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ABSTRACT

Acquisition of sensor data and generation of actuator control signals are two key properties of
embedded systems. It is in the nature of these tasks that their realization is hardware-dependent
and involves low level program code that is usually implemented manually. Typical requirements
in this context are the actual implementation of device specific protocols and buffering strategies
for efficient yet safe hardware access. In this paper, we argue why it is beneficial to consider these
low-level components of embedded software in a model-driven development process that at first
sight aims at raising the level of abstraction to foster more efficient and correct design and imple-
mentation. In particular, we investigate by means of a representative example application how I/O
handling (including interrupt processing) can be integrated into a hardware-aware model-driven
software development process.

1 Introduction

Control systems can be subsumed as systems that process input data and generate corre-
sponding control output signals. While such systems are traditionally implemented using
proprietary and costly PLC systems, microcontroller-based embedded systems are more and
more considered as a low priced and flexible alternative.

Since manual programming of such systems is tedious and error-prone, we propose a
hardware-aware model-driven software development process that in our opinion offers sev-
eral advantages. While on the one hand it raises the level of abstractions and fosters the
reuse of existing components, it also allows the developer to access specific properties of the
underlying hardware platform.

The rest of this paper is structured as follows: In section 2, we point out the benefits
of hardware-aware model-driven software development where the developer can access
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platform-specific features using the same metaphors as for higher levels of abstraction. Sub-
sequently, we present our current experimental setup in section 3. Finally, we summarize
and present our future research goals in section 4.

2 Hardware-aware software development

In our development approach, several modeling languages can be used to describe the be-
havior and properties of an embedded control or signal processing system. A prototype has
been implemented in the EasyLab tool [BGBK08] that will briefly be presented next.

Application model. This set of languages is a functional and temporal specification of the
control application and currently contains two modeling languages.

The SFG language is an adapted version of the Sequential Function Chart (SFC) language
of IEC 61131-3 [Int03] and describes program states and transitions between them. Let S be
the set of states in the SFG. Every SFG state s ∈ S is annotated with a worst-case deadline
d(s) and may have one reference to a sub-model that is being executed while the program
is in that state. States are composed using sequential, alternative, parallel and jump opera-
tors. There is exactly one designated initial state. State transitions are guarded by transition
conditions

The SDF language is similar to the Function Block Diagram (FBD) language of IEC 61131-
3 [Int03]. An SDF model is a directed multigraph where each node depicts an instance of a
certain actor type and edges denote the data-flow between actor instances. An actor type
is defined by a set of typed input and output connectors as well as internal state variables.
SDF (sub-)graphs can be subsumed to yield composed actor types. Each actor type has a
set of associated actions for the events start, step and stop. For (multi-rate) SDF graphs, the
execution order of actor instances can be statically determined if the graph meets certain
structural restrictions [BBHL95].

Hardware model. While model-driven development is usually employed to abstract from
hardware, the domain of control and signal processing system often poses the requirement
to access hardware-dependent aspects of a system. In our approach, the hardware model is
used to describe the execution platform. It covers controller hardware such as the underly-
ing MCU, as well as the sensors and actuators attached to the system and also provides a
mapping of hardware features to corresponding representatives in the application model.

On the one hand, this mapping comprises device-specific actors types that can be instan-
tiated in SDF models. Due to the execution semantics of SDF models, this approach is only
suitable for synchronous hardware access (a.k.a. polling). Hence, code generators in model-
driven approaches are often supported by hardware abstraction layers (HALs) that hide
implementation details such as buffered access to devices requiring interrupt-driven data-
exchange behind a high-level API. Since HALs are typically implemented manually, there is
a break in the development methodology which complicates the integration of unsupported
or custom hardware. The hardware model also contains triggers as well as (input and output)
buffers that allow the developer to refine models with low-level implementation aspects, e.g.
device-specific communication protocols.

A trigger can be used to specify the system’s reaction to internal and external events such
as timer ticks or external interrupts on GPIO pins. Consequently, the specification of a trigger
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Figure 1: Experimental setup: inverted pendulum

consists of a condition and a referenced handler that can be specified using the languages
provided by the application model. For the actual specification of triggers, SFG’s notion of
parallel branches can contain event-driven branches that are triggered a condition and that
preempt the current thread of execution. Buffers are used to decouple the application logic
and the process environment in the case of asynchronous (e.g., interrupt-based) hardware
access protocols. When an interrupt is triggered, the interrupt handler performs its tasks on
a set of private variables that are synchronized with the device’s (public) buffer variables
when the application is in a consistent state, i.e. before and after transition conditions in the
SFG model are executed.

Code generation. A template-based C code generator can be used to automatically gener-
ate implementations for different hardware architectures. Here code templates are assigned
to primitive modeling elements such as actor types or device buffers. Triggers are imple-
mented using interrupt service routines (ISRs) and require code templates using appropri-
ate compiler specific statements. The implementation of the actual handler code is based on
existing strategies for SFG and SDF models.

3 Experimental setup

In this section, we will demonstrate how the concepts proposed above can be used for the
entirely model-driven development of the control application for a self-erecting inverted
pendulum. The experimental setup consists of an electric motor that drives a cart mounted
on a linear rail and a freely deflectable rod that is attached to the cart (see figure 1(a)). A



suitable controller first heuristically swings the rod back and forth until it is almost in up-
right position. Then, the controller switches to the balancing state who’s PID controller can
be derived from a linear state-space model of the pendulum. Both controllers use the incli-
nation angle of the rod α(t) and the position of the cart c(t) as inputs. Each of these values is
measured by a quadrature encoder which generates a signal consisting of two digital chan-
nels A and B. An interrupt-driven method to analyze the encoder signal is to trigger a driver
program on rising edges of channel A that evaluates the value of channel B.

Figure 1(b) shows an EasyLab model implementing the controller for a self-erecting in-
verted pendulum. It consists of the actual control task (initialization, swing-up, balancing
and cleanup), two triggers to implement the evaluation of the quadrature encoder signals
and two devices encpos and encang representing the encoders (not displayed here). Using the
position encoder as an example, a rising edge on pin PE4 (channel A) triggers the execution
of the Encoder position subprogram. In the current implementation, our setup is con-
trolled by a 8-bit microcontroller (ATmega128 running at 16 MHz) which performs the entire
control task: interrupt-based evaluation of quadrature encoder signals, computation of the
control value and generation of actuator signals. Although the interrupt rate for the posi-
tion encoder reaches 25 kHz when the pendulum performs rapid balancing movements, the
period times are comparable to a manually implemented evaluation of the encoder signals
(swing-up: 400 Hz, balancing: 1.1 kHz).

4 Conclusion and future work

In this paper, we introduced the notion of hardware-aware model-driven software develop-
ment where triggers and handlers allow explicit modeling of event-driven parts of control
applications. The motivation was to free the developer from the burden to manually imple-
ment these low-level aspects. An interrupt-intensive control system for an inverted pendu-
lum demonstrates the applicability of the approach.

As part of our future work, the experimental setup is ported to a multi-core control
system (implemented in a FPGA using appropriate soft-cores) that will additionally be
equipped with a camera. Our primary research interest is the challenge of integrating the
high throughput requirements of a vision-based tracking system with the low latency con-
straints of the interrupt-driven parts within our model-based development approach.
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