
Optimization of Artificial Central Pattern Generators
with Evolutionary Algorithms

Christian Bauer, Sebastian Braun, Yang Chen,
Wilfried Jakob, Ralf Mikut

Institute for Applied Computer Science, Forschungszentrum Karlsruhe
76021 Karlsruhe, Postfach 3640

Tel.: +49 7247 82 6672
Fax: +49 7247 82 5786

E-Mail: christian.bauer@iai.fzk.de

Abstract

In contrast to classical engineering approaches for the generation of movements
in robots or prostheses, approaches to this subject inspired by neurophysiological
circuits are in advance. One of the key structures of interest in this area is the Central
Pattern Generator (CPG) which has been identified to be the source of movement
generation in mammals. This neural circuit is capable of generating cyclic muscle
activation patterns completely independent from the brain as shown by Brown in
the early 20th century [1, 2]. In the past years this knowledge was adapted to the
challenges in movement generation and control in robotics, for example for passive
dynamic walkers by P. Manoonpong [3].

In this paper the results of a CPG implementation and its optimization to model
the human movement generation are presented, which were aiming at a design to
be as biologically realistic as possible. Due to the fact, that biological models are
the fundamentals of the simulated CPG, a large number of parameters needs to
be set, which results in a very complex configuration process to get an optimized
CPG behavior. Based on previous works [4–7] an Evolutionary Algorithm was em-
ployed to optimize the rhythm-generation of the CPG. For this optimization the tool
GLEAMKIT was used [8]. Electromyographic (EMG) data recorded from a human
male during walking on a treadmill have been utilized for the fitness function as well
as for evaluation purposes.

1 Introduction
In computer sciences, robotics research and development of prostheses, artificial neu-
ral networks are nowadays common tools to increase the possibilities and power of
all different kinds of systems, e.g. object classification, learning, speech recogni-
tion or movement generation. To build these systems a lot of different approaches
are possible which bare several advantages and disadvantages depending on specific
tasks for which they are developed. These approaches can be split into two main
strategies, on the one hand side there is the ’classic technical’ way of building an
artificial neural network which evolved out of computer science. Few neurons are
organized in layers and connected with each other by weighted data streams. On the
other hand there is the biological inspired approach which relies on the findings in
neural sciences and uses differential equations for simulating behavior of biological
neurons during the data transmission in animals or humans. One of the most com-
mon models for such a biological realistic simulation is the Hodgkin-Huxley Model,
published in 1952 [9].



One of the most popular concepts in humanoid robotics to generate coordinated
leg movement is the one of Central Pattern Generators (CPGs). These are neural
structures which have been discovered in the 20th century [15] by testing the loco-
motive capacities of decerebrated cats. The ability of cats, or mammals in general,
to be able to walk or trot in an almost normal walking pattern, even with their cere-
bellum or spine surgically separated from the motor cortex, indicate, that basic gait
patterns are encoded in the neural networks of the spine. These neural structures are
called Central Pattern Generators and have been found to be responsible for gener-
ation of cyclic muscle activation patterns such as respiration, chewing or leg move-
ment during walking. These CPGs are one part of the neural system which controls
posture and movement, which is hierarchically organized and of a highly complex,
nonlinear structure (see Figure 1).

Figure 1: Locomotion control system in humans

This concept has been adapted by many scientists for movement generation in
robotics. Matsuoka published his first concepts of artificial neural oscillators in 1985
and 1987 [10,11]. The concept of CPG has been applied to passive dynamic walkers
developed by F. Wörgötter and P. Manoonpong [3, 12] (RUNBOT) or Mori et al.
[13]. These approaches have in common that the CPGs used are to a certain degree
simplified artificial neural networks which just adapt the idea of CPGs for the task of
bipedal locomotion.

In the research group at the Institute for Applied Computer Science (IAI) at the
Forschungszentrum Karlsruhe the subject of interest is movement generation for
prostheses and robots. The approach used here is of a different kind as the afore-



mentioned and uses biological realistic simulations of neurons and neural networks
to simulate CPGs and to generate muscle activation patterns in a way which is biolog-
ically as realistic as possible. The first results have been presented in [4] containing
simulation results of a CPG with a heuristically found parameter set, without the
necessary coupling to a biomechanical simulation environment.

In this paper a more sophisticated simulation of a CPG is presented as well as the
application of the Evolutionary Algorithm (EA) GLEAM to optimize the parameters
of the CPG network so that the muscle activation pattern becomes as human like
as possible. For this several different types of software tools had to be combined
to operate in an integrated simulation and optimization platform. This platform has
been evaluated regarding different sizes of the parameter sets (four or 14 parameters)
and the scalability of the optimization process regarding distributed computing.

This paper is structured as follows. In Section 2 the used tools and principles are
explained as well as how these are combined to form the system. In addition to that
the methods used for optimizing the system are introduced in this section. Following
this, the Evaluation section (Section 3) addresses the evaluation and test scenarios
with which the system has been confronted. The results of these tests are presented
and explained. Following this section, a discussion of the results can be found in
Section 4 and future work is motivated. Section 5 concludes this paper with a short
summary of the contents of this paper.

2 System and Methods
In this section the software tools used to build the simulation system are introduced
as well as the proceedings and methods of simulating a CPG. Following that, it is
explained how the CPG-generated activation patterns are compared to the reference
data as well as the procedure to optimize these activation patterns.

2.1 Architecture for Simulation and Optimization

The platform developed consists of two main parts, the simulation and the optimiza-
tion, and can be seen in Figure 2.

For the simulation of a CPG the neural simulation software NEURON published
by a group of researchers at the University of Yale1 is used. This tool is a pro-
gramming environment specialized on generating and designing neural structures
consisting of several neurons. The strength of NEURON lies in its ability to calcu-
late the differential equations, which describe neural behavior. In principle, these
neurons are laying at rest and the transmission of information along these neurons
is done by action potentials, which means that specified currents of potassium and
calcium ions are diffusing through the cell membranes sending a current along the
axons. The duration and amplitude of these are identical to the according currents
in biological neuron. The same is valid for the membrane and action potentials and
the settling rate of the neurons. Using NEURON an artificial neural network was
implemented which contains all parts that are responsible for movement generation
in mammals. In Figure 3 the structure of this CPG network, the involved neurons
and their interconnection is illustrated.

Former research results [14–16] prove that neural structures like this one exist
in mammals and are the crucial part in the generation of cyclic motion patterns.
Coupling these CPGs the generation of more sophisticated locomotion patterns is
possible. To achieve this, each joint has to be controlled by one CPG, which means

1http://www.neuron.yale.edu/neuron/

http://www.neuron.yale.edu/neuron/


Figure 2: Overview of the software tools building the system

that several muscle activations for the flexors and extensors of this joint have to be
generated by this CPG.

The biomechanics simulation Software OpenSim is a freeware tool for the anal-
ysis of muscle forces in motion capturing data recorded from patients or test persons
to calculate direct and inverse kinematics and dynamics. It uses free available mod-
els from the commercial software SIMM and is available as open source from the
projects homepage2. Using OpenSim the motion data which has been recorded at
the Orthopädische Klinik in Heidelberg, Germany, was used to calculate the mus-
cle activation signals from the test person. The motion data for this calculation was
recorded from a 23 years old human male via a commercially available 3D motion
analysis system. For the marker placement the Helen Hayes marker set was used and
the motion was performed on a treadmill running with different speeds. In addition
to motion data, EMGs of eight prominent muscles in both thighs and shanks were
recorded.

To use the benefit of biological realistic simulation the activation patterns gener-
ated by the CPG programmed in NEURON have to be as close to real human muscle
activation patterns as possible. The pattern generation in NEURON can be adjusted
by a large number of parameters which influence the output in a very complex way.
To match this artificial activation to the recorded human muscle activation an Evolu-
tionary Algorithm is employed to find a best matching result for the desired purpose.

EAs are able to deal with a large number of parameters and control figures like
it is the case of the presented simulation. The simulation framework is extended
by the GLEAM engine (General Learning Evolutionary Algorithm and Method [7,
17]) and GLEAMKIT which have been developed at the IAI [18, 19]. The former

2https://simtk.org/project/xml/downloads.xml?group_id=91

https://simtk.org/project/xml/downloads.xml?group_id=91


Figure 3: Structure of the neural connection of a CPG

one is an open source implementation of the evolutionary algorithm GLEAM with
interfaces to Windows and Matlab [18], the latter one is a Matlab toolbox forming
a GUI for GLEAM for configuring the EA and the optimization runs. In addition
to that an online visualization frontend is provided. These two toolboxes are used
to apply the EA GLEAM to optimize the parameter sets of the simulation to match
the generated artificial muscle activation patterns as close as possible to the muscle
activation patterns of human locomotion.

The described simulation and optimization system is completed by the Matlab
toolbox Gait-CAD for filtering and evaluation tasks. This toolbox has been devel-
oped at the IAI and is specialized for filtering, visualization and data mining in large
datasets and time series [20].

Considering the fact that each simulation to evaluate one genome model of the
EA takes a certain amount of time to be completed (8 to 50 seconds, depending
on the computer), the concept of distributed computing was used to enhance the
performance and time effectiveness of the EA application. To achieve this the IAI-
DataShare software, which is a Client-Server-Architecture for assessing data based



jobs for distributed computing was coupled with the system. IAIDataShare consists
of one server instance which distributes the jobs to registered clients which calculate
the simulation depending on the individuals of this EA-population. Each of these
contains a NEURON parameter set and computes the resulting activation patterns of
moto-neurons. If finished the results are written to a file which then is copied to the
results directory by the server.

2.2 Methods - Generation of Muscle Activation

The problem of crosstalk between the recorded EMG signals made it impossible
to differentiate exactly between the muscle activation of the targeted muscle and
the activation of surrounding muscles involved in the locomotion. Therefore in our
application, OpenSim has to be called to extract muscle activations and events such
as ground contact from the kinematic data. This has to be done only once to get a
reference dataset for the optimization process.

The CPG is built up of different neurons, implemented in NEURON. Former
research has shown that a combination of neurons modeled with the Hodgkin-Huxley
(HH) model [9] and Integrate-and-Fire neurons [21] is the way of choice in respect
of computation efficiency and closeness to reality [5]. The HH-Model was used to
build up the pacemakers and moto-neurons whereas the Integrate-and-Fire model
was applied for building the interneurons. The advantage coming with the Integrate-
and-Fire neuron model is that its computation time is proportional to the number of
events and independent of the number of neurons involved, because no numerical
integration is required but an analytical solution is used instead. This type of model
is especially useful for discrete event simulation, which are characterized by only
time relevant events such as spikes [21].

This model works in a very simple way. Mathematically it can be described by

if spike comes, then mIntF = mIntF + w (1)

if mIntF > 1, then
{

deliver a spike event
τ dmIntF

dt +mIntF = 0
(2)

where the system dynamics is determined by a single membrane state variable
mIntF . If the neuron receives a spike event from the connected neuron, the mem-
brane state value is increased by w, defined as the synaptic weight. If mIntF ex-
ceeds 1, the neuron fires and a spike event is delivered. The membrane state variable
decays exponentially with the time constant τ after firing. Refractory period can be
easily added to the model by defining for how long the neuron can not receive new
spike events after firing.

In contrary the HH neuron model is mathematically more complex and describes
the membrane potentials of single neurons very realistic. Its general form is as fol-
lows:

Cm ·
dVm(t)
dt

= −
nIon∑

i

IIon,i(t)−
nSyn∑

i

ISyn,i(t)−
nExt∑

i

IExt,i(t) (3)

in which Cm = 1µF/cm2 is the membrane capacity, and Vm the membrane
potential. IExt,i represents external influences like afferent inputs or flexor/extensor
phases, ISyn,i is the synaptic current built as the product of the maximum conduc-
tance gSyn,i = 0.05mS/cm2 of the synapse with the connection weight wSyn,i and
time relevant variables (tls,i for the time of the last spike and τSyn,i = 5ms as time
constant for the synaptic current, n is the number of the connected source neurons).



ISyn,i(t) = gSyn,i · wSyn,i · exp
(
−t− tls,i(t)

τSyn,i

)
· (Vm(t)− ESyn,i) (4)

The differentiation of inhibitory and excitatory synaptic currents is achieved by
different values of reversal potentials ESyn,i which are about -40mV and -10mV
respectively.

The ion currents IIon,i are used to model the characteristic behaviors of a neu-
ron by a combination of the three different types of involved ion channels, Sodium,
Potassium and leakage. To model the CPG typical behavior the persistent sodium
current INaP has been incorporated. Together with the three former currents of the
HH model (INa, IK and IL for the sodium, potassium and leakage, respectively) the
ion currents of a pacemaker neuron, key part of a CPG, can be modeled:

IIon,Burster(t) = INa(t) + IK(t) + IL(t) + INaP (t) (5)

INa(t) = gNa,max ·m3
Na(t) · hNa(t) · (Vm(t)− ENa) (6)

IK(t) = gK,max · n4
K(t) · (Vm(t)− EK) (7)

IL(t) = gL(Vm(t)− EL) (8)

INaP (t) = gNaP,max ·mNaP (t) · hNaP (t) · (Vm(t)− ENa) (9)

The constants Ex (ENa = 55mV ;EK = −85mV ;EL = −55mV ) are the re-
versal potentials of the ion currents, and gx (gNa,max = 120mS/cm2; gK,max =
48mS/cm2; gNaP,max = 13mS/cm2; gL = 3mS/cm2) the maximum ionic con-
ductances. m and n are the activation variables, h the inactivation variables of the
neurons, representing the permeability of the ion channels in values ranging from 0
to 1.

To complete the CPG network the moto-neurons have to be modeled by using
the following currents. The ion currents in soma include

IIon,Moto,Soma(t) = INa(t) + IK(t) + IL(t) + ICaN (t) + IK(Ca)(t) (10)

ICaN (t) = gCaN,max ·m2
CaN (t) · hCaN (t) · (Vm(t)− ECa) (11)

IK(Ca)(t) = gK(Ca),max ·mK(Ca)(t) · (Vm(t)− EK) (12)

gK(Ca),max =
Ca

Ca+Kd
(13)

dCa

dt
= fCa(−αCa · ICa(t)− kCa · Ca) (14)

and the dendrite current is composed of

IIon,Moto,Dend(t) = ICaN (t) + IK(Ca)(t) + ICaL(t) (15)

ICaL(t) = gCaL,max ·mCaL(t) · (Vm(t)− ECa) (16)

where the constants are set by the expert to:

• gCaL,max 0.33mS/cm2

• gCaN,max 14mS/cm2 in soma, 0.3mS/cm2 in dendrite

• gK(Ca),max 1.1mS/cm2 in soma, 5mS/cm2 in dendrite

These are the newly added ion conductances of the L-like calcium current ICaL,
N-like calcium current ICaN and the calcium-dependent potassium current IK(Ca).



To make the implemented CPG as biologically correct as possible the parameters
to influence its behavior have to be chosen very carefully. Considering the fact that
a very large number of parameters exists and in addition to that each change to one
parameter affects the system and therefore the other parameters, an optimization of
the system by hand comes not into account.

2.3 Methods - Computation of Muscle Activation

In NEURON the equations of Section 2.2 have been used to implement pacemaker
and moto-neurons. Once implemented, neural behavior and muscle activation can
be simulated with NEURON and frequency coded muscle activation patterns, com-
parable to those measurable by EMG, are produced. Because of the crosstalk effect
observed when measuring EMGs in a clinical environment, reference data has to be
computed using OpenSim. The relevant information is coded in the amplitude in
the reference data and therefore the NEURON results have to be converted into an
amplitude coded signal to make it comparable. From former clinical research it is
known that the muscles, target of our investigation, are activated by two neural bursts
during walking. This is equivalent to two spikes in the amplitude coded signal.

This leads to a calculation that has to be applied to get a more feasible represen-
tation of the signal to make it comparable with the recorded human data. For this a
Gauss-representation algorithm is applied to the signal (see Figure 4) which encodes
the frequency based information (upper part of Figure 4) into a data point consisting
of three variables A, B and C (middle part of Figure 4). In the frequency encoded
data the important values for calculation of the moto-neuron action potentials are the
following:

• I: Average value of spike intervals of a burst

• D: Burst duration

• TMB: Middle time of a burst

The applied Gaussian filter is defined as:

Y =
N∑
i

Yi =
N∑
i

Ai · Exp(−
(t−Bi)2

Ci
) (17)

The Gaussian variables A, B and C are A = I/SA, B = TMB and C = D/SD

with SA and SD as scaling factors for the amplitude and duration respectively and
N as the number of bursts and i as the bursts index.

With this representation it is possible to compare the simulated CPG activation
pattern to the human muscle activation from the clinical data of OpenSim (lower part
of Figure 4).

2.4 Methods - Evaluation Function

For the optimization process parameter sets with different numbers of parameters are
considered to be the individuals of one population of the EA. It was decided to use
one small parameter set consisting of the four most important parameters and one
large parameter set consisting of 14 parameters. The most remarkable influence to
the behavior of moto-neurons is considered to be the time constant τSyn,i and ionic
conductance of the persistent sodium current gNaP . By changing these two values
for the flexor and extensor muscles in one joint the muscle activation and therefore
the movement itself is changed. In the large parameter set values for potassium,



Figure 4: Making NEURON signals (upper third) comparable by applying a Gauss transformation
(middle part) to the reference graph (lower third)

sodium, chloride, N-like calcium and potassium controlled calcium conductances
(gNa, gK , gL, gCaN and gK(Ca)) are added for flexor and extensor muscles. These
constants have been introduced in the equations of Section 2.2 and their values, set
by an expert are given. Using distributed computing by IAIDataShare, a simulation
of the CPG in NEURON is run with each parameter set.

Once the simulation of the CPG muscle activation is finished (left area of Fig-
ure 5) the results are written to a result file.

Comparing this result to the reference data, a fitness value is calculated and as-
signed to the according parameter set individuum.

The fitness calculation is first done separately for flexor and extensor muscle
activation. The results are then combined to get an overall fitness value for the actual
simulated parameter set. First the sum of deviations of the values of each point
of the simulated graph regarding the corresponding point in the reference graph is
calculated:

Qsum =
m∑

k=0

|xN [k]− xR[k]| (18)

The location (X-axis: x1 and x2) and amplitude (Y-axis: y1 and y2) of the two
maxima for the extensor and flexor muscles are the other four criteria which are



Figure 5: Connection between NEURON simulation and the EA

used as a measurement for the matching of simulation result and reference graph. N
and R in the indices assign the values to the simulation graph and reference graph,
respectively. The developed fitness function takes into account that the importance
of each of these four criteria influences the matching of the two graphs in different
ways.

Qges = α1

2∑
n=1

m∑
k=0

(|xn,N [k]− xn,R[k]|) + α2|x1,n,N − x1,n,R|

+ α3|x2,n,N − x2,n,R|+ α4|y1,n,N − y1,n,R|+ α5|y2,n,N − y2,n,R| (19)

These criteria are weighted by weight factors αi which leads to the fitness func-
tion for the whole optimization.

3 Evaluation and Results
For the evaluation of the complete system two different types of parameter sets have
been used by the EA platform to generate activation patterns by the CPG. The first
parameter set consists of only four parameters and therefore the influence to the
generated activation pattern is more limited than with the second parameter set which
uses 14 parameters leading to a larger search space.

Each optimization run with the EA lasted nine to ten hours which corresponds
to 160 generations and several different runs have been performed. Three examples
shall be depicted in detail in this section:

• Run 1: small parameter set with weighting α1 = 10, α2 to α5 = 1

• Run 2: small parameter set with weighting α1 to α5 = 1

• Run 3: large parameter set with weighting α1 to α5 = 1

In addition to these three runs which were designed to test the quality of the
optimization, the scalability of the EA was tested doing several optimization runs on
different workstations and processors.



Figure 6: Result of optimizing 14 parameters

Run Weights Weights
α1 = 10, α2 to α5 = 1 α1 to α5 = 1

Start by Expert 22323 40262
1. Run 43886 78937
2. Run 43886 78937
3. Run 54166 83907

Table 1: Runs with different weights

Table 1 shows the fitness values of the three mentioned runs. Two fitness values
are shown, differing by the weights used for calculating the fitness function. The
bold written ones are the ones of the weights used during the optimization process,
the others are the results of the fitness function with the different weights applied to
the result.

Comparing the first and second run the resulting fitness values are identical.
Comparing these two to the third run, it is obvious that switching to the greater num-
ber of parameters improves the result significantly. In conclusion, no matter what
parameter set is used for optimization an improvement to the original parameter set-
ting done by an expert is obvious.

For the test how the process is scaling three different configurations were used:

• A two processor machine with four cores each. Only one core used (Scenario
A and C)

• A two processor machine with four cores each. All cores used (Scenario B, D
and E)



Figure 7: Fitness over Generation

• A heterogenous mixture of different office workstations (Scenario F)

The results are displayed in Table 2.

Scenario Function Number of Individuals Scaling
machines/cores per minute factor

A CPG 1/1 7.39 —
B CPG 1/8 34.72 4.7
C CPG 5/16 45.13 6.1

Table 2: Scaling

Comparing case A with B of Table 2, the scaling factor of 4.7, is not very good
regarding the fact that eight times more cores have been used. The cause for this lies
in two different circumstances. The first one is, that these two scaling tests have been
performed on one machine with several cores, but other resources like the working
memory had to be shared which led to waiting cycles during the computation. The
other cause, which comes into account in case C as well, leads to waiting cycles after
finishing a job and conflicts when two processes want to write results to the result
folder at the same time. This is rooted in the fact that IAIDataShare was designed for
graphical applications and real time capacities have not been a design criteria in the
first place. Taking this into consideration scalability can be improved dramatically
by adding real time capabilities to IAIDataShare.

In Figure 7 the development of the fitness value over the generations during the
optimization process is shown. This optimization run lasted several days and showed
that at about 160 generations a stagnation occurs and lasts (this is why the last 200
generations have not been displayed in this graph). Further investigation of this fact
and the influence of the amount of parameters involved as well as the weights in the
fitness function to it is necessary.

The resulting graph of scenario C of Table 2 is shown in Figure 6. The matching
of the flexor activation to the flexor reference is very good but the matching of the



extensor activation curves bares potential for optimization. The cause for this can be
found in oversimplification of the model which was part of the compromise between
accuracy and computing effort.

4 Discussion
By employing NEURON for simulating a CPG the possibility is given to generate
cyclic activation patterns in a very sophisticated and biological realistic way. Com-
bining this simulation with the EA engine GLEAM and its GUI GLEAMKIT the
optimization of the simulation despite its huge number of parameters has been made
possible. Tests and evaluations have shown that there is still a lot of space for im-
provements which will be targeted in further research. Possible extensions could be
tests targeting the robustness of the system against input from external sensors or
multiple parallel execution.

The presented system is capable of generating biological correct and realistic ac-
tor activation patterns which, in the future, should be used for the motion generation
or actor activation in robotics. To make this possible two challenges to get from
simulation to application have to be targeted. First an interface has to be developed
which is capable of translating the neural activation patterns into actuator signals for
controlling several devices which function as ’muscles’ in a robot. Then a new itera-
tion of optimization processes is necessary. Apart from that, stepwise simplifications
have to be performed to make the system suitable for real time applications in robots.

Apart from that, further potential for research lies in the setting of the weights in
the calculation of the fitness. As depicted in Section 3 possibility exists, that despite
different weights in the fitness function the resulting parameter set leads to the same
activation pattern generated. This fact motivates further investigation how this fact
may be useful for designing more advanced optimization procedures.

In addition to that, as was shown by the scaling tests, there is still space for
improvement, especially in the design of the IAIDataShare tool which takes respon-
sibility for the distributed computing.

5 Conclusion
In this paper, an extended simulation environment for biological Central Pattern Gen-
erators has been presented and an optimization has been applied to match the gen-
erated muscle activation as close as possible to human locomotion data. For this
optimization an Evolutionary Algorithm has been employed and several optimiza-
tion runs have been performed which showed the influence of different prioritization
of the parameters. Now a system exists which is capable of generating activation
patterns for joint movements. This will be expanded and enhanced for applications
in robotics and the development of prostheses in our future research.

6 Acknowledgements
Software tools used were the NEURON of N.T. Carnevale and M.L. Hines and their
group at the University of Yale and the OpenSim toolbox for biological mechanics
simulation. The project is part of the Collaborative Research Center (SFB) 588 of
the German Research Foundation (DFG). Thanks go to the Orthopädische Klinik
Heidelberg, especially Rüdiger Rupp, Christian Schuld and Joachim Schweidler, in
Heidelberg Germany for assisting in recording human motion data and EMG signals.



References
[1] Brown, T.: The Intrinsic Factors in the Act of Progression in the Mammal.

Proceedings of the Royal Society: London 84 (1911), S. 308–319.

[2] Brown, T.: The Factors in Rhythmic Activity of the Nervous System. Proceed-
ings of the Royal Society: London 85 (1912), S. 278–289.

[3] Manoonpong, P.; Geng, T.; Porr, B.; Woergoetter, F.: The RunBot Architecture
for Adaptive, Fast, Dynamic Walking. In: Proc., IEEE International Sympo-
sium on Circuits and Systems (ISCAS), S. 1181–1184. 2007.

[4] Chen, Y.; Bauer, C.; Burmeister, O.; Rupp, R.; Mikut, R.: First Steps to Fu-
ture Applications of Spinal Neural Circuit Models in Neuroprostheses and Hu-
manoid Robots. In: Proc., 17. Workshop Computational Intelligence, S. 186–
199. Universitätsverlag Karlsruhe. 2007.

[5] Chen, Y.: A Concept for the Application of Neural Oscillators and Spinal
Reflexes to Humanoid Robots and Neuroprostheses. Master thesis, Uni-
versität Karlsruhe (TH), Institut für Regelungs- und Steuerungstechnik,
Forschungszentrum Karlsruhe GmbH. 2008.

[6] Jakob, W.: Auf dem Weg zum industrietauglichen Evolutionären Algorith-
mus. In: Proc., 15. Workshop Computational Intelligence, S. 212–226. Uni-
versitätsverlag Karlsruhe. 2005.

[7] Blume, C.: GLEAM - Ein EA für Prozessabläufe am Beispiel von Steuerungen
für Industrieroboter. In: Proc., 16. Workshop Computational Intelligence, S.
11–24. Universitätsverlag Karlsruhe. 2006.

[8] Blume, C.; Jakob, W.: GLEAM - an Evolutionary Algorithm for Planning and
Control Based on Evolution Strategy. In: Proc., GECCO, Bd. Late-Breaking
Papers, S. 31–38. L. Livermore National Laboratory. 2002.

[9] Hodgkin, A.; Huxley, A.: A Quantitative Description of Membrane Current
and its Application to Conduction and Excitation in Nerve. The Journal of
Physiology 117(4) (1952), S. 500–544.

[10] Matsuoka, K.: Sustained Oscillations Generated by Mutually Inhibiting Neu-
rons with Adaptation. Biological Cybernetics 52 (1985), S. 367–376.

[11] Matsuoka, K.: Mechanisms of Frequency and Pattern Control in the Neural
Rhythm Generators. Biological Cybernetics 56 (1987), S. 345–353.

[12] Manoonpong, P.; Geng, T.; Wörgötter, F.: Exploring the dynamic walking
range of the biped robot RunBot with an active upper-body component. In:
Proc., IEEE-RAS International Conference on Humanoid Robots, S. 418–424.
2006.

[13] Mori, T.; Nakamura, Y.; Sato, M.; Ishii, S.: Reinforcement Learning for CPG-
Driven Biped Robot. In: Proc., National Conference on Artificial Intelligence,
S. 623–630. 2004.

[14] Duysens, J.; Tax, A.; Murrer, L.; Dietz, V.: Backward and Forward Walking
Use Different Patterns of Phase-Dependent Modulation of Cutaneous Reflexes
in Humans. Journal of Neurophysiology 76 (1996) 1, S. 301–310.

[15] Duysens, J.; Van de Crommert, H. W. A. A.: Neural Control of Locomotion;
Part 1: The Central Pattern Generator from Cats to Humans. Gait & Posture
7(2) (1998), S. 131–141.



[16] Dietz, V.; Zijlstra, W.; Duysens, J.: Human Neuronal Interlimb Coordina-
tion during Split-Belt Locomotion. Experimental Brain Research 101 (1994),
S. 513–20.

[17] Blume, C.: GLEAM - A System for Simulated ‘Intuitive Learning’. In: Proc.
PPSN I, Nr. 496 in LNCS, S. 48–54. Springer. 1990.

[18] Braun, S.: Softwareentwurf und Teilimplementierung einer Toolbox
GLEAMKIT unter MATLAB. Projektarbeit, Berufsakademie Karlsruhe,
Forschungszentrum Karlsruhe. 2007.

[19] Braun, S.: Entwicklung einer Plattform für Evolutionäre Algorithmen mit
verteilter Simulation am Beispiel der Parameteroptimierung von zentralen
Mustergeneratoren für Roboterbewegungen. Diplomarbeit, Berufsakademie
Karlsruhe. 2008.

[20] Mikut, R.; Burmeister, O.; Reischl, M.; Loose, T.: Die MATLAB-Toolbox
Gait-CAD. In: Proc., 16. Workshop Computational Intelligence, S. 114–124.
Universitätsverlag Karlsruhe. 2006.

[21] Carnevale, N.; Hines, M.: The NEURON Book. Cambridge University Press.
2006.


	Introduction
	System and Methods
	Architecture for Simulation and Optimization
	Methods - Generation of Muscle Activation
	Methods - Computation of Muscle Activation
	Methods - Evaluation Function

	Evaluation and Results
	Discussion
	Conclusion
	Acknowledgements

