
Multifunk: Self-Organizing Sensor Networks for Industrial Process Monitoring

Gokul Balakrishnan, Michael Geisinger, Christian Buckl
Fortiss GmbH – An-Institut der TU München
Guerickestr. 25, 80805 München, Germany

balakris@in.tum.de, {geisinger, buckl}@fortiss.org

Abstract

The technology and processes associated with manu-
facturing have undergone a major change during the past
decades. However, what has stayed the same is that avail-
ability of the production system and quality of the pro-
duced goods play a key role. Both aspects can only be met
by adequate monitoring. Monitoring itself should be eas-
ily configurable and allow addition, removal and replace-
ment of sensors without interruption of production. Sen-
sors must at least partially be mobile, namely wireless. The
research project Multifunk aims at development and proto-
typical implementation of software and hardware compo-
nents for monitoring of industrial production processes us-
ing model-driven development, a service oriented architec-
ture, network self-organization and wireless components.
This paper presents current results achieved in design of the
system architecture, implementation of an adequate trans-
port protocol, compliance to standards as well as a proto-
typical use case.

1. Introduction

Automated monitoring in industrial environments im-
proves the efficiency of the production process significantly,
because it allows detection of problems at an early stage,
hence increasing productivity. It is implemented by de-
ploying heterogeneous sensors into the production area and
checking the acquired data against predefined values to de-
tect discrepancies. Besides observation of the process, mon-
itoring data may also be stored and used as quality assess-
ment for the produced goods.

Nowadays, most monitoring systems are static: Sensors
are not mobile, which is partially due to the fact that they
are quite large and have relatively high power consumption.
Distributed processing of the sensor data is often not im-
plemented and detection of discrepancies is usually “hard-
coded” and not specified in a platform independent way.

In the past, this approach has been motivated by the fact

that specialized systems are cost-effective and reconfigura-
tion is not needed. However, technologies available today
allow to build very cost-effective monitoring systems while
retaining flexibility and reconfiguration of the system.

In the Multifunk1 project, research is done to improve
application of state-of-the-art monitoring systems in indus-
trial processing. The project aims at developing new hard-
ware and software technologies for self-organizing, wired
and wireless sensor networks. The system architecture will
be prototypically applied to industrial production scenarios
involving processes with high temperatures and pressures
as well as radiation. The goal is to maximize reliability and
minimize human interaction as well as energy consumption.
This is realized by application of model-driven design, self-
organization and a service-oriented architecture (SOA).

Model-driven design is used to ease conception, pro-
gramming and configuration of monitoring systems. The
system model, which is specified with domain specific lan-
guages at a high level of abstraction, captures all relevant
information for the system. Model transformation and au-
tomatic code generation [8] is used to create the concrete
system from the model. This approach allows non-experts
to develop and adapt the system.

An important aspect in (wireless) sensor networks is self-
organization, which can be used to strengthen reliability
and robustness of the system regarding adaptation to vary-
ing conditions. For example, a self-organizing sensor net-
work may have the ability to reconfigure itself automatically
in response to changes in the number of devices (e.g., due
to failed nodes or addition of new sensors). Typical meth-
ods employed are automatic device detection, adaptation of
routing and optimization of network traffic.

Application of a service oriented architecture aids in
a modular and scalable system design. Services can be de-
ployed to individual nodes in the network and bind to other
services. The concrete placement of a service can be trans-
parent to the user and the other nodes in the system.

In this paper, we will focus on the system architecture
and communication aspects of the Multifunk project and

1http://www.multi-funk.de/



present first results. The development process allows a
seamless integration of new nodes and follows a program-
ming paradigm that aims at a single system illusion.

Section 2 provides an overview of related work followed
by an outline of our current work in Section 3. Section 4
introduces the system architecture, components and related
tools. Section 5 shows the application of the already im-
plemented parts of the system in a simplified use case and
Section 6 summarizes the results achieved so far.

2. Related Work

Akyildiz et al. [1], Townsend et al. [9] and Miao [4]
present a good introduction to sensor networks and appli-
cations. Distributed microsensor networks are used both in
civil and military applications. Microsensors also provide a
more flexible approach to industrial applications and enable
better quality control. Riedel [7] describes self-organizing
sensor networks that may operate autonomously over long
periods of time in remote environments which also requires
a very low power design as covered in Park et al. [6]. Exam-
ples for wireless system architectures, network topologies
and real-time environment testing are discussed by Hill [2].

Jeong et al. [3] analyze the suitability of sensor networks
for industrial processes with the conclusion that a sensor
network cannot meet all requirements of each application
because of different characteristics of heterogeneous com-
ponents.

3. Present Work

The Multifunk project is currently only at an early devel-
opment phase. The present work involves implementation
of the system architecture with a focus on communication
aspects. The base of the system is a generic protocol for the
sensor network that is optimized for energy saving on wire-
less nodes. The self-organizing architecture is built upon
this base. Furthermore, a gateway component is currently
being developed to make the system accessible according
to the Device Profile for Web Services (DPWS) [5].

4. System Architecture

The software architecture is divided horizontally into
four layers (compare Figure 1):

1. The machine layer consists of wired and wireless sen-
sor nodes for physical data acquisition.

2. The network layer is responsible for data transport be-
tween sensor nodes. A common transport protocol ab-
stracts from the heterogeneous communication proto-
cols (e.g., wireless communication with or without en-
cryption, wired field buses).

3. The management layer provides mechanisms for self-
organization and centralized data processing. How-
ever, data may already be preprocessed by specific ser-
vices at the machine or network layers (e.g., for reduc-
tion of data volume).

4. Finally, the factory layer takes care of data storage and
presentation. For quality assessment, data are asso-
ciated to produced goods by RFID tags or barcodes.
Model-driven system design and modification of the
running system is also performed at this layer.

4.1. Sensor Nodes

In the Multifunk project, we consider wired and wireless
devices as sensor nodes. Typical data acquired in context
of the project are temperature, pressure, camera images and
identification tags. Each node offers a set of services that
abstract from the physical world and the concrete imple-
mentation. For services to be placed on a sensor node, the
node requires a certain computation ability. Since services
build upon a middleware layer with a common interface,
their source code is portable across different platforms.

We consider three classes of sensor nodes according to
Table 1. The “OS” column names typical operating sys-
tems. If an operating system is present, the common mid-
dleware layer is realized on top of it. The “DLS” column
specifies whether dynamic loading is supported. Dynamic
loading is used to add new services during runtime. Nodes
without dynamic loading support have to be completely re-
programmed when the firmware has to be adapted. A suit-
able bootloader must be present in any case.

Class Architecture Memory OS DLS
A x86 large Linux yes
B ARM, AVR small Contiki yes
C AVR very small (none) no

Table 1. Sensor Node Classes

4.2. Data Transmission in the Network

In contrast to the wired sensors, wireless sensors need
to be power aware. Network activity and thus power con-
sumption is minimized by local preprocessing and efficient
data compression. This is realized by only transmitting ser-
vice parameters instead of network packets containing a lot
of overhead. The common service model (see Section 4.3)
ensures that the signature of a service call is known in ad-
vance.

Data transmission is based on a binary protocol at the
presentation layer of the ISO/OSI model, which allows it
to be used on Ethernet, WLAN, IEEE 802.15.4 or serial



Machine Layer Network Layer Management Layer Factory Layer

Data acquisition Data transport
Management, data processing 

and data storage

Data presentation

and data export

Wireless

sensor node

sn1

Sender /

receiver

Wired

sensor node

sn2

Wireless 

sensor

S1

Sender /

receiver

Wired

sensor

s2

Data backup

Structured 

database

System modelingNetwork management

Data processing

Channel f2

Medium m1

Medium m2

Visualization terminal

Data export

Sensor coupler

sc1

Sensor coupler

sc2

Channel f1

Service interface

Network node

Data flow

Programming/

configuration flow

Wireless

communication

Wired

communication

Sender /

receiver

Figure 1. Multifunk System Architecture

connections. We call that protocol Multifunk protocol. In
addition, protocol components for efficient data transport
at lower levels (e.g., a network layer component for IEEE
802.15.4) will be implemented as required.

The structure of a packet for a specific service is defined
in a shared C language header file that is currently generated
manually, but will be generated using the model-driven de-
velopment process in the future as follows:

The required properties of the service (name, input and
output parameters with their data types and range of values)
are specified in the service model (compare Section 4.3).
A model-to-model transformation optimizes representation
of the parameters so that the number of bytes for a mes-
sage is reduced. The resulting mapping is used to gener-
ate the header file for service definition and the marshaling
and de-marshaling routines for each target platform. Max-
imum compression is not enforced in all cases, since com-
putations needed to “unpack” the data are expected to waste
even more energy.

Each service is assigned to a service routine, a function
that is called when the service is executed. The function
receives the de-marshaled input parameters and returns the
output parameters by value or by reference. Since the ser-
vice specification must be platform independent, templates
are used to specify the service functions that are based on
a middleware that provides a hardware abstraction layer
(HAL).

On a node, services are exposed by a service broker
that directs service requests to local or remote services and
calls the respective service functions. De-marshaling of the
query and marshaling of the reply is handled at this level.

4.3. Model-Driven Development

An aspect of the project is to use a model-driven ap-
proach to develop the system. For this purpose, a special
system modeling entity is present at the factory layer. The
system model consists of five parts: The hardware model
specifies the supported hardware platforms and compatible
operating system and middleware layer implementations.
The service model lists all available service templates that
can be instantiated. The network model denotes the struc-
ture of the network including all physical network links and
their properties. The application model contains all service
instances and their logical dependencies and links against
other services without consideration of the physical repre-
sentation on concrete hardware. Finally, the error model
specifies rules the behavior of the system is checked against
as well as mitigation mechanisms, for example transition
to a safe system state. The sub-models are augmented with
additional information (e.g., placement of service instances)
in a model transformation phase, which is followed by au-
tomatic code generation.

5. Use Case

Since testing a prototypical implementation in a real
plant is not feasible due to potential interruption of produc-
tion, we have built a demonstration setup for testing pur-
poses. The demonstration system can also be used to train
workers in using the system without potential harm to the
production facility. The demonstration platform is based on



Machine Layer Network Layer
Management and

Factory Layer

Festo MPS®

Assembly Line

Temperature 

sensor

Ethernet

Switch Host PC

Ethernet

Ethernet

Console 

application

(simple UI)

Intranet,

Internet

Gateway

WSDL/DPWS

Compliant Protocol

Multifunk Protocol over TCP/IP

Application specific PLC Protocol 

(Serial over UDP)

Festo PLC

ARM-based

sensor coupler

(for MPS and

temperature)

Figure 2. Network Structure in the Use Case

a small Festo MPS R© assembly line2 that allows simulation
of common industrial automation scenarios.

In our scenario, two MPS stations and conveyor belts
have been connected to form a circular assembly line. The
stations allow execution of storage and processing tasks.
Each station uses a PLC to achieve its tasks.

Figure 2 shows the structure of the network: the PLCs
are connected over Ethernet to an ARM-based microcon-
troller of node class B according to Table 1 and emulates
a sensor coupler (compare Figure 1): it exposes a service
interface over IP using the uIP network stack and translates
queries from other network components into commands that
are sent to the PLCs. If the call yields a result, it is processed
and sent back as a service reply. This allows us to moni-
tor the state of the PLC’s I/O in a service-oriented manner.
Furthermore, we can trigger execution of commands on the
PLC, for example to bring the system to a safe state when an
error is detected. The microcontroller also offers a service
for reading the ambient temperature from a digital temper-
ature sensor (e.g., to detect overheating of a component in
the production line).

The current setup does not contain any wireless compo-
nents. Integration of such components will be a subsequent
step. Due to the Multifunk protocol, integration will follow
the same structure as for wired components.

The initial implementation of the system features a C++
application on a normal PC (node class A) that binds to the
services on the microcontroller and makes them available
to the end user. The user can monitor the current system
state and may issue queries or commands. The system will
soon be extended by a gateway component that translates
between the Multifunk protocol and a web services oriented
approach according to DPWS [5]. This will allow access to
the system from external networks (e.g., the Internet) in a
compliant way. Initially, the gateway will be implemented
on the same PC than the host application. Later on, a recon-
figured commercially available router device may be used.

2http://www.festo-didactic.com/int-en/learning-systems/

6. Conclusion

The presented work will improve structure and main-
tenance of wired and wireless sensor networks in produc-
tion environments through model-driven design and self-
organization. Communication is designed in a platform and
medium independent way. Tool support for model-driven
development and monitoring of sensor networks will be
provided. Current results are the implementation of an op-
timized transport protocol for service invocation and proto-
typical implementation in an automation scenario.

Future work focuses on the generation of the prototypical
system from a model. In addition, wireless network compo-
nents will be added to form a heterogeneous sensor network
with wired and wireless components. The system will fi-
nally be applied to three different industrial production sce-
narios where automatic processes should be monitored and
documented for later reference. Some of these processes
require minimal human interaction because of harsh envi-
ronmental influences.

Acknowledgments

This work is partially funded by the German Min-
istry of Education and Research (BMBF) under grant no.
16SV3883.

References

[1] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci.
A survey on sensor networks. IEEE Comm. Mag., Aug. 2002.

[2] J. L. Hill. System Architecture for Wireless Sensor Networks.
PhD thesis, University of California, Berkeley, 2003.

[3] W. Jeong and S. Y. Nof. Performance evaluation of wireless
sensor network for industrial applications. In Journal on In-
telligent Manufacturing, volume 19, pages 335–345, 2008.

[4] Y. Miao. Application of sensor networks. Seminar on wireless
self-organization networks, Friedrich-Alexander-Universität
Erlangen-Nürnberg, Feb. 2005.

[5] G. Moritz, E. Zeeb, S. Prüter, F. Golatowski, D. Timmermann,
and R. Stoll. Devices profile for web services in wireless sen-
sor networks: Adaptations and enhancements. In IEEE Conf.
Emerg. Tech. and Factory Autom. (ETFA), pages 1–8, 2009.

[6] S. Park et al. Optimized self organized sensor networks. In
Sensors, 2007. ISSN 1424-8220.

[7] T. Riedel. Self-organizing, wireless sensor network. Remote
Site & Equipm. Managem. Mag., Apr. 2004. Millennial Net.

[8] A. Singh, J. Schaeffer, and M. Green. A template-based ap-
proach to the generation of distributed applications using a
network of workstations. IEEE Transactions on Parallel and
Distributed Systems, 2(1):52–67, Jan. 1991.

[9] C. Townsend and S. Arms. Sensor Technology Handbook,
volume 1, chapter 22: Wireless Sensor Networks: Principles
and Applications, pages 575–588. Newnes, 2004.


