
functions is 2n2 + 3 for the initial set in (8) and

N(2n2 + 2n(oX n+ oU n+ 5/2)) (9)

for the propagation eAδjΩ0 with j = 1, . . . , N . �



Proof: The reachable set of the first time interval in (8) is
performed for one direction as (see Tab. II)

ρΩ0(`) = max
(
ρX0(`), ρX0((eAδ)T`)

)
+ ρEU (`) + ρEΩ(`)

(10)
and requires 1 operation for the convex hull, 2 operations
for the two Minkowski additions, and 2n2 operations for
the linear map (see Tab. II). The propagation is obtained for
support functions as `j+1 = eAδ

T
`j ,

ρΩj (`) = max
(
ρX0

(`j), ρX0
(`j+1) + δρU (`j) + ρEΩ(`j)

)
.

Note that the value of ρX0
(`j+1) can be reused in the

computation of ρΩj+1
(`). Each iteration therefore requires

computing one value of the support of X0, one of U , and
one of EΩ. From the above equation and Tab. II we can
see that computing the support of Ω0,Ω1, . . . ,ΩN in a
given direction ` requires N(2n2 + L(X0) + L(U) + n)
operations. If X0 and U are zonotopes with kX = oX n
(oX ≥ 1) and kU = oU n (oU ≥ 1) generators, then
L(X0) = 2n(oX n + 1) and L(U) = 2n(oU n + 1). Per
direction we get N(2n2 + 2n(oX n+ oU n+ 5/2)). �

Next, we compare the results for the affine solution.

Theorem 2 (Comparing affine solutions): The sequence
Ω0,Ω1, . . . ,ΩN from (7) can be computed using zonotopes
with about the same number of operations as a bounding box
approximation using support functions (for oX ≥ 1). �

Proof: Since the first reachable set only has to be computed
once, we focus on the costs for the propagation. A bounding
box has 2n directions. Thus, when using support functions,
we have to multiply the number of operations in (9) with 2n,
resulting in 2nN(2n2 +2n(oX n+oU n+5/2)) operations.
Dividing the number of operations by the ones required for
using zonotopes results in

lim
n→∞

µhom = lim
n→∞

2nN(2n2 + 2n(oX n+ oU n+ 5/2))

N 2n2(2oX n+ oU n+ n+ 2)

=
2oX + 2oU + 2

2oX + oU + 1︸ ︷︷ ︸
>1

.
�

The approximation quality of the zonotopes, however, de-
pends on the quality of the zonotope approximation of X0, its
generators, and the time step. While for the input convolution
it seems that from a practical point of view, U can be
approximated reasonably well be a zonotope, this need not
be the case for the affine solution. In the case of hybrid
systems, X0 may be the result of an intersection operation.
An illustration of the approximation with support functions
with varying degrees of precision is shown in Fig. 4.

V. COMBINING SUPPORT FUNCTIONS AND ZONOTOPES

In this section, we use the observations of the previous
sections to devise algorithms that combine support functions
and zonotopes. Theorem 1 shows that zonotopes are more
efficient for computing the set of input solutions while pro-
viding more accurate results compared to support functions.
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X2δ

Ω2

Fig. 4: A reach set cover Ω0,Ω1, . . . computed with support
functions using the implementation in [19] (solid), evaluating the
support function in four axis directions (top) and in 256 uniformly
distributed directions (bottom).

Theorem 2 concludes that zonotopes are similarly efficient,
but that the approximation quality depends very much on the
time step, and whether the initial set is a zonotope. Contrary
to the input set, the initial set is frequently not a zonotope,
in particular if our approach is applied to hybrid systems.

Our conclusion is to use support functions for the affine
solution and zonotopes for the input solution, which are
combined to the overall solution:

ρΩj (`) = ρΩ0
(eAδj

T
`) + ρŶδj (`).

Subsequently, we examine the costs and benefits compared to
the conventional support function approach. In the following,
we denote the number of directions in which we evaluate
support functions with σ = oσ n (oσ > 1) to stress that the
number of directions has to be at least linear in the dimension
to ensure that the sets are closed.

A. Time-Invariant Dynamics

In the following we show that zonotopes can be used to
compute, at similar costs, a support function approximation
with higher precision than using support functions directly.
In practice, the order of a zonotope is bounded by oR.

Proposition 1 (Supp. function of ŶδN using zonotopes):
The complexity for computing the support function of ŶδN
for oσ n directions when it is first computed as a reduced
zonotope with order oR is

O
(
oUNn

3
)

+O
(
oσoRn

3
)
. �

Proof: According to Lemma 2, computing ŶδN using zono-
topes is possible with N

(
(2oU + 4)n3 + 4n2 + n

)
− 2n3

operations. From Lemma 1 we have that constructing the
support function of a zonotope for oσ n directions requires
oσ 2n2(k + 1) operations, where k = oR n, so that we have

N
(
(2oU + 4)n3 + 4n2 + n

)
− 2n3 + oσ 2n2(oR n+ 1) =

N
(
(2oU + 4)n3 + 4n2 + n

)
+ 2(oσoR − 1)n3 + 2oσn

2 =

O
(
oUNn

3
)

+O
(
oσoRn

3
)
.



Since the complexity of the order reduction is only
O (nk log k) (see Sec. II-A), with k being the number of
generators of the unreduced zonotope, the overall complexity
remains O

(
oUNn

3
)

+O
(
oσoRn

3
)
. �

From Lemma 3 follows that computing ŶtN directly
with support functions for oσ n directions has complexity
O
(
oσoUNn

3
)
. Since typically oσ � oU and N � oR,

we can conclude that first computing the input solution
with zonotopes and a subsequent transformation to support
functions according to Proposition 1 is beneficial in terms of
computing time compared to directly computing the support
function solution.

B. Time-Triggered Switching

We now turn the case of switching dynamics, where the
switch is triggered at specific points in time:

ẋ(t) = Aix(t)+u(t), x(0) ∈ X0, ∀t ∈ [τi, τi+1] : u(t) ∈ Ui,
(11)

where Ai and Ui change at times τi. To simplify the
discussion, we assume that the time between changes in the
dynamics is a constant and a multiple N of the time step
δ, i.e., τi+1 − τi = Nδ. The approach is easily extended to
varying N and variable time steps between switches [19].

In the following, i ∈ {1, . . . , ν} is the counter for the
number of switches, ν is the total number of switches, and
the index j is the time step since the last switch. We compute
the reachable set at sampling times

ti,j = δ(iN + j).

For the i-th switch, we compute the transformation matrix
Φ̂i ∈ Rn×n, the set of input solutions Ψ̂i ⊆ Rn, and the
initial set Ξi ⊆ Rn for Φ̂0 = I , Ψ̂0 = 0 as

Φ̂i+1 = eAiδN Φ̂i, (12)

Ψ̂i+1 = eAiδN Ψ̂i ⊕ ŶδN (Ai, Ui), (13)

Ξi = Φ̂iX0 ⊕ Ψ̂i, (14)

where ŶδN (Ai,Ui) is an overapproximation of the set of
input solutions as defined in (5). Similar to (7), we obtain
an overapproximation of the reachable states with

ΩiN+j = eAiδjΩ0(Ai,Ui,Ξi)⊕ Ŷδj(Ai,Ui), (15)

where Xti,j ,ti,j+1
⊆ ΩiN+j . We first discuss the cost of

computing the support function of (15) as before, and then
investigate the benefits of using zonotopes to represent the
input solution. We derive the cost of evaluating the support
function of (15) analogously to Lemma 5, but with the initial
set Ξi instead of X0.

Proposition 2 (Overall complexity using supp. functions):
The total cost for evaluating the support function of
Ω0, . . . ,ΩiN in oσ n directions is

O
(
ν2N2n3oUoσ + νNn3oXoσ

)
. �

Proof: After the i-th switch, computing ρΩiN (`),. . . ,
ρΩiN+N

(`) in (15) involves N(2n2 + L(Ξi) + L(Ui) + n)

operations (see Tab. II). From the proof of Lemma 5 we have
L(X0) = 2n(oX n+1) and L(Ui) = 2n(oU n+1). From (14)
and Tab. II we derive L(Ξi) = 2n2 +L(X0)+L(Ψ̂i), where
L(Ψ̂i) is obtained from Lemma 3 and (13): L(Ψ̂i+1) =
2n2 + L(Ψ̂i) + N((oU + 1)2n2 + 3n) ≈ 2n2 + L(Ψ̂i) +
O
(
Nn2oU

)
. We simplify to L(Ψ̂i) ≈ O

(
iNn2oU

)
, and ob-

tain L(Ξi) ≈ O
(
iNn2oU + n2oX

)
. For the N sets after the

i-th switch, we get a cost of O
(
iN2n2oU +Nn2oX

)
. The

total cost for all switches is O
(
ν2N2n2oU + νNn2oX

)
and

thus O
(
ν2N2n3oUoσ + νNn3oXoσ

)
for oσ n directions.�

Corollary 1 (Complexity of input and affine solution):
From Proposition 2 follows directly that the computational
complexity of the input solution with respect to ν, N ,
and n is O

(
ν2N2n2

)
(part of the result in Proposition 2

multiplied with input order oU ) and the complexity of the
affine solution with respect to ν, N , and n is O

(
νNn2

)
. In

practice, N is large (often in the thousands), which makes the
direct support function computation for the input solution
(quadratic in ν,N ) unusable, even for low-dimensional
systems and a moderate number of switches. �

Next, we consider computing Ω0, . . . ,ΩiN when parts
related to the input evaluation are first computed using
zonotopes and then translated to support functions.

Proposition 3 (Supp. function of Ψ̂i using zonotopes):
The complexity for computing the support function of Ψ̂i

in (13) for oσ n directions using reduced zonotopes of order
oR is O

(
ν N n3

)
for N � oR. �

Proof: The zonotope construction of Ψ̂i+1 in (13) when
Ψ̂i has order oR requires 2n2(oR n + 1) operations for
the linear map and n operations for the Minkowski addi-
tion with ŶδN (Ai, Ui) (see Tab. I) so that Op(Ψ̂i+1) =
2n2(oR n + 1) + n + Op(ŶδN ). The order reduction of
Ψ̂i+1 has complexity O (nk log k) (see Sec. II-A) and ob-
taining ŶδN has complexity O

(
n3
)

(see Lemma 2) so that
the overall complexity for obtaining the zonotope Ψ̂i+1 is
O
(
n3
)
. Obtaining a support function has complexity O

(
n2
)

according to Lemma 1 for k = o n, resulting in O
(
n3
)

for oσ n directions. Thus, the complexity for computing
ρΨ̂i+1

(`) remains O
(
n3
)

even though the complexity of ŶδN
is O

(
n3
)
. Since we have to evaluate ρΨ̂i+1

(`) for νN times,
the overall complexity is O

(
ν N n3

)
. �

Thus, Proposition 3 shows that the computational complexity
for switched dynamics, when computing input related results
with zonotopes, is linear in ν, N and cubic in n. When
obtaining the same result with support functions, one has a
complexity of O

(
ν2N2n3

)
according to Corollary 1.

Thus, for switched dynamics, the overall compu-
tational complexity is quadratic in ν and N when
computing with support functions, while it is linear
when computing Ψ̂i using reduced order zonotopes.



TABLE III: Approximating the input solution ŶδN of the heli-
copter example (n = 28, N = 1000).

method oσ oR runtime
[s]

support function (box directions) 2 – 0.42
support function (octagon directions) 56 – 12.27
support function (oct.+uniform dir.) 112 – 26.90
zonotope without reduction – (1000) 0.17
zonotope with reduction – 1 0.17
zonotope with reduction – 10 0.26
zonotope with reduction – 20 0.35
zonotope with reduction – 40 0.53
zonotope with reduction – 80 0.89
zonotope with reduction – 160 1.71
support f. (oct. dir.) from zonotope with red. 56 1 0.18
support f. (oct. dir.) from zonotope with red. 56 10 0.26
support f. (oct. dir.) from zonotope with red. 56 20 0.35
support f. (oct. dir.) from zonotope with red. 56 40 0.53
support f. (oct. dir.) from zonotope with red. 56 80 1.16
support f. (oct. dir.) from zonotope with red. 56 160 2.20

VI. EXPERIMENTS

We validate the theoretical results from the previous
sections on two examples, a helicopter model and a voltage
converter circuit. The experiments were run on a standard
MacBook laptop within a Linux Ubuntu Virtual Machine.

A. Helicopter

We compare zonotopes and support functions with a
helicopter model, taken from [20]. It models the 8-dim.
flight dynamics of the helicopter together with a 20-dim.
H∞-controller, so n = 28. The goal of the controller is
to attenuate wind disturbances. We model the disturbances
with U as [−0.01, 0.01] in the dimensions that represent
the rate of change in longitude, latitude, and altitude, and
0 in all other dimensions, so U is a zonotope of order
oU = 3/28. The model is stiff and all variables are highly
coupled, so relatively small time steps are necessary for
precise results. We compute the approximation of the input
solution ŶδN for δ = 0.003 and N = 1000. The initial values
of the helicopter variables in the interval [−0.1, 0.1] and the
controller variables are initially zero, so X0 is a zonotope of
order oX = 8/28. The runtimes for different methods are
shown in Table III, and a 2-dim. projection of the obtained
set is shown in Fig. 5.

The runtime of the zonotope computation without reduc-
tion is about half of the support function computation of a
bounding box (oσ = 2). This is in line with Theorem 2. The
zonotope result with reduced order oR = 1 is a box identical
to the one produced by the support function approximation
with oσ = 2, but is computed twice as fast. Computing the
support function approximation on the reduced zonotopes
is considerably faster than directly computing it. Due to the
choice of order reduction on zonotopes, the approximation is
tight in the axis directions but not in the octagonal directions,
as shown in Fig. 5(c).
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(a) Support function approximation in 2n (box) and 2n2 (octagon)
directions (solid).
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(b) Zonotope approximation without reduction (solid) and with reduc-
tion of order oR = 1, 10, 20, 40, 80, 160 (dashed).
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(c) Support function approximation in 2n2 (octagon) directions based
on reduced zonotope of order oR = 1, 10, 20, 40, 80, 160 (solid).

Fig. 5: An approximation of the input solution for the helicopter
example, computed using different set representations. A precise
solution is shown in gray for comparison. Note that only a two-
dimensional projection of the 28-dimensional approximation is
shown.

B. Voltage Converter Circuit

This example models a DC-to-DC switched-mode power
converter (buck-boost converter), described in [21], with
continuous dynamics specified by linear ordinary differential
equations. A DC-to-DC converter transforms a DC source
voltage from one voltage level to another utilizing switches
toggled at some (typically kilohertz) frequency with some
duty cycle. The continuous dynamics of the system describe
the current passing through the circuit and the output voltage,
as a function of the input voltage. A clock variable is used
to switch between the charging and the discharging phases
in the duty cycle. We also include a global clock for tracking
the startup time, so the total dimension is n = 4. We
consider a fixed input voltage Vs = 17.5V that is subjected
to a continuous disturbance in the interval [−0.1, 0.1]V .
The system is challenging despite its simple continuous
dynamics, because it switches at a high frequency. The duty
cycle here is 4µs, while the time constant of the output
voltage ranges in the milliseconds. The switched dynamics
are such that overapproximation errors quickly accumulate
and lead to diverging results. We use the support function
implementation from [22] because it delivers higher precision



Fig. 6: Different approximations of the output voltage of a DC-to-
DC converter (voltage in V over time in s). Methods 1 and 2 give
nearly identical results (both dark blue). Method 3 is less precise
(bright green). Method 3 with too much order reduction leads to
divergence (red)

TABLE IV: Performance for the DC-to-DC converter.

method switches ν runtime [s]
1. support function 100 8.2
1. support function 500 248.8
1. support function 1000 1150.3
2. per-switch zonotopes 100 2.1
2. per-switch zonotopes 500 51.2
2. per-switch zonotopes 1000 269.3
3. accumulated input zonotope 100 2.2
3. accumulated input zonotope 500 23.3
3. accumulated input zonotope 1000 71.5

than the simple algorithm from Sect. III. We compare three
variations. In all, the successors of initial states are support
functions, while

1) the input solutions are evaluated as support functions,
2) the input solutions ŶδN (Ai, Ui) are zonotopes, the

accumulated input solution Ψ̂i is a support function,
3) ŶδN (Ai, Ui) and the accumulated input solution Ψ̂i

are zonotopes.
The performance results for different number of switches ν
are shown in Table IV. The order of the zonotopes is reduced
to oR = 100. We evaluate the support function in octagonal
directions plus 100 uniformly distributed directions. The
results show a clear speed-up from using zonotopes, in
particular for many switches.

VII. CONCLUSIONS

In the literature on reachability analysis, algorithms on
zonotopes and support functions have so far been reported
separately. In this paper, we compare in detail the complexity
incurred by both set representations for linear dynamics. Our
finding is that zonotopes are inherently suited for bounding
the input solution since they provide a faster and more
accurate solution. We therefore propose to use zonotopes
to approximate the input solution, and the support function
algorithm to compute the affine solution.

For switching dynamics at fixed points in time, the ad-
vantages for combining zonotopes with support functions
are even more distinct. A direct computation with support
functions would not scale even for low-dimensional systems
and modest numbers of switches (O

(
ν2N2n3

)
). By incor-

porating zonotopes, the complexity can be brought down to

O
(
νNn3

)
, thus providing a practical solution that is linear

in the number of switchings. The algorithm proposed in this
paper lays the groundwork for bringing the power of support
function algorithms to the analysis of nonlinear systems: By
linearizing the system at time-triggered intervals as in [1],
our algorithm can be immediately applied.
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