
Modelica Libraries for
Linear Control Systems

Marcus Baur, Martin Otter, Bernhard Thiele
German Aerospace Center (DLR), Institute of Robotics and Mechatronics, Germany

Marcus.Baur@DLR.de, Martin.Otter@DLR.de, Bernhard.Thiele@DLR.de

Abstract

This article presents and describes the new Lin-
earSystems and Controller libraries which are de-
veloped to enhance analysis, design and simula-
tion of linear control systems in Modelica. The
LinearSystems library contains basic functions for
linear system analysis and controller design for
state-space, transfer-function, and zeros-and-poles
representation. The library utilizes the operator
overloading technique from Modelica 3.1. The
Controller library provides input/output blocks
for these basic system descriptions and allows to
quickly switch between a continuous and a discrete
representation.
Keywords: linear systems; control design; system
control; sampled systems

1 Introduction

This article gives an overview of two new, open
source Modelica libraries to enhance the analy-
sis, design and simulation of linear control sys-
tems in Modelica, i.e. the LinearSystems library
and the Controller library. The LinearSystems li-
brary contains about 180 Modelica functions for
the analysis and design of linear control systems
in different description forms. The Controller li-
brary contains about 30 controller blocks where it
is easy to switch between a continuous and a dis-
crete representation of the blocks. The Controller
library is based on the description forms provided
by the LinearSystems library.
All numerical functions of the LinearSystems li-

brary are natively implemented in Modelica, with
exception of linear algebra functions (e.g. solv-
ing linear systems of equations) that use the LA-
PACK library [6]. Therefore, the functions of
the LinearSystems library can be used in the
production code of a controller, e.g., to design

at every sample instant a linear observer for a
non-linear plant model that is linearized around
the actual operating point. The goal is to use
this functionality in combination with the Mod-
elica_EmbeddedSystems library [4] for advanced
embedded control systems, where non-linear in-
verse plant models are present in a controller.
Parts of the functions and blocks of the two li-

braries are based on the Modelica_LinearSystems
library described in [9]. It is planned that
both libraries will be included in one of the
next versions of the Modelica Standard Library.
Currently, they are again collected in one li-
brary called Modelica_LinearSystems2 for the
LinearSystems library and the sublibrary Model-
ica_LinearSystems2.Controller for the Controller
library.

2 LinearSystems library

Figure 1: LinearSystems li-
brary

The LinearSystems
library contains
currently about
180 functions,
whereas the pre-
vious version had
about 20 functions.
A screen shot of
the first hierar-
chical level of the
library is shown
in Figure 1. Most
important are the
four records that
contain the basic
data structures
and functions for
linear control sys-
tems according to
the following mathematical description forms:

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 593 DOI: 10.3384/ecp09430068

• StateSpace

ẋ(t) = Ax(t)+Bu(t)
y(t) = Cx(t)+Du(t)

• TransferFunction

y = n(s)
d(s) ·u

• ZerosAndPoles

y = k ·
∏

(s+n1i) ·
∏

(s2 +n2js+n3j)∏
(s+d1k) ·

∏
(s2 +d2ls+d3l)

·u

• DiscreteStateSpace

xd(tk+1) = Axd(tk)+Bu(tk)
y(tk) = Cxd(tk)+Du(tk)
x(tk) = xd(tk)+B2(tk)

with the Laplace variable s. Note, that the ma-
trix B2 to derive the continuous state space vec-
tor x(tk) from discrete xd(tk) depends on the lin-
earization method. The users view of the Ze-
rosAndPoles data structure are the zeros, poles
and the gain of the transfer function. Internally,
the transfer function is represented by the real co-
efficients of first and second order polynomials, so
that the operations on this representation results
in transfer functions with real coefficients. If com-
plex poles and zeros would be used, inaccuracies
in computational calculation could result in sys-
tems with complex poles without the conjugated
complex counterpart.
The data of the mathematical description forms

are stored in the respective record, e.g., the matri-
ces A, B, C, D are the data of the state space rep-
resentation stored in the StateSpace record. Addi-
tionally, the signal names can be optionally stored
as well. When linearizing a Modelica model,
e.g., with StateSpace.Import.fromModel(..),
the full signal names of the original model are au-
tomatically included in the linear system record.
StateSpace-, TransferFunction-, and Zeros-

AndPoles-records have the same basic struc-
ture. As an example, the first hierarchi-
cal level of the StateSpace record consisting
of several sublibraries is shown in Figure 2.

Figure 2: StateSpace
record

The first few elements,
coated with quotes, are
made for the usage of
operator overloading, see
[8], in order that the
elementary operations
+,−,∗,==, String(..) on
the data structure can be
conveniently carried out.
For example, the follow-

ing transfer functions

G0(s) = s+1
s2 +3s−2

and

G1(s) = G0
1+G0

can be easily defined in the interactive environ-
ment of Dymola [3] in the following way:

import tf =
Modelica_LinearSystems2.TransferFunction;
s = tf.s();
G0 = (s+1)/(s^2+3*s-2);
G1 = G0 / (1 + G0);
G1
// = "(s^3 + 4*s^2 + s - 2)/
// (s^4 + 7*s^3 + 9*s^2 - 11*s + 2)"

The new Command window of Dymola shows such
results appropriately rendered, e.g. Figure 3.

Figure 3: Dymola Command window

The further sublibraries structure the available
functions:

• Analysis contains functions to compute
eigenvalues, poles, zeros, or properties like
controllability.

• Design contains functions to design control
systems, e.g., with the pole placement or the
Riccati method.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 594

• Plot contains functions to compute and plot
poles and zeros, frequency responses, step re-
sponses etc.

• Conversion contains functions to convert
from one data structure to another descrip-
tion form, e.g., from StateSpace to Transfer-
Function.

• Transformation contains functions to per-
form a similarity transformation, e.g., to
transform to controllability form.

• Import contains functions to import the
data structure from a model (by linearization)
or from a file.

All functions of the library are Modelica functions.
For basic linear algebra computations, like solu-
tions of linear systems of equations, or eigenvalue
computations, the standard numerical library LA-
PACK [6] is used. Besides LAPACK, no other ex-
ternal functions are utilized.

In the following sections, some of the above
quoted sublibraries are described in more detail
for StateSpace systems.

2.1 StateSpace.Analysis

Figure 4: Package
StateSpace.Analysis

The Analysis package
of StateSpace contains
functions to compute
eigenvalues, invariant
zeros, and various
system properties.
The eigenvalues of
a state space sys-
tem, which are the
eigenvalues of the
system matrix A, are
calculated with the
LAPACK function
dggevx, i.e., using
the basic eigenvalue
computation with an
additional balancing
transformation to im-
prove the conditioning
of the eigenvalues.
The principle of the
algorithm is to reduce
matrix A to an upper
Hessenberg form first. The QR algorithm is then

used to further reduce the matrix to a real Schur
form (RSF) from which the eigenvalues are easily
computed.
Beside the eigenvalues, also the invariant zeros

play an important role for linear dynamic systems.
They identify those exponential input signals that
are completely blocked by the system. A complex
number s= zk is an invariant zero of a state space
system

ẋ = Ax+Bu
y = Cx+Du

if the Rosenbrock matrix

P(s) =
(
sI−A B
−C D

)

is rank deficient for s= zk, i.e.

rank (P(zk))<max
s

(rank (P(s))) (1)

(note, that the modification of the signs in the
matrix do not change the rank). If the system
has the same number of inputs and outputs, the
invariant zeros are the generalized eigenvalues of
the pair of square matrices (L,M) with

L =
(

A B
C D

)
, M =

(
I 0
0 0

)
.

In this case the generalized eigenvalues, i.e., the
invariant zeros, could be computed with a stan-
dard QZ-algorithm, e.g., with LAPACK function
dggev. However, this algorithm fails if the system
has not the same number of inputs and outputs or
if one of the matrices B or C does not have full
column or full row rank respectively. For this rea-
son, in the LinearSystems library the algorithm
from [5] is used to calculate the invariant zeros
of arbitrary StateSpace systems, i.e., with arbi-
trary numbers of inputs and outputs and rank de-
ficient matrices. The approach is to compress the
matrices (A,B,C,D) with QR-decompositions to
(Ar,Br,Cr,Dr) such that a reduced order system
matrix

Pr (s) =
(
sI−Ar Br

−Cr Dr

)
with invertible matrix Dr have the same zeros
as P(s). After another transformation that com-
presses the columns of [Cr,Dr] to [0,Df] such that(

Af ∗
0 Df

)
=
(

Ar Br

Cr Dr

)
V

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 595

and (
Bf ∗
0 0

)
=
(

I 0
0 0

)
V

the QZ-algorithm is applied to calculate the gen-
eralized eigenvalues of the pair (Af ,Bf). These
generalized eigenvalues are the invariant zeros of
the system.
Controllability, observability, stability, de-

tectability, and stabilizability are computed with
numerically effective staircase algorithms. All
properties can be computed with the convenience
function “analyze” that calls all functions from the
Analysis package and presents the results in a nice
layout in html format. The requested results are
selected by a menu (see Figure 5). Furthermore,
the dynamics of the states are being analyzed in
relation to the dynamics of the modal states, i.e.,
the states of the corresponding similar uncoupled
modal system representation. This helps to un-
derstand which eigenvalue and/or eigen response
is associated with which variable.

Figure 5: Menu of Analysis.analysis function

The following example illustrates this relation:
The state space system with the matrices

A =

−3 2 −3 4
0 6 7 8
0 13 34 0
0 −17 0 0

 , B =

1 0
0 1
1 0
0 1

C =

(
0 1 0 1
0 0 1 1

)
, D =

(
0 0
0 0

)

has the four eigenvalues

λ1 =−3, λ2 = 36.65, λ3,4 = 1.67±11.11 i.

The system analysis function reports that this
system is neither stable nor observable but it is
controllable and therefore it is stabilizable and it

is detectable. In particular:

characteristics
λ1 stable, controllable, not observable
λ2 not stable, stabilizable, detectable
λ3,4 not stable, stabilizable, detectable

The contribution of the modal states zi (t) to the
system states xi (t) and the characteristics of the
dynamic behavior of the modal states is given
by the following tables on the result file in html
format:

i λi T[s] z[i] contributes
1 -3 0.333 to x[1] with 100 %
2 36.65 0.273 to x[3] with 72.8 %

to x[2] with 14.8 %

i λi z[i] contributes
3/4 1.67 ± i 11.11 to x[4] with 43.9 %

to x[2] with 29 %

i frequency[Hz] damping
3/4 1.7877 -0.1492

The relation of the system states to the modal
states, i.e., the composition of the system states
is shown in the next table:

System state is composed of
x[1] 60.6 % by z[1]

34.9 % by z[3/4]
x[2] 83.9 % by z[3/4]

16.1 % by z[2]
x[3] 71.2 % by z[2]

28.8 % by z[3/4]]
x[4] 94.4 % by z[3/4]

5.6 % by z[2]

The meaning of contribution and composi-
tion is explained subsequently. The idea of this
approach is, that the zero input response

xh(t) = eAtx0

of a state space system can be represented by a
transformation

xh(t) = Ṽzh (t) (2)

of the decoupled zero input responses zh(t) of the
corresponding modal system

ż = Ṽ−1AṼz = Λ̃z

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 596

with
zk(t) = eλitzk0

for a single real eigenvalue λk or(
zk(t)
zk+1(t)

)
= eΓkt

(
zk0

zk+10

)
for a single pair of conjugated complex eigenvalues
(λk,λk+1) = αk± iβk respectively. The matrix

Γk = T−1ΛkT =
(
αk βk
−βk αk

)
with

T = 1
2

(
1 −j
1 j

)
and Λk =

(
αk + jβk 0

0 αk− iβk

)
results from a transformation of the complex
eigenvalue matrix Λk into the corresponding real
form. The matrix Ṽ is given by

Ṽ = V
(

T̂ 0
0 I

)
where T̂ is a block diagonal matrix of order 2r
with r matrices T in its diagonal. Note, that the
matrix Λ = diag(λk) is assumed to be appropri-
ately sorted, i.e. the first 2r elements of the diago-
nal are the r conjugated complex pole pairs of the
system. Considering (2), each element xhk (t) of
xh(t) is represented by a linear combination ṽTk zh
of the zero input responses zhk (t), where ṽTk indi-
cates the k’th row of matrix Ṽ. Furthermore, xhk
is composed by pkl = 100 ·

(
|ṽkl|/|ṽTk |

)
% by the el-

ement zhl . On the other hand, equation (2) can
be written as

x = Ṽz =
n∑
k=1

zkṽk,

i.e., for each modal state zhk of zh the elements
qlk = 100 · |ṽlk|/|ṽk|% of the corresponding vector
ṽk indicates the proportion of zhk that is con-
tributed to the state xhl . Since the state xk is
assigned to a system variable, which can proba-
bly be assigned to a physical component or a cer-
tain subsystem, then pkl and qlk help to indicate
the influence of this subsystem to the dynamical
behavior of the system which, mathematically, is
composed of the dynamics of the modal states zk
associated to the eigenvalues λk.
Currently, the poles are only considered as real

poles or pole pairs with multiplicity 1. Systems
with eigenvalues of higher multiplicity are pro-
cessed as multiple eigenvalues of multiplicity 1.
This should be improved in the future.

2.2 StateSpace.Plot

Figure 6: Package
StateSpace.Plot

The sublibrary Plot con-
tains functions to plot
poles, zeros, frequency
responses and various time
responses. For the plotting,
a separate small package
is provided that must be
adapted to the features
of the used Modelica
tool, since plotting is not
standardized in Modelica.
Currently, the plot pack-
age is only provided for
Dymola.
For example, the following function call com-

putes the step responses of a state space system
from every input to every output and plots the
corresponding curves:

StateSpace.Plot.step(
ss=ss, dt=0.05,tSpan=10);

Figure 7 shows a step response of a SISO state
space system with the matrices

A =
(

0 1
−25 −1.5

)
,B =

(
0
25

)
,

C =
(
1 −0.5

)
, D = 0.

Figure 8 shows the corresponding bode di-
agram generated with StateSpace.Plot.-
bodeSISO(ss=ss);

Figure 7: Step response

2.3 StateSpace.Design

The Design sublibrary (see Figure 9) provides
standard controller design methods for linear
systems. The pole assignment design function
StateSpace.assignPolesMI() for StateSpace
systems with one or more inputs is based on the

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 597

Figure 8: Bode diagram

approach described in [11], where the system ma-
trix A is reduced to a real Schur form that allows
sequential and/or partial eigenvalue assignment.

Figure 9: Package
StateSpace.Design

The standard design
method of a ”linear
quadratic optimal con-
troller“ computes the
matrix K of the state-
feedback law u = −Kx
in such a form that a
quadratic cost function
with symmetric weight-
ing matrices Q and R

J (x) =
∫ ∞

0
xTQx+uTRudt (3)

is minimized. The feedback matrix K is obtained
from the solution X of the algebraic Riccati equa-
tion

Q+ATX+XA−XBR−1BTX = 0. (4)

In the LinearSystems library the linear quadratic
optimal controller design is performed with
the function call (K, sslqr, X, evlqr) =
StateSpace.lqr(ss, Q, R). The first output of
the function is the optimal and stabilizing gain
matrix K. It is calculated from the solution X of
(4) by K = R−1BTX. Additionally, the complex
output vector evlqr contains the closed loop
system eigenvalues, i.e., the eigenvalues of the
matrix A−BK. The record sslqr contains the
system representation of the closed loop system

ẋ = (A−BK)x+Bu
y = (C−DK)x+Du.

The corresponding control system structure for
the state feedback control is depicted in Figure 11
and is available as a model template in the Con-
troller library. Alternatively, a feedback control
structure with observer, as shown in Figure 12, is
also available.
Kalman filter design is related to the LQR-

problem. Actually, the corresponding design
function makes use of StateSpace.Design.lqr()
but with a dual system for the observer prob-
lem. Kalman filters are computed with (L,
sskf)=StateSpace.kalmanFilter(ss, Q, R).
Beside the filter matrix L the output sskf
represents the system together with the Kalman
filter, i.e.

ẋ = (A−LC)x+
(
B−LD, L

)(u
y

)

y = Cx+
(
D, 0

)(u
y

)
.

LQG design determines the matrices Kc and
Kf for linear quadratic gaussian problems
(LQG), i.e., the minimization of the expected
value of a cost function under the assump-
tion of stochastically disturbed states and out-
puts. Therefore, it is a combination of
LQR design and Kalman filter design. The
function (Kc, Kf, sslqg)=Design.lqg(ss, Q,
R, V, W) returns the controller matrix Kc and
the filter matrix Kf . Again, the matrices Q and R
are weighting matrices in the cost function of the
controller. The matrices V and W are assumed
to be the covariance matrices of the disturbances
v and w respectively but due to the lack of deeper
insight are usually treated as weighting matrices.
The output record sslqg represents the estimated
system

˙̂x = (A−KfC−BKc+KfDKc) x̂+Kfy
ŷ = (C−DKc) x̂

with y(t), the output of the original system, as
input.
The solution of the Riccati equation (4) is pro-

vided by X = Modelica_LinearSystms2.Math.-
Matrices.care(A, B, R, Q), which computes
the solution with a Schur vector method for the
continuous algebraic Riccati equation (CARE)
[2, 7]. The approach is to form the 2n×2n Hamil-
ton matrix (note that matrix A has order n)

H =
(

A −BR−1BT

−Q −AT

)

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 598

and to transform it into an ordered real Schur form

T =
(

T11 T12
0 T22

)
= UTHU

where T11 contains the n eigenvalues of H with
negative real parts [2]. Considering an appropriate
partitioning of matrix U

U =
(

U11 U12
U21 U22

)
,

with n×n matrices Uij , the solution X can be
computed by solving

XU11 = U21.

Additionally, an optional refinement function
based on Newton’s Method with exact line search
is provided [1].

3 Controller library

Figure 10: Controller li-
brary

The former beta ver-
sion of the library
Modelica_Linear-
Systems [9] contained
a sub-package Sampled
with input/output
blocks for contin-
uous and discrete
linear systems simu-
lation. This package
was extended and
was adapted to the
Modelica_LinearSys-
tems2 library sketched
in the previous sec-
tion. Furthermore, the
package was renamed
and is now called
”Modelica_Linear-
Systems2.Controller“.
The Controller library
contains input/output
blocks for StateSpace,
TransferFunction and ZerosAndPoles systems,
as well as PI, PID, FirstOrder, SecondOrder,
Integrator, Filter blocks etc. Every block is
available in a continuous and a discrete (sampled)
representation, where the representation can be
chosen by a Boolean parameter. By specifying
a discretization method and a sample time, the

discrete representation is automatically derived
from the continuous form.
Besides standard input/output blocks, espe-

cially for the data structures of the LinearSys-
tems library, a “Template” sublibrary is present
which provides standard controller structures with
replaceable components. As an example, a state
feedback control is shown in Figure 11, and state
feedback control based on estimated states using
an observer is shown in Figure 12.

Figure 11: Template for state feedback control

Figure 12: Template for state feedback control
with observer

The observer structure is also provided as a tem-
plate (Figure 13) which automatically adapts the
dimensions to the loaded system.

Figure 13: Template for observer

Figure 14 shows a two degree of freedom con-
troller template with a (usually non-linear) in-

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 599

verse system model in the feed forward loop. How

Figure 14: Template for a two degree of freedom
controller.

to utilize non-linear inverse (Modelica) models in
controllers is described in [10]. The templates are
provided to support quick implementations of con-
trollers by simple redeclarations of the replaceable
components.

4 Example

Figure 15 shows the multi-body model of a simple
inverse double pendulum and Figure 16 shows the
corresponding animation of the simulated system.

Figure 15: Multi-body model of inverse double
pendulum

The input of the system is a one-dimensional hor-
izontal force to move the cart. It is assumed that
the position and the angle between the lower rod
and the cart are measurable. Hence, the velocity,
the angle of the upper joint, and the angular ve-
locities of the joints have to be estimated by an
observer. Disturbances can be conditionally ac-
tivated and can be added to the horizontal force
input and as additional torque at the upper joint
applied at the upper rod. The control task is to

Figure 16: Screenshot of animated simulation

track the cart to a given (time varying) position
without dropping the pendulum.

4.1 Controller design

Linearization of the system around the
vertical position of the double pendulum
is performed numerically with function
StateSpace.Import.fromModel(modelName),
which returns an appropriate instance of the
StateSpace record. Both, the controller and
the observer are designed by pole assignment.
With the state space system ss of the linearized
model and the desired poles pc the feedback
matrix Kpc is calculated by calling K_pc :=
assignPolesMI(ss, pc);
Due to the duality of controllability and ob-

servability, function assignPolesMI()can also be
used to design the observer feedback matrix
Kpo . The inputs are the dual state space sys-
tem

(
AT ,CT ,BT ,DT

)
. Finally, the pre filter, see

Figure 12, is designed such that the model would
follow a constant input in case of steady state be-
havior:

M_pa := -inv(ss.C*Matrices.solve2(
ss.A - ss.B*K_pc, ss.B));

4.2 Simulation

The model of the controlled system (Figure 17) is
extended from the corresponding template shown
in Figure 12. To fit the template, the physical
system model must be put into an appropriate
form as depicted in Figure 18. The data of the
controller are directly copied into the controller

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 600

Figure 17: Block diagram of the controlled system

matrix or loaded from a file.

Figure 18: Model to fit the physical model of the
template shape

The characteristics of the undisturbed controlled
continuous system is shown in Figure 19. In the
upper picture, the position of the inverted pendu-
lum and its set point are depicted. The lower pic-
ture shows the corresponding input force. Figure
20 shows the same signals of a disturbed system
with a discrete controller.

The disturbances have of course much impact
on the angle of the upper joint. By comparison,
Figure 21 shows the first 15 seconds of this an-
gle and the corresponding estimated value for the
undisturbed system (upper picture) and the dis-
turbed system (lower picture).

5 Conclusions

This paper has sketched the Modelica libraries
LinearSystems and Controller, i.e. a library for

Figure 19: Controlled system without distur-
bances and with continuous controllers. Position
of the inverted pendulum and its setpoint (above)
and the input force (below)

Figure 20: Controlled system with disturbances
and with discrete controllers

linear systems analysis and synthesis and a li-
brary to model continuous and discrete linear con-
troller blocks. Compared with the former version

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 601

Figure 21: Angle ϕ2 (upper joint) and estimated
value (red line) for undisturbed (above) and dis-
turbed (below) system

of the LinearSystems library, the current version
has been extensively restructured and new func-
tions have been added. The most important func-
tions of this library have been described for the
case of state space systems and the mathematical
approaches have been outlined.
Concerning the Controller library, the new fea-

ture to use templates for common control system
structures have been introduced. An example of
the design of a controller for a inverse double pen-
dulum demonstrates the usage of the libraries. It
is planned to include the libraries in the Model-
ica Standard library. Currently, they are available
from http://www.Modelica.org/libraries.

Acknowledgements
Partial financial support of DLR by BMBF
(BMBF Förderkennzeichen: 01IS07022F) for this
work within the ITEA project EUROSYSLIB
(http://www.itea2.org/public/project_leaflets/
EUROSYSLIB_profile_oct-07.pdf) is highly
appreciated.
We would also like to thank Hilding Elmqvist

and Hans Olsson from Dassault Systèmes (Dy-
nasim) for their support and for discussions es-
pecially related to operator overloading.

References
[1] Benner P. and Byers, R. (1998): An Exact

Line Search Method for Solving Generalized
Continuous-Time Algebraic Riccati Equations.
IEEE Transactions on Automatic Control, vol 43,
pp. 101-107

[2] Datta B. N. (2004): Numerical Methods for Lin-
ear Control Systems. Elsevier Academic Press.

[3] Dymola (2009): Dymola Version 7.3. Das-
sault Systèmes, Lund, Sweden (Dynasim).
http://www.dymola.com.

[4] Elmqvist H., Otter M., Henriksson D., Thiele B.,
and Mattsson S. E. (2009): Modelica for Em-
bedded Systems. In: Proc. of the 7th Mod-
elica Conference 2009, Como, Italy, Sept. 20-22.
http://www.modelica.org/events/modelica2009.

[5] Emami-Naeini, A. and Van Dooren, P. (1982): Com-
putations of zeros of linear multivariable sys-
tems, Automatica 26, pp. 415-430

[6] LAPACK (2009): http://www.netlib.org/lapack/.
[7] Laub A. J. (1979): A Schur Method for Solving

Algebraic Riccati equations. IEEE Trans. Auto.
Contr., vol 24, pp. 913-921.

[8] Olsson H., Otter M., Elmqvist H., and Brück D.
(2009): Operator Overloading in Modelica 3.1.
In: Proc. of the 7th Modelica Conference 2009, Como,
Italy, Sept. 20-22.

[9] Otter M. (2006): The LinearSystems li-
brary for continuous and discrete con-
trol systems. In: Proc. of the 5th Model-
ica Conference 2006, Wien, Austria, Sept. 4-5.
http://www.modelica.org/events/modelica2006/-
Proceedings/sessions/Session5c1.pdf

[10] Thümmel M., Looye G., Kurze M., Otter M.,
and Bals J. (2005): Nonlinear Inverse Mod-
els for Control. In: Proc. of the 4th Int.
Modelica Conference 2005, Hamburg, March 7-
8. http://www.modelica.org/events/Conference2005/-
online_proceedings/Session3/Session3c3.pdf

[11] Varga A. (1981): A Schur method for pole as-
signment. IEEE Trans. Autom. Control, Vol. AC-26,
pp. 517-519.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 602

