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The potential clinical applications of active control for pharma-
cology in general, and anesthesia and critical care unit medicine in
particular, are clearly apparent. Specifically, monitoring and
controlling the depth of anesthesia in surgery and the intensive
care unit is of particular importance. Nonnegative and compart-
mental models provide a broad framework for biological and
physiological systems, including clinical pharmacology, and are
well suited for developing models for closed-loop control for drug
administration. These models are derived from mass and energy
balance considerations that involve dynamic states whose values
are nonnegative and are characterized by conservation laws (e.g.,
mass, energy, fluid, etc.) capturing the exchange of material
between kinetically homogenous entities called compartments.
Compartmental models have been particularly important for
understanding pharmacokinetics and pharmacodynamics. One of
the basic motivations for pharmacokinetic/pharmacodynamic
research is to improve drug delivery. In critical care medicine it is
current clinical practice to administer potent drugs that
profoundly influence levels of consciousness, respiratory, and
cardiovascular function by manual control based on the clinician’s
experience and intuition. Open-loop control (manual control) by
clinical personnel can be tedious, imprecise, time-consuming, and
sometimes of poor quality, depending on the skills and judgement
of the clinician. Closed-loop control based on appropriate
dynamical systems models merits investigation as a means of
improving drug delivery in the intensive care unit. In this article,
we discuss the challenges and opportunities of feedback control
using nonnegative and compartmental system theory for the
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specific problem of closed-loop control of intensive care unit
sedation. Several closed-loop control paradigms are investigated
including adaptive control, neural network adaptive control,
optimal control, and hybrid adaptive control algorithms for
intensive care unit sedation.

� 2008 Elsevier Ltd. All rights reserved.
Introduction

Acute respiratory failure due to infection, trauma, and major surgery is one of the most common
problems encountered in intensive care units (ICU) and mechanical ventilation is the mainstay of
supportive therapy for such patients. In particular, mechanical ventilation of a patient with respiratory
failure is a critical life-saving procedure performed in the intensive care unit. However, mechanical
ventilation is physically uncomfortable due to the noxious interface between the ventilator and
patient, and mechanical ventilation evokes substantial anxiety on the part of the patient. This will often
be manifested by the patient ‘‘fighting the ventilator.’’ In this situation, there is dyssynchrony between
the ventilatory effort of the patient and the ventilator. The patient will attempt to exhale at the time the
ventilator is trying to expand the lungs or the patient will try to inhale when the ventilator is
decreasing airway pressure to allow an exhalation. When patient-ventilator dyssynchrony occurs, at
the very least there is excessive work of breathing with subsequent ventilatory muscle fatigue and in
the worst case, elevated airway pressures that can actually rupture lung tissue. In this case, it is
a common clinical practice to sedate patients to minimize ‘‘fighting the ventilator.’’ Sedative-hypnotic
agents act on the central nervous system to ameliorate the anxiety and discomfort associated with
mechanical ventilation and facilitate patient-ventilator synchrony.

Sedation of mechanically ventilated patients in the intensive care unit is an important and chal-
lenging problem with ethical, clinical, and financial implications. At the ethical level, we have a self-
evident moral imperative to provide adequate anxiolysis and analgesia for patients in the intensive
care unit. From the clinical perspective, it is important that this be done without either overdosage or
underdosage as either may have undesirable clinical effects. At the financial level, sedation of patients
in the intensive care unit requires large investments of health care provider time, with a commensurate
financial cost, while inefficient titration of sedation and analgesia may prolong intensive care unit
length of stay. In this article, we discuss potential advantages and challenges of feedback control
technology to this important clinical problem.
Overview, background, and significance

Advanced control methodologies have been and are being extensively developed for highly complex
engineering systems.1 Specifically, robust and adaptive control systems have been developed that
ensure system stability and performance in the face of system modeling uncertainty, system distur-
bances, and system nonlinearities. These control systems have facilitated many of the technological
advances of recent years. In particular, control-system technology forms the underpinning of tech-
nological advances in fields as diverse as aerospace, chemical, power, manufacturing, electronic,
communications, transportation, and network engineering. However, modern active control tech-
nology has received far less consideration in medical systems.

One of the main reasons for this state of affairs is the steep barriers to communication between
mathematics/control engineering and medicine. However, this is slowly changing and there is no doubt
that control-system technology has a great deal to offer medicine.2–7 This is particularly true when
dealing with critically ill patients in the intensive care unit or in the operating room. These patients
often require administration of drugs to regulate key physiological variables, such as level of
consciousness, heart rate, blood pressure, ventilatory drive, etc., within desired targets. The rate of
administration of these drugs is critical, requiring constant monitoring and frequent adjustments.
Open-loop control (manual control) by clinical personnel can be tedious, imprecise, time-consuming,
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and sometimes of poor quality. Hence, the need for active control (closed-loop control) in medical
systems is significant, with the potential for improving the quality of medical care as well as curtailing
the increasing cost of health care.

One of the main drawbacks in developing active drug delivery systems is the lack of accurate
mathematical models for characterizing the dynamic behavior of drugs on physiological variables.
System nonlinearities, model parameter variations from patient to patient, as well as parameter
variations within the same patient under different conditions make it very challenging to develop
models and effective control law architectures for active drug delivery systems. Even though control
strategies based on fixed-gain linear control laws8, adaptive linear control laws9, and rule-based (fuzzy
logic) control laws10 have been proposed in the literature, the complex and highly uncertain nature of
patient response to multiple drugs renders such strategies deficient in the face of large system vari-
ations and system nonlinearities.

Critically ill patients, especially those supported with mechanical ventilation, frequently require
administration of sedative drugs.11–13 The magnitude of the clinical indication for sedation of critically
ill patients is evident in the estimate that approximately one billion dollars are spent in the United
States annually on drugs used for this purpose.14 Sedation is indicated for two compelling reasons. The
first of these is ethical. It has been estimated that up to 70% of patients experience clinically significant
anxiety.15 This is understandable since the patients will undoubtedly have some awareness of the
critical nature of their illness and they will find themselves in an unfamiliar and intrusive environment.
Many procedures commonly performed in the intensive care, including mechanical ventilation, are
uncomfortable and in many cases painful. Both anxiolytic and analgesic drugs are required for patient
comfort.

In addition to these ethical considerations, sedation is indicated for therapeutic reasons. Agitated
patients may do physical harm to themselves by dislodging vital life support and monitoring devices
with excessive musculoskeletal activity. Agitation due to anxiety or pain can also result in excessive
metabolic and cardiopulmonary demands. Oxygen delivery to vital organs (heart, brain, kidneys,
mesentery) may be enhanced in the patient with limited cardiopulmonary reserve if we minimize
ventilatory effort and excessive musculoskeletal activity due to agitation. In patients with acute
respiratory distress syndrome (ARDS) current evidence-based practices of mechanical ventilation16,17

using low tidal volumes often result in profound dyspnea, requiring deep sedation to prevent
‘‘fighting the ventilator.’’ In the most severe cases, muscle paralysis is needed to improve oxygena-
tion. In this case, sedation must approximate general anesthesia to avoid having a paralyzed patient
who is aware.

While clinicians are well aware of the need for sedation in critically ill patients, the challenge is how
to provide adequate sedation without oversedation. This is particularly problematic in patients
requiring mechanical ventilation due to pulmonary or respiratory insufficiency. Sedation is required for
mechanical ventilation for the causes cited above. However, once the cause of pulmonary insufficiency
has been corrected it is important to wean the patient from mechanical ventilation in as timely
a fashion as is safe, since prolonged ventilation is expensive and is associated with known risks, such as
inadvertent extubation, laryngo-tracheal trauma, and, most significantly, ventilator-associated pneu-
monia. If the patient is oversedated at this point, liberation from mechanical ventilation and endo-
tracheal extubation may not be possible because of a diminished level of consciousness and respiratory
depression from sedative drugs.

The clinical relevance of this problem is made clear by a study by Kress et al.14 These investigators
demonstrated that daily interruption of sedation with reinstitution when patients were considered
‘‘awake’’ significantly decreased the duration of mechanical ventilation and intensive care unit stay.
Daily interruption of sedation is necessary because continuous constant rate infusions lead to accu-
mulation of sedative drugs as peripheral compartments saturate with the agent over time. The problem
is exacerbated by the fact that sedation is most often administered to patients undergoing mechanical
ventilation and the most common manifestation of overdosing with modern sedative agents is
respiratory depression. Given that the patient is typically being mechanically ventilated, it is easy to fail
to detect overdosing. While daily interruption of sedation was effective in shortening the duration of
mechanical ventilation, many clinicians balk at the necessity of ‘‘waking’’ patients, given the
compelling reasons for sedation in the first place. By using a more objective measure of sedation and
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then controlling to the appropriate level of sedation, this problem may be greatly ameliorated. The
development of efficient algorithms for closed-loop sedation control can obviate the need to prevent
oversedation by a daily interruption of sedation.

Closed-loop control of intensive care unit sedation is virtually undeveloped in the literature.
However, control algorithms have been developed, simulated, and implemented for the related
problem of closed-loop control of general anesthesia. The first of these have focused on the control of
inhalation anesthesia and several adaptive control algorithms have been developed.18–24 These algo-
rithms have been shown to provide superior control of general inhalation anesthesia in simulations
and animal studies. However, they are not directly relevant to the specific problem of ICU sedation
since the controlled variable is end-tidal anesthetic concentration. It is not possible with current
technology to rapidly measure the plasma concentration of the intravenously-administered drugs
commonly used for ICU sedation. Thus drug concentration is not a viable control variable. Furthermore,
drug concentration, even if it could be measured rapidly, is not the best control variable. We are far
more interested in drug effect than concentration. Much more relevant to the problem of ICU sedation
are several recently developed algorithms for the control of intravenous anesthesia using a processed
electroencephalograph (EEG) or auditory evoked response (AER) signal as the measurement variable
for control.

Building on the pioneering work by Bickford25, Schwilden and his colleagues9 developed and
clinically tested a closed-loop, model-based adaptive controller for the delivery of intravenous anes-
thesia using the median frequency of the EEG power spectrum as the control variable. Their model
assumed a two-compartment pharmacokinetic model for which the concentration of drug C(t) as
a function of time t after a single bolus dose was given by

CðtÞ ¼ Ae�at þ Be�bt ; t � 0; (1)

where A, B, a> 0, b> 0 are patient-specific pharmacokinetic parameters. It was also assumed that the
control variable, median EEG frequency (denoted by E), was related to the drug concentration by the
Hill equation26

E ¼ E0 � Emax
�
Cg=

�
Cg þ Cg

50

��
; (2)

where E0 is the baseline signal, Emax is the maximum decrease in signal with increasing drug
concentration, C50 is the drug concentration associated with 50% of the maximum effect, and g is
a parameter describing the steepness of the concentration-effect curve. From Eq. (2) it can be seen that
the drug effect is a function of the pharmacokinetic parameters A, B, a, and b as well as the pharma-
codynamic parameters E0, Emax, C50, and g. If these parameters are known, calculation of the dose
regimen needed to achieve the target EEG signal is straightforward. However, these parameters are not
known for individual patients.

The algorithm developed by Schwilden and his colleagues9 assumes that each of the pharmaco-
dynamic parameters E0, Emax, C50, and g and the pharmacokinetic parameters a and b were equal to the
mean values reported in prior studies. Using the mean population values of the pharmacokinetic
parameters A and B as starting values, estimates of these parameters were refined by analysis of the
difference between the target and observed EEG signal (DE). Linearizing DE with respect to A and B
yields

DE ¼ vE
vA

dAþ vE
vB

dB; (3)

where dA and dB represent the updates to the values of A and B in the adaptive control algorithm. In
conjunction with minimization of (dA)2þ (dB)2, this equation was used to solve for dA and dB. It is
important to note that this algorithm was only partially adaptive in that the only parameters of the
model that were updated were A and B. This algorithm was implemented for the intravenous anes-
thetic agents methohexital and propofol but did not appear to offer great advantage over standard
manual control.9,27 This may have been due to the approximations of the algorithm or due to the
deficiencies of the median EEG frequency as a measure of the depth of anesthesia.
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Since the early work by Schwilden et al.27, other EEG measures of depth of anesthesia have been
developed. Possibly the most notable of these is the bispectral index or BIS.28 The BIS is a single
composite EEG measure that appears to be closely related to the level of consciousness.29 Recently,
Struys and his colleagues30 have described a closed-loop controller of the delivery of the intravenous
anesthetic propofol using a model-based adaptive control algorithm with the BIS as the measurement
and performance variable. The algorithm is similar to that of Schwilden and his colleagues27 in that it is
based on a pharmacokinetic model predicting the drug concentration as a function of infusion rate and
time, and a pharmacodynamic model analogous to that used by Schwilden et al.27 relating the BIS
signal to concentration. However, in contrast to Schwilden and his colleagues27, Struys et al.30 assume
that the pharmacokinetic parameters are always correct and that any variability in individual patient
response is due to pharmacodynamic variability.

More specifically, with induction they calculated a predicted concentration using the pharmaco-
kinetic model and then constructed a BIS-concentration relationship using the observed BIS during
induction and the predicted propofol concentration. With each time epoch, the difference between the
target BIS signal and the observed BIS signal is used to update the pharmacodynamic parameters
relating concentration and BIS signal for the individual patient. This algorithm is also only partially
adaptive in the sense that there is no adaptive updating of pharmacokinetic parameters.

Using this algorithm, Struys et al.30 demonstrated excellent performance as measured by the
difference between the target and observed BIS signals. However, as pointed out by Glass and Rampil31,
the excellent performance of the system may have been because the system was not fully stressed. In
their study, Struys et al.30 administered a relatively high fixed dose of the opioid remifentanil,
a neurotransmitter inhibitor resulting in significant analgesic effect, in conjunction with propofol.
Consequently, central nervous system excitation due to surgical stimulus was blunted, and hence, the
need to adjust the propofol dose as surgical stimulus varied was diminished. It is unknown whether the
control system would have been effective in the absence of deep narcotization.

In contrast to these model-based adaptive controllers, Absalom et al.8 have developed a propor-
tional-integral-derivative (PID) controller using the BIS signal as the variable to control the infusion of
propofol. The median absolute performance error (the median value of the absolute value of DE/Etarget)
of this system was good (8.0%) but in 3 out of 10 patients oscillations of the BIS signal around the set-
point were observed and anesthesia was deemed clinically inadequate in 1 of the 10 patients. This same
system has also been used with an auditory evoked potential as the control variable.32 Intravenous
propofol anesthesia has also been delivered by a closed-loop controller that uses both auditory evoked
responses and cardiovascular responses as the control variables with a fuzzy-logic algorithm.10 This
system has had only very minimal clinical testing. More recently, Ref. 33 considers model-based
controllers for inhalation anesthetic agents that attempt to control the BIS signal or mean arterial blood
pressure, while keeping end-tidal anesthetic concentrations within prespecified limits.

Closed-loop control of sedation

The challenge for extending feedback control technology to the problem of sedation of critically ill
patients, in contrast to the control of intraoperative anesthesia, is finding the appropriate performance
variable for control. While there is a considerable body of literature demonstrating that the processed
EEG can be a viable measure of the level of consciousness, the goal in the sedation of critically ill
patients is not necessarily depression of consciousness. Sedation is typically assessed using subjective
ordinal scales that distinguish between patients who are unresponsive or responsive only to noxious
stimuli and those who respond to voice and are calm and cooperative in this response.

There have been a number of investigations of processed EEG monitoring (all using the BIS monitor)
of intensive care unit patients and the results have been inconsistent.34–39 Considerable variability in
BIS scores in patients with the same apparent degree of sedation (by subjective scoring systems) has
been observed, although there appears to be more consistency in deeply sedated patients.39 High BIS
scores have been observed in patients who were comatose. A good deal of this discrepancy may be
attributed to the ‘‘noisy’’ environment of the intensive care unit. It is widely appreciated that BIS
monitoring, or for that matter, any EEG monitoring, can be fraught with error because of the potential
for outside interference to produce an unfavorable signal-to-noise ratio yielding spurious results.40
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Nonphysiologic artifactual signals may be generated from sources external to the patient that include
lights, electric cautery devices, ventilators, pacemakers, patient warming systems, and electrical noise
related to the many different kinds of monitors normally found in an operating room or ICU. Physio-
logic movements such as eye movements, myogenic activity, perspiration, and ventilation can produce
artifactual increases in the BIS score. In particular, it is apparent that electromyographic (EMG) activity
can spuriously increases the BIS score.40

The latest version of the Bispectral Index monitor has been designed to filter EMG noise but it
remains to be seen whether this improves the correlation between clinician assessment of sedation
and the BIS score. The biggest obstacle to the use of the processed EEG for sedation assessment could
well be that our goal for the critically ill patient is not simply depression of level of consciousness. It has
been suggested that ‘‘the anesthetized patient in the operating room is a different creature from that of
the critically ill and injured.’’38 While this may yet prove to be the case, we believe it is worthwhile to
investigate closed-loop control of sedation using the processed EEG as the performance variable for
control. Our motivation is two-fold.

First, the latest version of the BIS monitor, which more effectively filters EMG noise, has not yet been
fully investigated as a tool for intensive care unit sedation. While there are other sources of electrical
noise in the intensive care unit, EMG signals are an important noise source. Furthermore, spurious but
time-limited BIS values that may contribute to the poor correlation between the BIS score and clini-
cian-generated sedation scores may have minimal effect on the titration of sedation using an adaptive
control algorithm.

Second, in a subset of critically ill patients a deeper level of sedation, more closely approximating
general anesthesia is appropriate. Patients with acute respiratory distress syndrome who are venti-
lated with low tidal volumes rather than large tidal volumes have a lower mortality.16 However, low
tidal volume ventilation is uncomfortable, creating a sense of dyspnea and requiring deep sedation.
We would prefer that patients being ventilated in this manner be unconscious, especially if they also
require muscle paralysis to maintain oxygenation. The processed EEG is a plausible control variable in
this situation. However, it will be important to develop more powerful robust and adaptive control
algorithms for ICU sedation than the model-dependent algorithms developed for operative anes-
thesia given that the ICU is an unfriendly environment for EEG signal analysis due to several sources
of noise.

An alternative performance variable for closed-loop control of sedation involves respiratory
parameters. As mentioned in the Introduction, one of the most common reasons for administering
sedation is to facilitate mechanical ventilation, and patient discomfort or anxiety is often manifested
as fighting the ventilator or patient-ventilator dyssynchrony. It is generally believed that excessive
work of breathing is deleterious to patient outcome and a very common scenario is the adminis-
tration of sedation to prevent fighting the ventilator. Patient-ventilator dyssynchrony is clinically
identified as use of accessory muscles, nasal flaring, active expiration, and tachypnea. However,
dyssynchrony can be quantified by measuring patient work of breathing using an esophageal
balloon.41,42 Patient-ventilator dyssynchrony can also be identified using pressure and flow wave-
forms in the graphics available on almost all ventilators.43 A novel approach to sedation of
mechanically ventilated patients can use measures of dyssynchrony, either work of breathing or
patient breath rate, as performance variables for closed-loop control. However, this will require
development of optimal control algorithms.

Optimal control is a branch of modern control theory that deals with designing controllers for
dynamical systems by minimizing a performance measure that depends on the system variables.44 The
performance measure can include a measure of the system operating error, a measure of the control
effort, or any other characteristic that is important to the clinician using the control system. For
example, propofol can be used to induce general anesthesia with concomitant apnea, and hence,
eliminate ventilator-patient dysynchrony. However, the price may be excessive hemodynamic
compromise or a totally unresponsive and oversedated patient. Hence, optimal control algorithms can
maximize patient-ventilator synchrony while preserving acceptable hemodynamic function.

While advances in understanding sedation, and its appropriate measure, are inevitable, it remains
a fact that currently the clinical standard is an ordinal scoring system.45–48 For example, the motor
activity and assessment scale (MAAS) system evaluates level of sedation on a score of 0-6 as follows49:
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0- unresponsive; 1 -responsive only to noxious stimuli; 2 - responsive to touch or name; 3 - calm and
cooperative; 4 restless and cooperative; 5 - agitated; and 6 - dangerously agitated.

Feedback control algorithms using this score as a partial performance variable for control would
require simultaneously exhibiting continuous-time dynamics as well as logic commands, discrete
events, and resetting events. We envision a system in which the clinician (nurse or physician) evaluates
the patient, enters the score into the controller, which then adjusts the dosing regimen to maintain
sedation at the desired score. The unique characteristics of this problem are noteworthy. The perfor-
mance variable is discontinuous in the sense that clinical evaluation of sedation is done intermittently.
Thus, issues of embedded control architectures become paramount and the development of an efficient
hierarchical hybrid control algorithm could significantly improve the outcome for drug administration
in the ICU. See the subsection on ‘‘Hybrid Control for Sedation.’’
Mathematical modeling and control for clinical pharmacology

Closed-loop control algorithms for operative anesthesia have been largely based on fixed phar-
macokinetic or fixed pharmacodynamic models. Such algorithms are dependent on the accuracy of the
system models. Given the complex and highly uncertain nature of patient responses, it is vital to
develop parameter-independent control algorithms. Furthermore, given the wide variability in patient
response to sedative drugs, adaptive controllers seem most appropriate.

An adaptive controller is a controller whose parameters are continuously adjusted to account for
changes in system dynamics and system disturbances. Controller parameters can be adjusted directly
or indirectly via estimation of system parameters. Specifically, adaptive controllers utilize the system
output, observed in response to a given input, as the means to adjust, or adapt, the controller
parameters in order to achieve the desired output in the face of system uncertainty.50–52 As a concrete
example, if a controller administers a dose of sedative drug in response to a BIS signal of 80 that results
in decrease in the BIS score to an unacceptably low value of 10, the adaptive control algorithm uses this
information to adapt the controller parameters (i.e., controller gains) so that the next dose in response
to a BIS signal of 80 is smaller. The algorithm adapts to the different dose-response relationships among
different patients.

Schwilden et al.27 and Struys et al.30 developed (partial) adaptive algorithms based on very specific
low-order pharmacokinetic models. It is possible to develop adaptive control algorithms with much
less restrictive assumptions utilizing nonnegative and compartmental dynamical system theory.3,53–62

Nonnegative and compartmental dynamical systems are comprised of homogeneous interconnected
subsystems (or compartments) which exchange variable nonnegative quantities of material with
conservation laws describing transfer, accumulation, and elimination between the compartments and
the environment. Hence, nonnegative systems theory is particularly appealing for clinical pharma-
cology since we sedate patients by controlling an intrinsically nonnegative variable, namely, the
amount of drug present in various tissues. Furthermore, there is abundant literature to support the
assumption that the disposition of drug in various tissues may be described by compartmental
models.3,53–55,57–60,62 Thus, adaptive control algorithms can be developed using compartmental
systems theory without any assumptions about the number of compartments or their (possibly
nonlinear) interconnections.

While adaptive control algorithms are ideal for dealing with the problem of interpatient variability,
optimal control theory may also have an important role in developing controllers for intensive care unit
sedation. As noted in the section on ‘‘Closed-Loop Control of Sedation,’’ optimal control theory seeks to
find control algorithms that minimize a given performance measure subject to satisfying system
constraints. For example, one might seek to develop a control algorithm that minimizes the deviation
of the BIS score from target while at the same time maintaining the infusion rate of the sedative drug
below a given upper threshold. Optimal control theory may be particularly important in a clinician’s
efforts to use respiratory parameters as a performance variable for closed-loop control.

One of the most basic and central issues in control system analysis and design is stability of the
closed-loop system (i.e., the controlled system). System stability is characterized by analyzing the
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response of a controlled system to small perturbations in the system states (e.g., consciousness, drug
concentration in the blood, BIS target, etc.). Specifically, an equilibrium state (i.e., set point or operating
point) of a controlled dynamical system is said to be stable if, for sufficiently small values of initial
disturbances in the system state, the perturbed state of the closed-loop system remains in an arbitrarily
prescribed small region of the state space (i.e., operating space). If, in addition, all solutions of the
controlled system (i.e., closed-loop states) approach the equilibrium state (or the desired set point) for
large values of time, then the equilibrium state is said to be asymptotically stable.

The most complete contribution to the stability analysis of nonlinear dynamical systems was
developed in the late nineteenth century by Lyapunov.63 Lyapunov’s main result provides a powerful
framework for analyzing the stability of controlled dynamical systems as well as designing feedback
controllers which guarantee closed-loop system stability. Lyapunov’s main result states that if a posi-
tive-definite function (or Lyapunov functiondsee Fig. 1a) of the states of a given dynamical system can
be constructed for which its time rate of change due to perturbations in a neighborhood of the system’s
equilibrium is always negative or zero, then the system’s equilibrium state is guaranteed to be stable or,
equivalently, Lyapunov stable. Alternatively, if the time rate of change of the Lyapunov function is
strictly negative, then the system’s equilibrium state is asymptotically stable.

Intuitively, a Lyapunov function can be regarded as a generalized energy function for the controlled
system. In particular, viewing the Lyapunov surfaces63 of a given Lyapunov function as constant energy
surfaces covering a neighborhood of an equilibrium state of a controlled dynamical system, it follows
from Lyapunov’s result that requiring the Lyapunov derivative to be negative, the controlled system
trajectories move from one energy surface to an inner, or lower, energy surface. In this case, the
controlled system trajectories will approach the system equilibrium state and remain within a neigh-
borhood of the equilibrium state for any system initial condition lying inside a Lyapunov surface
contained in that neighborhood. Alternatively, if the Lyapunov derivative is strictly negative, then the
controlled system’s energy surfaces shrink to equilibrium state guaranteeing that the controlled
system trajectories approach the equilibrium state asymptotically (i.e., as time progresses). See Fig. 1b.
Since exogenous disturbances and system uncertainty are always present in every actual system,
stability plays a central role in control system design. Most of the existing closed-loop control algo-
rithms for clinical pharmacology developed in the literature do not ensure stability in the face of
unmodeled system dynamics, system uncertainty, and system nonlinearities. Designing drug dosing
control algorithms using Lyapunov methods, eliminates the risk of encountering unstable cases, while
providing regulatory review boards with mathematical proofs for stability guarantees.

In many applications, especially in active control of drug dosing, wherein it is often necessary to
regulate the drug concentration in the central compartment comprised of the intervascular blood
volume and the highly perfused organs, partial stability, that is, stability with respect to part of the
V (x)

a b

V (x) = α3

V (x) = α3

V (x) = α2

V (x) = α1

V (x) = α2

V (x) = α1

x1

x1

x2

x(t)

x2

Fig. 1. (a) Typical Lyapunov function candidate V(x). (b) Constant Lyapunov energy surfaces with system trajectory x(t), t� 0, moving
from one energy surface to an inner energy surface. For both figures a1< a2< a3.
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(closed-loop) system’s states, is often necessary. Perhaps the most common application where partial
stabilization is necessary is adaptive control, wherein asymptotic stability with respect to part of the
closed-loop system states associated with the physiological state variables is guaranteed without
necessarily achieving controller parameter error convergence. Alteratively, in certain applications, it
may be more natural to ascertain whether for every system initial condition in a neighborhood of an
equilibrium state, the controlled system trajectories (or possibly the controlled partial system trajec-
tories) are bounded. This notion is known as ultimate boundedness.63

Viable control algorithms for clinical pharmacology need to guarantee closed-loop asymptotic
stability, partial asymptotic stability, or ultimate boundedness in the face of system uncertainty, system
disturbances, and system nonlinearity. Such controllers can guarantee that the output of the controlled
dynamical system is ‘‘well behaved’’ in some sense when the input (disturbance) to the system is well
behaved. To make this notion of input-output stability precise, one needs to quantify the dependence of
the output (typically via norms) on the input applied to the system.63 For the active drug dosing control
problem this essentially translates to a feedback controller guaranteeing that the deviation of the BIS
score from the target value of a controlled system is within an a priori fixed range in the face of system
uncertainties.

Previously developed closed-loop control algorithms reported in the literature for intraoperative
anesthesia have not formally considered stability, partial stability, or ultimate boundedness. Rather, it
has been assumed that stability follows from the pharmacokinetic/pharmacodynamic model. However,
this is not the case since these controllers do not account for full model uncertainty, unmodeled
dynamics, exogenous disturbances, and system nonlinearities. Since drug kinetic and dynamic models
involve conservation laws describing transfer, accumulation, and elimination between compartments,
it is obvious that any realistic model of drug effect, incorporating both pharmacokinetics and phar-
macodynamics, will be a nonlinear, nonnegative compartmental dynamical system (see Fig. 2). Hence,
nonnegative and compartmental dynamical system theory64 provides the framework to develop and
analyze the stability of adaptive, hybrid adaptive, and optimal control algorithms for clinical
pharmacology.
u ≡ Continuous infusion

Intravascular
BloodMuscle Fat

a11(c)x1 ≡ Elimination (liver, kidney)

a12(c)x2

a21(c)x1

a31(c)x1
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ceff
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Fig. 2. Typical compartmental model for drug distribution. The central compartment, which is the site for drug administration, is
comprised of the intravascular blood volume as well as the highly perfused organs. The two peripheral compartments comprised of
muscle and fat receive a small portion of the cardiac output. The effect-site compartment is introduced to account for finite
equilibration time between the central compartment concentration and the central nervous system concentration.
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Control design paradigms and methods

The purpose of feedback control is to achieve desirable system performance in the face of system
uncertainty. Although system identification for estimating mean pharmacokinetic parameters for a
population of patients can reduce uncertainty to some extent, residual modeling discrepancies for
individual patients always remain. For example, modeling uncertainty in compartmental systems
for the disposition of sedatives for ICU sedation arise in the system transfer coefficients due to patient
gender, weight, pre-existing disease, age, and concomitant medication. Controllers must therefore
achieve desired disturbance rejection and/or tracking performance requirements in the face of such
modeling uncertainty. The goal of adaptive control is to achieve system performance without excessive
reliance on system models (see Fig. 3). In this section, we discuss several paradigms and methods for
active control of clinical pharmacology.

Adaptive control for clinical pharmacology

The complex and hostile environment of surgery as well as the intensive care unit places stringent
performance requirements for closed-loop regulation of physiological variables. In light of the complex
and highly uncertain nature of system (patient) response characteristics requiring controls, it is not
surprising that reliable system models for many high performance drug delivery systems are
unavailable. In the face of such high levels of system uncertainty, robust controllers may unnecessarily
sacrifice system performance, whereas adaptive controllers are clearly appropriate since they can
tolerate far greater system uncertainty levels to improve system performance.50–52

In contrast to fixed-gain robust controllers, which maintain specified constants within the feedback
control law to sustain robust performance, adaptive controllers directly or indirectly adjust feedback
gains to maintain closed-loop stability and improve performance in the face of system uncertainties.
Specifically, indirect adaptive controllers utilize parameter update laws to identify unknown system
parameters and adjust feedback gains to account for system variation, while direct adaptive controllers
directly adjust the controller gains in response to system variations.

To address pharmacokinetic and pharmacodynamic variability, direct adaptive controllers for
adaptive stabilization, disturbance rejection, and command following (i.e., set-point regulation) of
nonlinear uncertain compartmental systems with exogenous disturbances need to be developed. In
Refs. 65–67, a linear and nonlinear Lyapunov-based direct adaptive control framework was developed
that guarantees partial asymptotic stability of the closed-loop system, that is, asymptotic stability with
respect to part of the closed-loop system states associated with the physiological state variables. The
nonlinear adaptive controllers in Refs. 66,67 are constructed without requiring knowledge of the
system dynamics or the system disturbances while providing a nonnegative control (source) input for
system stabilization. Clinical evaluation trials of these controllers are reported in Refs. 7,68,69.

With the notable exception of Ref. 67, exogenous system disturbances have not been addressed
in drug dosing control. However, during stress (such as hemorrhage and transfusion) in an acute
care environment (such as the operating room and the ICU) perfusion pressure falls and hypertonic
saline solutions are typically intravenously administered to regulate hemodynamic effects and avoid
EEG

System

BIStarget

Controller

BIS score

Fig. 3. Adaptive closed-loop control for drug administration. Active control can improve the medical care of patients requiring
anesthesia or sedation in the operating room or intensive care unit.
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hemorrhagic shock. Hemorrhage and hemodilution, that is, increase in fluid content of blood
resulting in reduced concentration of red blood cells in the blood, can affect the concentration of
a drug in the blood, and hence, the level of patient sedation.70 Thus, it is of paramount importance
that the adaptive controller be able to compensate for the effects of hemorrhage and hemodilution.
These effects can be modeled as an exogenous system disturbance.67 Adaptive controllers for
nonlinear nonnegative dynamical systems with applications to general anesthesia are given in Refs.
65,66,68,71,72.

An implicit assumption inherent in most adaptive control frameworks for clinical pharmacology
is that the adaptive control law is implemented without any regard to actuator amplitude and rate
saturation constraints. Of course, any electromechanical control actuation device (e.g., infusion
pump) is subject to amplitude and/or rate constraints leading to saturation nonlinearities enforcing
limitations on control amplitudes and control rates. More importantly, in physiological applications,
drug infusion rates can vary from patient to patient, and, to avoid overdosing, it is vital that the
infusion rate does not exceed patient-specific threshold values. As a consequence, actuator
constraints (e.g., infusion pump rate constraints) need to be accounted for in drug delivery
systems.

Actuator nonlinearities arise frequently in practice and can severely degrade closed-loop system
performance, and in some cases drive the system to instability, if not accounted for in the control
design process. These effects are even more pronounced for adaptive controllers which continue to
adapt when the feedback loop has been severed due to the presence of actuator saturation causing
unstable controller modes to drift, which in turn leads to severe windup effects leading to unacceptable
transients after saturation. Direct adaptive controllers for adaptive tracking of multivariable nonlinear
uncertain compartmental systems with amplitude and rate saturation constraints need to be devel-
oped. Specifically, as outlined in Ref. 73, a reference (governor or supervisor) dynamical system can be
constructed to address tracking and regulation in the face of actuator constraints by deriving adaptive
update laws that guarantee that the error system dynamics (physiological set point error variables) are
asymptotically stable and the adaptive controller gains are Lyapunov stable. In the case where the
actuator amplitude and rate are limited, the adaptive control signal to the reference system can be
modified to effectively robustify the error dynamics to the saturation constraints, and hence,
guaranteeing asymptotic stability of the error states. Adaptive controllers for drug delivery systems
with actuator saturation constraints are discussed in Ref. 74.

Another important issue not considered by most of the drug dosing control algorithms presented in
the literature is sensor measurement noise. In particular, as discussed in the section on ‘‘Closed-Loop
Control of Sedation,’’ EEG signals may have as much as 10% to 20% variation due to noise. The co-
administration of neuromuscular blockade eliminates artifacts from muscle movement, which can be
superimposed on the BIS score; and this undoubtedly contributes to the widespread use and value of
the BIS device during surgery. However, to extend this technology to the ICU, or for that matter, to
nonparalyzed patients in the operating room, further refinements are needed. In particular, adaptive
set-point stabilization controllers for nonlinear nonnegative systems with sensor measurement noise
need to be developed.75 As indicated by preliminary clinical trials68, this is clearly relevant for
uncertain nonnegative systems with poorly modeled sensor disturbances which possess significant
power within arbitrarily large bandwidths.

In many compartmental pharmacokinetic and pharmacodynamic models, transfers between
compartments are assumed to be instantaneous, that is, the model does not account for material in
transit. The assumption of instantaneous mixing between compartments is not valid. For example, if
a bolus of drug is injected, there is a time lag before the drug is detected in the extracellular and
intercellular space of an organ.3,76–78 Phase lag due to mixing times can be approximated by including
additional compartments in series. However, to accurately describe the distribution of pharmacological
agents in the human body, it is necessary to include in any mathematical pharmacokinetic model some
information of the past system states. In this case, the state of the system at any given time involves
a piece of trajectories in the space of continuous functions defined on an interval in the nonnegative
orthant of the state space. This of course leads to (infinite-dimensional) delay dynamical systems.79–81

This extension necessitates the development of nonlinear adaptive control algorithms for compart-
mental systems with unknown time delay.74,82,83



W.M. Haddad, J.M. Bailey / Best Practice & Research Clinical Anaesthesiology 23 (2009) 95–114106
Neural network adaptive control

Neural networks offer an ideal framework for on-line identification and control for many complex
uncertain nonlinear dynamical systems.84–89 Neural networks consist of a weighted interconnection of
fundamental elements called neurons, which are functions consisting of a summing junction and
a nonlinear operation involving an activation function (see Fig. 4). One of the primary reasons for the
large interest in neural networks is their capability to approximate a large class of continuous nonlinear
maps from the collective action of very simple, autonomous processing units interconnected in simple
ways. In addition, neural networks have attracted attention due to their inherently parallel and highly
redundant processing architecture that makes it possible to develop parallel weight update laws. This
parallelism makes it possible to effectively update a neural network on line. These properties make
neural networks a viable paradigm for adaptive control in clinical pharmacology.

Given the complexity, uncertainties, and nonlinearities inherent in pharmacokinetic and pharma-
codynamic models needed to capture the wide effects of pharmacological agents in the human body,
neural network adaptive control algorithms that account for combined interpatient and intrapatient
pharmacokinetic and pharmacodynamic variability merit investigation for intensive care unit sedation
and operating room hypnosis. In Ref. 68, we present a neural adaptive output feedback control
framework for adaptive set-point regulation of nonlinear uncertain nonnegative and compartmental
systems. The proposed neuroadaptive control framework is modular in the sense that if a nominal
linear drug dosing controller is available, the neuroadaptive controller could be augmented to the
nominal design to account for system nonlinearities and system uncertainty.

The formulation in Ref. 68 addresses adaptive output feedback (i.e., partial observation) controllers
for nonlinear compartmental systems with unmodeled dynamics of unknown dimension while
guaranteing ultimate boundedness of the error signals corresponding to the physical system states as
well as the neural network weighting gains. Output feedback controllers are crucial in clinical phar-
macology since key physiological (state) variables cannot be measured in practice or in real time.
Preliminary clinical evaluation trials of the proposed neuroadaptive automated anesthesia controller
demonstrate excellent regulation of unconsciousness and allow for a safe and effective administration
of the anesthetic agent propofol.68
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Fig. 4. A schematic representation of a two-layer neural network with sigmoidal activation functions.
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Optimal control for drug dosing

As discussed in the section on ‘‘Mathematical Modeling and Control for Clinical Pharmacology,’’
nonnegative and compartmental dynamical systems are conceptually simple yet remarkably effective
in describing the dynamical behavior of biological and physiological systems. Thus, it is not surprising
that nonnegative and compartmental system analysis is frequently applied to pharmacokinetics to
describe the exchanges of drugs between various (lumped) compartments in the human body. For
therapeutic reasons in the ICU, it may be desirable to regulate (maintain) the amount of a drug in one
compartment above a certain minimum threshold (dosage) level while maintaining the amount below
a certain maximum level in another compartment. Furthermore, to minimize drug side effects, it is
desirable to minimize the total amount (dosage) of drugs used.4,90–97 Drug administration in clinics and
hospitals do not generally satisfy the aforementioned conditions.

Optimal control for drug administration (bolus and infusion) for nonnegative and compartmental
dynamical systems for the specific problem of closed-loop control of intensive care unit sedation is
critical. To address the specialized structure of compartmental and nonnegative systems, nonnegative
state and control constraints need to be enforced. The optimal (nonnegative) control law needs to be
designed as to maintain desired drug concentrations in the plasma dictated by therapeutic effects
while minimizing drug dosage to reduce side effects.

In Ref. 98, we extend the optimal fixed-structure control framework of Refs. 99,100 to develop
optimal output feedback nonnegative controllers that guarantee that the trajectories of the closed-loop
physiological system states remain in the nonnegative orthant of the state space for nonnegative initial
conditions. The proposed optimal fixed-structure control framework is a constrained optimal control
methodology that does not seek to optimize a performance measure per se, but rather seeks to opti-
mize performance within a class of fixed-structure controllers satisfying internal controller constraints
that guarantee the nonnegativity of the closed-loop plant physiological states. Furthermore, since
unconstrained optimal controllers are globally optimal but may not guarantee nonnegativity of the
closed-loop physiological system states, we additionally characterize domains or regions of attraction
contained in the nonnegative orthant for unconstrained optimal output feedback controllers101 that
guarantee nonnegativity of the closed-loop physiological system trajectories. Optimal controllers are
particularly relevant for sedation control using respiratory parameters as the performance variable for
control.

Hybrid control for sedation

Complex physiological systems typically possess a multiechelon hierarchical hybrid structure
characterized by continuous-time dynamics at the lower-level units and logical decision-making units
at the higher-level of the hierarchy102; see Fig. 5. The logical decision making units serve to coordinate
and reconcile the (sometimes competing) actions of the lower-level units. Due to their multiechelon
hierarchical structure, hybrid dynamical systems are capable of simultaneously exhibiting continuous-
time dynamics, discrete-time dynamics, logic commands, discrete-events, and resetting events. Hence,
hybrid dynamical systems involve an interacting countable collection of dynamical systems, wherein
control actions are not independent of one another. In turn these systems contain mixtures of logic and
discrete events, and continuous-variable dynamics. The continuous dynamics are typically charac-
terized by differential equations while the discrete dynamics of a hybrid system is generally governed
by a digital automaton with a countable number of states. The continuous and discrete dynamics
interact at event or trigger times chosen by some higher process, such as a controller. Switched systems
are a special case of hybrid dynamical systems and involve a family of continuous-time subsystems and
a rule that orchestrates the switching between them.

Hybrid systems theory102 is relevant for control of sedation using subjective ordinal scales (such as
the MAAS system), as it necessitates hybrid control architectures to account for abstract decision-
making units (nurse or physician) performing logical checks that identify system mode operation and
specify the continuous-variable subcontroller to be activated. Specifically, the clinical standard for
sedation is an ordinal scoring system, such as the MAAS score described earlier. For this reason, an
important goal for any control design paradigm for ICU sedation should involve adaptive (or possibly
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hybrid adaptive) control algorithms that allow clinicians to select a target sedation score and then
control drug infusion by periodic evaluation and entry of observed scores.

The theoretical challenges of this endeavor are readily apparent. The problem is nonlinear since the
relationship between sedation score and drug concentration is typically assumed to be

Pðss < xÞ ¼ CgðxÞ
.h

CgðxÞ þ CgðxÞ
50;x

i
; (4)

where P(ss< x) is the probability of a sedation score less than x, C50, x is the drug concentration
associated with P(ss< x)¼ 0.5, and g(x) is a factor determining the steepness of the concentration-
effect relationship and is, in general, a nonlinear function of x. The nonlinearity of the problem greatly
increases its complexity. Furthermore, the control variable is not evaluated continuously and the
algorithm must of necessity assume that the desired sedation score is being maintained if there is no
update of the score. Furthermore, the above relationship must be viewed as approximate. To begin
with, the sedation score is evaluated subjectively. More importantly, the sedation score is a behavioral
measure and, while there is clearly a relationship between drug concentration and this score, never-
theless, there are innumerable other influences on the behavior of critically ill patients. Thus, in order
to develop an effective system for closed-loop control of ICU sedation using clinician input as the
control variable, adaptive hybrid control algorithms have to be developed.

We envision a hybrid control system in which the clinician evaluates the patient using standard
sedation scoring systems, enters the score into the controller, which then adjusts the dosing regimen to
maintain sedation at the desired score. As noted above, this hybrid dynamical system would involve
a switched system consisting of a family of continuous-time controllers. The resulting switched system
would be described by a family of dynamical models parameterized by a finite index set with
a piecewise constant switching signal. The basic control design problem entails finding conditions that
guarantee that the switched system will be asymptotically stable for any switching signal.

Closed-loop control of sedation using respiratory parameters

Since sedation is often administered to prevent the patient from fighting the ventilator it seems
plausible that we could use respiratory parameters as a performance variable for closed-loop control.
Calculation of patient work of breathing requires measurement of a patient-generated pressure/
volume loop or work of breathing. Since work of breathing can be measured using a commercially
available esophageal balloon41, this could serve as a performance variable for closed-loop control of
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sedation. Furthermore, patient-ventilator dyssynchrony may be identified by analysis of pressure/flow
wave forms.43

Dyssynchrony can be divided into three major categoriesdtrigger dyssynchrony, flow dyssyn-
chrony, and cycle (breath termination) dyssynchrony. While there are a number of components of the
pressure/flow wave forms that indicate dyssynchrony, possibly the simplest is the patient respiratory
rate.43 And it is certainly true that there is a correlation between patient work-of-breathing and patient-
generated respiratory rate. If the goal of sedation is to reduce patient work of breathing, one could
simplistically target a spontaneous respiratory rate less than some threshold value. While speculative,
this offers the possibility of closed-loop control using respiratory rate as the performance variable.

Closed-loop control algorithms can use either work of breathing as measured by an esophageal
balloon or patient respiratory rate as a performance variable for closed-loop control of sedation. The
need for optimal control algorithms is necessary to achieve a target performance value while still
satisfying certain constraints. For example, we could seek to design a control algorithm that seeks to
minimize the patient respiratory rate (above the set ventilator rate) but which does not result in
hypotension or which does not result in a MAAS score of 0 or 1. As discussed in the section on ‘‘Optimal
Control for Drug Dosing,’’ this requires the development of a constrained optimal control framework that
seeks to minimize a given performance measure (e.g., patient respiratory rate) within a class of fixed-
architecture controllers satisfying internal controller constraints (e.g., controller order, control signal
nonnegativity, etc.) as well as system constraints (e.g., blood pressure, system state nonnegativity, etc.).

To develop closed-loop (adaptive) feedback controllers for alleviating patient-ventilator dyssyn-
chrony, mathematical models of pressure-limited respirator and lung mechanics system need to be
developed. Numerous mathematical models of respiratory function have been developed in the hope
of better understanding pulmonary function and the process of mechanical ventilation.103–107

However, the models that have been presented in the medical and scientific literature have typically
assumed homogenous lung function. For example, in analogy to a simple electrical circuit, the most
common model has assumed that the lungs can be viewed as a single compartment characterized by its
compliance (the ratio of compartment volume to pressure) and the resistance to air flow into the
compartment.103,104,107

While a few investigators have considered two-compartment models, reflecting the fact that there
are two lungs (right and left), there has been little interest in more detailed models.108–110 However, the
lungs, especially diseased lungs, are heterogeneous, both functionally and anatomically, and are
comprised of many subunits, or compartments, that differ in their capacities for gas exchange. Realistic
models should take this heterogeneity into account. While more sophisticated models entail greater
complexity, since the models are readily presented in the context of dynamical systems theory,
sophisticated mathematical tools can be applied to their analysis.111 Compartmental lung models are
described by a state vector, whose components are the volumes of the individual compartments. Using
the multi-compartment model of a pressure-limited respirator and a lung mechanics systems developed
in Ref.111, a model reference adaptive controller is proposed in Ref.112. This adaptive feedback controller
stabilizes a given limit cycle (i.e., periodic signature) corresponding to a respiratory pattern identified by
a clinician as a plausible breathing pattern in the face of full lung compliance and resistance uncertainty.

Closed-loop control of sedation using actigraphy and digital imaging

Current methods for assessing sedation are subjective and limited in accuracy and resolution, and
hence, prone to error which in turn leads to oversedation, and increases health-care cost and length of
stay in the ICU. In particular, oversedation increases risk to the patient since liberation from mechanical
ventilation and endotracheal extubation may not be possible due to a diminished level of conscious-
ness and respiratory depression from sedative drugs resulting in prolonged length of stay in the ICU.
Prolonged ventilation is expensive and is associated with known risks, such as inadvertent extubation,
laryngo-tracheal trauma, and ventilator-associated pneumonia. Alternatively, undersedation leads to
agitation and can result in dangerous situations for both the patient and the intensivist. Specifically,
agitated patients can do physical harm to themselves by dislodging their endotracheal tube which can
potentially endanger their life. In addition, an intensivist who must restrain a dangerously agitated
patient has less time for providing care to other patients, making their work more difficult.
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The reliance on subjective assessment criteria, rather than quantifiable, measurable data for ICU
sedation, results in inconsistencies and variability in sedation administration. In addition, due to large
intrapatient and interpatient pharmacokinetic and pharmacodynamic variability to sedatives, the
assessment and treatment of patient agitation is often of poor quality and inconsistent from nurse to
nurse. Adaptive and neuroadaptive control algorithms based on appropriate dynamical system models
and quantifiable observations for capturing patient agitation to eliminate oversedation as well as cycles
between agitation and oversedation in the ICU can be developed using other measures of level of
consciousness. Specifically, nonlinear adaptive controllers for sedation control can be developed using
real-time actigraphic monitoring to fully automate ICU sedation. An actigraph has a piezoelectric
sensor that continuously records movements to provide objective indications of changes in the depth
of sedation and hence can be used for feedback control.113 Recent studies in clinical anesthesia show
that actigraphy captures reduced muscle activity in a patient’s stress response well before heart rate,
blood pressure, and respiratory rate responses are detected due to changing levels of sedation depth.114

Feedback control for sedation using actigraphy can potentially revolutionize ICU sedation.
Alternatively, digital imaging can also be used to quantify agitation in sedated ICU patients.115–119 In

particular, digital video image processing and computer vision can be used to develop objective
agitation measurements from patient motion. In the case of paraplegic patients, whole body move-
ment is not available, and hence, digital imaging of whole body motion and actigraphy are not viable
sensors. In this case, measuring head motion and facial grimacing for quantifying patient agitation in
critical care can be a viable alternative. Vision-based control algorithms for automated ICU sedation
have not been explored in the literature.
Conclusions

Control system technology has a great deal to offer pharmacology, anesthesia, and critical care
medicine. Critical care patients, whether undergoing surgery or recovering in intensive care units,
require drug administration to regulate physiological variables such as blood pressure, cardiac output,
heart rate, and degree of consciousness. The rate of infusion of each administered drug is critical,
requiring constant monitoring and frequent adjustments. Open-loop control by clinical personnel can
be tedious, imprecise, time consuming, and sometimes of poor quality. Alternatively, closed-loop
control can potentially achieve desirable system performance in the face of the highly uncertain and
hostile environment of surgery and the intensive care unit. Since robust and adaptive controllers
achieve system performance without excessive reliance on system models, robust and adaptive closed-
loop control has the potential for improving the quality of medical care.

Closed-loop control for clinical pharmacology can significantly advance our understanding of the
effects of pharmacological agents and anesthetics, as well as advance the state-of-the-art in drug
delivery systems. Closed-loop control can be used for the administration of multiple drugs (anesthetics,
opiods, and neuromuscular blocking agents) for critical care medicine. This would provide integrated
control for hemodynamics and hypnosis in order to achieve automated anesthesia and analgesia. Such
a methodology can significantly advance our understanding of a broad spectrum of problems in clinical
pharmacology. In addition to delivering sedation to critically ill patients in an acute care environment,
potential applications of closed-loop control include glucose, heart rate, and blood pressure regulation.
Payoffs will arise from improvements in medical care, health care, reliability of drug dosing equipment,
and reduced health-care costs.
Practice points

� Current methods of assessing the sedation of patients in the intensive care unit are subjective.
� Consequently patients are prone to either undersedation or oversedation.
� Use of a fixed rate infusion of sedative agents is particularly prone to oversedation barring

daily interruption of the infusion.



Research highlights

� Processed EEG measurements (with appropriate filtering of EMG signals), measurement of
ventilatory parameters that could assess ‘‘fighting the ventilator,’’ actigraphy, or digital video
image processing are potential methods of assessing sedation in a more objective fashion.
� Development of objective methods of assessing sedation will enable the application of

modern control theory to clinical practice.
� Nonlinear adaptive control, neural network adaptive control, optimal control, and hybrid

control algorithms have the potential to greatly improve the clinical practice of sedation.
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