
Adaptive Runtime Shaping for
Mixed-Criticality Systems

Biao Hu1,Kai Huang1,2, Gang Chen1, Long Cheng1, Alois Knoll1
1Tech. Univ. Muenchen TUM, 2Sun Yat-Sen University

1{hub,huangk,cheng,chengl,knoll}@in.tum.de, 2huangk36@mail.sysu.edu.cn

ABSTRACT
This paper investigates runtime shaping for mixed-criticality
systems to increase the system QoS. Unlike the previous
work in the literature that enforces an offline workload
bound, an adaptively shaping approach is proposed where
the incoming workload of the low-critical tasks is regulated
by the actual demand of the high-critical tasks. This
actual demand is adaptively updated using the historical
arrival information of the high-critical tasks and thus can
maximize the runtime QoS of low-critical tasks. To reduce
the online overheads of computing the workload demand,
a lightweight scheme with the complexity of O(n log(m)) is
developed. Experiments are also provided to demonstrate
the effectiveness and efficiency of our approach.

1. INTRODUCTION
Nowadays, the integration of components with different

levels of criticality onto a shared hardware platform is
preferable in order to increase the resource utilization
and reduce the cost of hardware. In particular for the
traditional safety-critical avionics and automotive domains,
the system evolves into a mixed-criticality system by which
the stringent non-functional requirements w.r.t. cost, space,
weight, heat generation, and power consumption can be
met [3]. For example, an unmanned aerial vehicle often
integrates high-critical tasks, such as flight control and
actuation control, with low-critical tasks (like the mission
function), together into a same processor [9].

The schedule of a mixed-criticality system is usually
priority-based, where the low-critical tasks are set with
higher priorities in order to improve their QoS. To guarantee
the execution of the high-critical tasks, the execution for
the high-priority low-critical tasks are constrained to a
certain bound [17, 19, 22]. When their execution demand
exceeds this bound, either the executions are delayed by a
regulator [22] or the execution priorities are exchanged with
the high-critical tasks [19]. Nevertheless, computing such a
bound for the low-critical tasks is non-trivial as the bound
on the one hand should be high enough to guarantee the
execution of the high-critical tasks and on the other hand
should not be too pessimistic as to hamper the QoS of low-
critical tasks.

There is related work in the literature to offline compute
workload bound by which the incoming workload of the
low-criticality are determined at runtime. Wandeler et
al. [22,23] proposed to use the Real-Time Interface to obtain
the shaping bound and suggested delaying the non-real-time
events when they exceed the precomputed bound. With
the computed shaping bound, together with the sensitivity
analysis [16], Neukirchner et al. [13, 15] discussed in more
details how to monitor the low-critical events by switching

the workload bound distribution among low-critical tasks,
or by using the workload arrival curve to monitor the whole
group of low-critical events. Tobuschat et al. [19] presented
a scheme to exploit throughput and latency slack of critical
applications by prioritizing non-critical over critical accesses
and exchanging the priorities when the non-critical workload
exceeds the bounds.

The shaping parameters in the aforementioned related
work are obtained offline, i.e., the bound used to shape
the workload of the low-critical tasks is computed offline
and fixed during the runtime. This bound is computed
based on the assumptions of the worst-case event arrival
patterns of all high-critical tasks. While using the worst-
case assumption during the runtime can guarantee the
safeness of the workload bound, it also introduces pessimism
due to the differences between the actual demand and the
assumed worst-case demand of the high-critical tasks. Such
pessimism will significantly hamper the QoS of low-critical
tasks and reduce the overall system utilization. To reduce
the pessimism, the shaping bound should be adaptively
computed at runtime based on the actual demand from
the high-critical tasks. Such online adaptation is however
not easy. On the one hand, the actual demand should
be a valid upper bound that can guarantee that no high-
critical tasks miss their deadlines. On the other hand, the
adaptation decisions should be lightweight. While most of
the previous work relies on heavy numerical computation, to
the best of our knowledge, no work so far in the literature
has considered adaptively refining the shaping bound at
runtime.

Being aware of this, this paper proposes an adaptive
shaping scheme for mixed-criticality systems scheduled by
the preemptive fixed-priority policy. The shaping bound
for the low-critical tasks is dynamically refined during the
runtime, using the historical knowledge of the workload
arrival of the high-critical tasks in the past. To model
non-deterministic workload arrivals, the arrival curve that
models workload in time-interval domain has been adopted.
To compute the history-aware future workload for the high-
critical tasks, the so-called dynamic counters [10] are used.
Real-Time Interface [23] is used to compute the maximum
allowable interference from low-critical tasks. The detailed
contributions are as follows:

• We present an adaptive scheme for shaping the low-
critical workload online in mixed-criticality systems.

• A lightweight method with complexity of O(m · log(n))
is proposed to refine the shaping bound. The timing
overhead is two orders of magnitude less than the
backward derivation method.

• Experimental results show the efficiency and effective-
ness of our presented shaping scheme.



The remainder of this paper is structured as follows.
Section 2 reviews related work. Section 3 introduces the
system model and presents the background knowledge.
Section 4 presents the problem of shaping by enforcing an
offline bound. Section 5 presents our approaches and the
shaping policy. Section 6 presents the experimental results.
Section 7 concludes the paper.

2. RELATED WORK
In this paper, we address the problem of providing an

efficient mechanism to dynamically shape the incoming
workload of low-critical tasks at runtime in mixed-criticality
real-time systems. Our proposed method builds on three
research aspects, which are the Real-Time Interface analysis,
the workload prediction and the runtime shaping.

Real-Time Interface analysis. Real-Time Interface
analysis provides the answer to these questions: does the
composed system satisfy all requested real-time properties,
such as delay and throughput constraints. The central idea
behind interface-based design is to describe components by
a component interface. The principles of interface-based de-
sign are described in [18]. The stateless Assume/Guarantee
Real-Time Interfaces, proposed in [23], connect the theory
of Real-Time Calculus into the interface-based design. By
applying the (de-)convolution from Real-Time Calculus, the
need for the classical binary search approach to find an
economically dimensioned system is partly removed. This
approach leads to a faster design process.

Workload Prediction. System workload prediction is
based on the principle that the runtime workload cannot
exceed the provided bounds. In Real-Time Calculus, a task
activation is often modeled as an event. The arrival curves,
originated from Network Calculus [12], provide an upper and
lower bound on the number of arrival events in any time
interval. In [7, 8], a prediction method is proposed based
on a certain length of historical information of event arrival.
This prediction is not tight as the historical events within
only a certain length can be used. As arrival curves can be
approximated by several staircase functions, a more tight
prediction is proposed in [10] by using dynamic counters to
track the runtime burst for every staircase function.

Runtime Shaping. The shapers are often used in
regulating the packets in network [12]. The use of greedy
shapers in scheduling the real-time system is analyzed
in [22]. In [6], by implementing a dual-bucket mechanis-
m (similar to dynamic counters) into Fpga, the runtime
inputs are shaped to the designed arrival curves. The
experiment shows the overhead of this shaping mechanism
is very low in Fpga. Another lightweight monitoring
scheme based on the minimum distance functions (i.e., an
inverse representation of arrival curves) is proposed to do
the event model verification [14]. Based on this method,
the multi-mode monitoring is proposed in [15] to monitor
the low-critical task workload by switching the workload
bound distribution. A similar work is to monitor the low-
critical task workload as a group by using the workload
arrival function [13]. In [5], the two model verification
methods based on the arrival curve and on the minimum
distance function are evaluated. Phan et al. [17] introduced
a technique to use an optimal greedy shaper for periodic
tasks with jitter to improve the schedulability of real-time
systems. This technique only targets at the periodic tasks
with jitter.

τhc1

τhc2

τ lc3

CPU

1st

2nd

3rd

1

(a) Non-shaping

τhc1

τ lc3

τhc2

CPU

1st

2nd

3rd

1

(b) Scheduling

τ lc3

τhc1

τhc2

CPU

1st

2nd

3rd

1

(c) Shaping

Figure 1: Three settings of priority assignment

None of the proceeding monitoring or shaping schemes
allows to refine the shaping bound. Thus, their shaping
schemes are pessimistic because of the differences between
actual demand and worst-case demand. In this paper,
we aim to fill this gap by providing an adaptive bound
refinement scheme.

3. MODELING AND BACKGROUND
This section introduces the system model and background

knowledge used in this paper.

3.1 Priority Assignment
The schedule of a mixed-criticality system is usually

preemptively priority-based. There are three typical priority
settings. As shown in Fig. 1, two high-critical tasks τhc1 ,
τhc2 , and one low-critical task τ lc3 are running in a processor.
In the first setting (Fig. 1(a)), in order to remove the
interference on the high-critical tasks, the low-critical task
τ lc3 is set with the lowest priority. This setting makes the
shaping on the low-critical workload not necessary because
the low-critical task cannot interfere with the executions of
high-critical tasks. This setting, however, is not helpful for
improving the QoS of low-critical tasks. Recent research [1,
20] shows that the system is still schedulable even if the
priorities of low-critical tasks are set higher than some high-
critical tasks, as shown in Fig. 1(b). The assumption for
this case is that all tasks are sporadically activated, and
the minimum interval between two task activations are
known. A survey of this case can be seen [3]. While the
assumption of priori knowledge to the activation patterns
of high-critical tasks is valid in most cases, the activations
of low-critical tasks might not be sporadic. The low-critical
tasks, such as entertainment applications in a car, are often
not predictable [13, 15]. To improve the QoS of low-critical
tasks, while guaranteeing the deadline requirements of high-
critical tasks, another priority setting is proposed, as shown
in Fig. 1(c). All low-critical tasks are set with higher
priorities. In this setting, to guarantee the execution of high-
critical tasks, the execution for high-priority low-critical
tasks are constrained within a certain bound. This priority
assignment is adopted in recent work, such as [13,15].

3.2 System Models
We consider a uniprocessor system that is scheduled

according to the preemptive FP scheduling policy. As shown
in Fig. 2(a), a set of low-critical tasks Slc = {τlc 1, ..., τlc m}
and a set of high-critical tasks Shc = {τhc 1, ..., τhc n} are
running on this uniprocessor, and the priorities for the set
of low-critical tasks are higher than the priorities for the set
of high-critical tasks. Without loss of generality, the tasks
τlc 1, ..., τlc m in Slc and the tasks τhc 1, ..., τhc n in Shc are
ordered according to their priorities, i.e., the priority of the
task τh(l)c i is higher than that of the task τh(l)c j when i < j.



sh
a
pe
r

m
on

it
or

1
m
on

it
or

n

Slc 1

Slc m

Shc 1

Shc n

τlc 1

τlc m

τhc 1

τhc n

uniprocessor

1

(a) System model

β̂G
cpu

GPC

GPC

β̂′G β̂′A

αlc 1

αlc m

αhc 1

αhc n

clc 1

clc m

chc 1

chc n

∑
ασ

σ

1

(b) System abstraction

Figure 2: A mixed-criticality system scheduled by
the preemptive FP policy

A task is activated by an activating event, and is assumed
to be executed for its Wcet. The task activations can
be expressed as an event stream. A trace of such an
event stream can be conveniently described by means of a
differential arrival function R[s, t) that denotes the sum of
events arrived in the time interval [s, t), with R[s, s) = 0,
∀s, t ∈ R. While any R always describes one concrete
trace, a 2-tuple α(∆) = [αu(∆), αl(∆)] of upper and lower
arrival curves provides an abstract event stream model
that characterizes a whole class of (non-deterministic) event
streams. αu(∆) and αl(∆) provide an upper and lower
bound on the number of events seen on an event stream
in any time interval of length ∆ [21]:

αl(t− s) ≤ R[s, t) ≤ αu(t− s), ∀t ≥ s ≥ 0

with αl(∆) = αu(∆) = 0 for ∆ ≤ 0.
The concept of an arrival curve unifies many other

common timing models of event streams. For example,
for an event with period p, jitter j, and minimal inter
arrival distance d, the upper arrival curve is αu(∆) =
min{d∆+j

p
e, d∆

d
e}.

Analogous to arrival curves that provide an abstract event
stream model, a tuple β(∆) = [βu(∆), βl(∆)] of upper
and lower service curves then provides an abstract resource
model, which shows an upper and lower bound on the
available resources in any time interval of length ∆. As
an arrival curve αi specifies the event and a service curve
β specifies the available processing time, the arrival curve
αi(∆) has to be transformed to the arrival curve αi to
indicate the amount of computation time required for the
arrived events in intervals. Suppose that the Wcet of an
event stream is ci. Then, the transformation can be done by
αui = ciα

u
i , αli = ciα

l
i and back by αui = αui /ci, α

l
i = αli/ci.

For the high-critical tasks, their activation patterns are
often fixed. Therefore, the lower and upper arrival curves
for them can be decided in the system design-time stage.
For the low-critical tasks, such as multi-media tasks in a car,
their workload may sometimes be overloaded. Hence, their
arrival events must be shaped. In our system, the monitors
are set in every input port of high-critical tasks to track the
actual events. To enforce the workload of low-critical tasks
is not overloaded, a shaper is set to regulate the input events
of all low-critical tasks.

3.3 Prediction with Dynamic Counters
In principle any (discrete) complex arrival pattern can be

bounded by a set of upper and lower staircase functions of

Algorithm 1 Implement a dynamic counter to track a
staircase function
Input: signal s, .tuple < DCi, CLKi >;
1: if s = eventArrival then
2: if DCi = Nu

i then
3: reset timer(CLKi, δ

u
i )

4: ki = 0
5: end if
6: DCi ← DCi − 1
7: end if
8: if s = CLKiT imeout then
9: DCi ← min(DCi+1,Nu

i )
10: reset timer(CLKi, δ

u
i )

11: ki = ki + 1
12: end if
13: if DCi < 0 then
14: report exception
15: end if

the form αui (∆) = Nu
i + b ∆

δui
c [11]:

∀∆ ∈ R≥0 : αu(∆) ≤ min
i=1..n

{αui (∆)}.

A dynamic counter (DCi) can be used to track a single
upper staircase function (αui ). The detail tracking algorithm
can be seen in Algo. 1 [10]. DCi tracks the potential
burst capacity, and the auxiliary variable ki in Algo. 1
tracks the offset between the current time t and the last
δui . Below shows an example of using dynamic counters for
event prediction.

1

2

3

4

5

6

7

20 40 60 80 100 120 140 160 180 200 220 240

#event

∆

time
Ract

t1 t2t0
trace

αu
1 = 1 + ⌊∆

20⌋

αu
2 = 4 + ⌊ ∆

100⌋
αu = min{αu

1 , α
u
2} DC1(t0) = 1, DC2(t0) = 4

DC1(t1) = 1, DC2(t1) = 2

DC1(t2) = 1, DC2(t2) = 0

1

Figure 3: An example for using dynamic counters
to predict the future events

Example 1. As shown in Fig. 3, for the PJD task with
(P, J, D)=(100, 300, 20), two staircase functions, α1 and α2,
are used to approximate the arrival curve of this PJD task.
Every staircase function is tracked by a counter. Assume
the real arrival event trace is shown in the event trace Ract.
By applying Algo. 1 [10], DC1 tracks the arrival event trace
based on α1, and DC2 tracks the arrival event trace based
on α2. The minimum of DC1(t) and DC2(t) is the potential
activations of this task at time t.

As shown in Fig. 3, the bold line shows the worst-
case arrival pattern at the beginning, DC1(t0) = Nu

1 =
1, DC2(t0) = Nu

2 = 4. At time t1, two events have
been recorded, and dynamic counters are updated to that
DC1(t1) = 1, DC2(t1) = 2. The future event prediction
is shown in the dotted line, which is less than the worst-case



assumption. At time t2, dynamic counters are updated to
that DC1(t2) = 1, DC2(t2) = 0 since five events arrived
during [t0, t2]. The prediction shown in the solid line is
further less than the one at time t1.

The potential burst capacity DCi(t), together with
staircase function, yields the following future events predic-
tion [10]:

Ui(∆, t) = DCi(t) +

{
b∆+(t−kiδui )

δui
c if DCi(t) < Nu

i

b ∆
δui
c if DCi(t) = Nu

i

(1)
where Nu

i is the absolute burst. The above function bounds
future event arrivals. By using the monitor to track the
events trace for high-critical tasks, DCi and ki can be known
during the runtime. Therefore, Ui is also known during the
runtime. For bounding the number of future event arrivals
w.r.t. complex task activations, one can simply take the
minimum over all the Ui:

U(∆, t) = min
i=1..n

(Ui(∆, t)). (2)

4. OFFLINE BOUND AND MOTIVATION
In this section, we derive the maximum offline service

bound for the shaper to regulate the workload of all low-
critical tasks. For event streams described by arrival curves,
one can apply Real-Time Interface [23] to verify whether a
system can provide enough resource guarantee service. We
also present the problem of using the offline bound to shape
low-critical workload.

4.1 Offline Bound Analysis
The system model is abstracted as the system abstraction

shown in Fig. 2(b), where β̂Gcpu denotes the whole processor
service,

∑
ασ denotes the arrival workload of low-critical

tasks after shaping, β̂′G denotes the resource guarantee

service after processing
∑
ασ, and β̂′A denotes the service

demand bound that is needed to meet the deadlines of all
high-critical tasks. For a schedulable real-time system, the
following equation has to be true:

β̂′G(∆) ≥ β̂′A(∆), ∀∆ ≥ 0. (3)

As our system is scheduled by the preemptive FP policy, the
resource guarantee service is that:

β̂′G = RT (β̂Gcpu,
∑

ασ)1 (4)

By inverting Eq. 4, we can get∑
ασ = RT−α(β̂′G, β̂Gcpu)2 (5)

As β̂′G ≥ β̂′A for a schedulable system, the maximum
acceptable arrival workload of low-critical tasks is that:∑

ασ = RT−α(β̂′A, β̂Gcpu). (6)

To get
∑
ασ, one has to know β̂′A. Suppose there are

multiple high-critical tasks, the total service demand bound

β̂′A can be derived by backward derivation with the deadline
service demand for every high-critical task.
1RT (β, α) = sup

0≤λ≤∆
{β(λ)− α(λ)}

2RT−α(β′, β)(∆) = β(∆ + λ)− β′(∆ + λ)
for λ = sup{τ : β′(∆ + τ) = β′(∆)}

Theorem 1. [8,23] Suppose a multiple tasks scheduled by

FP policy in a system as shown in Fig. 4, where β̂′Ai denotes
the service demand for meeting the relative deadlines of tasks

from τhc n to τhc i, and β̂′A1 = β̂′A. The following equation
has to be true for a schedulable system,

β̂′Ai ≥ max{αhc i(∆−Di), RT−β(β̂′Ai+1, αhc i)}3 (7)

where Di is referred as the relative deadline of task τhc i,

and β̂′An+1 is defined as 0 for brevity.

τhc n τhc 2 τhc 1

αhc n αhc 2 αhc 1

β̂′A
n β̂′A

3 β̂′A
2 β̂′A

1
β̂′A

1

Figure 4: The flow of backward deriving the total
service demand for FP scheduling

As a trace constrained by any wide-sense increasing
arrival function is equivalent to this trace constrained by its
corresponding subadditive closure [12], the shaping bound
is ensured to be subadditive closure without any loss. To
achieve this, the shaping bound

∑
ασ is computed by the

following equation:∑
ασ = min{

∑
ασ, (

∑
ασ ⊗

∑
ασ), ...}4. (8)

Step 1 Step 2 Step 3

Backward

Derivation
(Eq. 7)

Computing

Bound
(Eq. 6)

Subadditive

Bound
(Eq. 8)

αu
i (∆)

αu
i (∆−Di)

β̂′A

β̂G
cpu

∑
ασ

∑
ασ

Figure 5: Compute the shaping bound

In short, to get the offline shaping bound, one can follow
the computation steps shown in Fig. 5. The first step is

to compute the service demand β̂′A by applying backward
derivation with αui (∆) and αui (∆−Di). The second step is

to compute the bound by applying Eq. 6 with β̂′A and β̂Gcpu.
The last computation step is to make the shaping bound∑
ασ subadditive.

4.2 Motivation Example
The problem of shaping by

∑
ασ (Eq. 8) is that, the

shaper is independent with the actual executions of high-
critical tasks, thus the shaping bound sometimes is too
pessimistic as the shaper assumes the execution of high-
critical tasks are always worst cases. We use a simple
example to illustrate this problem.

Example 2. In a mixed-criticality system, a low-critical
task with a high priority and a high-critical task with a low
priority are scheduled in a processor. The high-critical task
is a PJD model, which is characterized with a period p =
100ms, a jitter j = 300ms, and a minimum distance d =
20ms. The Wcet is 25ms. As shown in Fig. 6(a), for
the high-critical task, the worst-case activations pattern is

3RT−β(β, α)(∆) = β(∆− λ) + α(∆− λ)
for λ = sup{τ : β(∆− τ) = β(∆)}

4(f ⊗ g)(∆) = inf
0≤λ≤∆

{f(∆− λ) + g(λ)}



0 204060 100 200 300 400
t [ms]

Initial Burst

∆2

∆1

1

(a) Event arrival time frame

0 100 200 300 400 500
0

50

100

150

200

∆ 1[ms]

W
or

kl
oa

d

 

 

β̂′A(∆1)∑
ασ(∆1)

60

(b) Initial time

0 100 200 300
0

100

200

300

∆2 [ms]

W
or

kl
oa

d

 

 

β̂′A(∆2)
bdf (∆2, 100)

75

(c) After the initial burst

Figure 6: Motivating example

an initial burst during the first 100ms, and after that, the
task is activated every 100ms.

Following the steps of the previous section, the offline
workload bound

∑
ασ can be computed by applying the

Eqs. 7, 6, 8. The service demand β̂′A(∆1) and workload
bound

∑
ασ(∆1) (bold line) are shown in Fig. 6(b). It can

be seen that within an interval of 150ms, only 60ms low-
critical workload is allowed. Now, we consider another case.
We assume the initial burst of the high-critical task happens
within 100ms, and there is no low-critical workload within
this 100ms. If dynamic counters are used to predict its
future events, we know the actual demand of high-critical

task at time t = 100ms is bounded by β̂′A(∆2), as shown in
Fig. 6(c). Suppose a bounded delay function bdf(∆, t) is used
to serve this high-critical task, where ∆ denotes the interval
and t denotes the current time. There will be no deadline
miss as long as bdf(∆2, 100) is greater than β̂′A(∆2). The
largest delay is 75ms, which indicates that the service for
high-critical task can be delayed for 75ms. It also means
that, during this delay, low-critical tasks can be processed.
Therefore, the largest low-critical workload at t = 100ms
can be 75ms, instead of bounded by 60ms.

As this example illustrates, if the shaper shapes the
workload of low-critical task based on the offline bound, the
QoS for low-critical tasks is not as high as the shaping based
on the largest delay of bounded delay function at runtime.
Besides, since the shaper relies on updating the largest
delay to refine the shaping bound, instead of using the sub-
additive bound, step 2 and step 3 are not necessary for online
shaping. The approach using the largest delay to shape
low-critical workload is similar to the energy management
in [8], where the longest sleeping interval that the processor
can have is updated to manage the processor state while
guaranteeing no tasks miss their deadlines. In this paper,
we propose to update the largest delay of bounded delay
function based on the actual service demand to shape the
low-critical workload.

5. OUR APPROACH
As illustrated in the previous example, computing an

adaptive shaping bound at runtime is theoretically possible,

DCi(t), ki, t, Ei(t)

Bucket Size

Eq. 17: bi(t)
τ∗(t)

Guarantee Service

Eq. 14: β̂′G
i

Service Demand

Eq. 16: βd
hc i

maximize τ∗(t)

s.t. β̂′G
i (∆, t) ≥ βd

hc i(∆, t), ∀i ∈ [1..n]

DC Monitors

Updating Lfii: τ∗(t)

with the

closed-from equations

Shaping based on Lfii

Figure 7: Main flow of our approach

i.e., using the dynamic counters to predict the future
demand for individual streams and Eq. 7 to backward derive
the total service demand with individual demands, and using
binary search to compute the largest delay of bounded delay
function. However, the computational overhead prohibits
the application of such method for online uses. To eliminate
the heavy computation, a lightweight approach is proposed
in this section.

5.1 Adaptive Shaping Scheme Overview
Analogous to the largest delay of a bounded delay

function, we formally define a shaping bound at runtime, i.e.,
the longest feasible interference interval (Lfii), as follows.

Definition 1. (Longest Feasible Interference Interval)
The longest feasible interference interval τ∗(t) with respect

to a given service demand β̂′A(∆, t) is defined as:

τ∗(t) = max{τ : bdf(∆, τ) ≥ β̂′A(∆, t), ∀∆ ≥ 0}. (9)

where β̂′A(∆, t) is the service demand for meeting all high-
critical tasks deadlines, and bdf(∆, τ) is a bounded delay
function with bdf(∆, τ) = max{0, (∆− τ)}, ∀∆ ≥ 0.

From this definition, we know that the τ∗(t) indicates
the largest acceptable low-critical workload at time t.
By constantly updating the τ∗(t), the shaping bound is
adaptively refined. An approach to update τ∗(t) is to

backward derive the β̂′A(∆, t) and compute the τ∗(t) by
solving Eq. 9. This backward derivation is computational
intensive, which is not suitable for online applications.

We consider this problem from another side. Based on the
truth that all high-critical tasks can meet their deadlines if
the resource guarantee service for every high-critical task
is greater than its deadline service demand, one only needs
to compute a τ∗(t) that satisfies this condition. Therefore,
the computation of τ∗(t) is transformed to a maximization
problem. The object is the maximum τ∗(t) with the

constraint that the resource guarantee service β̂′Gi for every
high-critical task is greater than its deadline service demand
βdhc i. That is,

maximize τ∗(t),

s.t. β̂′Gi (∆, t) ≥ βdhc i(∆, t), ∀i ∈ [1..n].

The main flow of our approach is shown in Fig. 7. We use
dynamic counters to constantly monitor the high-critical
events. As the workload arrival curve αhc i and deadline



service demand βdhc i for every high-critical task are closed-
form equations w.r.t. runtime parameters in the monitor,
αhc i and βdhc i are known at runtime. By using a leaky
bucket to represent the workload arrival curve, we derive

a closed form for the resource guarantee service β̂′Gi . This
closed-form equation is a rate-latency function [12] whose
rate can be fixed offline and the latency is composed of
τ∗(t) and the bucket size. The bucket size is a closed-
form equation w.r.t. runtime parameters in the monitors.

Therefore, by assuming a τ∗(t), β̂′Gi is also known at

runtime. Since β̂′Gi is a linear function, computing τ∗(t)
is a linear programming, which has a very low overhead.

5.2 Shaping Bound Update with Closed Form
In this section, we present the solution of the maximiza-

tion problem. We first use an example with two high-
critical tasks to illustrate our approach, then this approach
is extended to arbitrary numbers of high-critical tasks.
Further, we derive how to use the parameters in the monitors
to get the bucket size and the deadline service demand.
Lastly, we show how to compute the maximum τ∗(t) with
the constraint of n inequalities.

5.2.1 Case for two high-critical tasks
Given two high-critical tasks τhc 1 and τhc 2 in a mixed-

criticality system. Suppose at time t, their workload arrival
curves are αhc 1(∆, t), αhc 2(∆, t), and their deadline service
demands are βdhc 1(∆, t) and βdhc 2(∆, t). Suppose the Lfii is
τ∗(t) at time t, as shown in Fig. 8. To meet the deadlines of
the task τhc 1, τhc 2, the following inequalities should hold.

β̂′G1 (∆, t) ≥ βdhc 1(∆, t),

β̂′G2 (∆, t) ≥ βdhc 2(∆, t),

where

β̂′G1 (∆, t) = bdf(∆, τ∗(t)),

β̂′G2 (∆, t) = RT (β̂′G1 (∆, t), αhc 1(∆, t)).

If a leaky bucket lbhc 1(∆, t) = b1(t) + r1(t) ·∆ is used to
represent αhc 1(∆, t), then,

β̂′G2 (∆, t) = RT (bdf(∆, τ∗(t)), lbhc 1(∆, t))

= sup
0≤λ≤∆

{
max{0, λ− τ∗(t)} − b1(t)− r1(t) · λ

}
.

As β̂′G2 (∆, t) ≥ 0, we abbreviate β̂′G2 (∆, t) as follows

β̂′G2 (∆, t) = max
{

0, (1− r1(t)) ·∆− τ∗(t)− b1(t)
}

(10)

Then, to get the max(τ∗(t)), one only needs to keep the
following two inequalities to be true

max{0,∆− τ∗(t)} ≥ βdhc 1(∆, t). (11)

max
{

0, (1− r1(t)) ·∆− τ∗(t)− b1(t)
}
≥ βdhc 2(∆, t). (12)

Both β̂′G1 (∆, t) and β̂′G2 (∆, t) are rate-latency functions.
The backward derivation with the complex (de-)convolution
is eliminated by computing the maximum τ∗(t) with the

constraint of Eq. 11, 12. In this example, β̂′G2 (∆, t) of Eq. 10
is a closed-form equation w.r.t. τ∗(t) and the leaky rate and
the bucket size of the leaky bucket, which will be proved in
the following section.

τ∗(t)

bdf(∆, τ∗(t))

lbhc 1(∆, t)

αhc 1(∆, t)
βd
hc 1(∆, t)

β̂′G
2 (∆, t)

βd
hc 2(∆, t)

b

b b

b b

b b

b b

b b

b b

b b

b b

b b

b

b b

b b

b b

b

Figure 8: The scheme for showing how to compute
τ∗(t) of two high-critical tasks

5.2.2 General case
Analogous to the computation of τ∗(t) with two high-

critical tasks, for the system with more than two high-critical
tasks, a similar procedure can be taken. As shown in Fig. 9,
for the workload arrival curve of each task, a leaky bucket
is used to conservatively represent it. Based on the leaky
buckets and the assumption of Lfii τ∗(t), by applying Eq. 3,

one can get the resource guarantee service β̂′Gi for each task
in a forward way. To meet the deadlines of each task, one
only needs to keep the following inequalities to be true.

β̂′Gi (∆, t) ≥ βdhc i(∆, t), ∀i ∈ [1..n]. (13)

However, to get β̂′Gi (∆, t), a step-by-step computation of
applying Eq. 4 should be used, which blocks the computation
speed of τ∗(t). To remove the step-by-step computation, a

closed-form equation of β̂′Gi (∆, t) is derived by applying the
following lemma.

Lemma 1. Suppose a mixed-criticality system modeled as
Fig. 2. At time t, for each task, assume the Lfii is τ∗(t),
the deadline service demand is βdhc i(∆, t), and the workload
arrival curve is αhc i(∆, t). If a leaky bucket with the form
of lbhc i(∆, t) = ri(t)∆ + bi(t) is used to conservatively
represent αhc i(∆, t), i.e., lbhc i(∆, t) ≥ αhc i(∆, t), the

resource guarantee service β̂′Gi (∆, t) for each task is as
follows:

β̂′Gi (∆, t) = max{0, (1−Ri(t)) ·∆− τ∗(t)−Bi(t)}, (14)

where Ri(t) =
i−1∑
j=1

rj(t), Bi(t) =
i−1∑
j=1

bj(t), and r0(t) = 0,

b0(t) = 0 for brevity.

Proof. We proof this by induction.
If n = 1,

β̂′G1 (∆, t) = max{0, (1−R1(t)) ·∆− τ∗(t)−B1(t)}
= max{0,∆− τ∗(t)}
= bdf(∆, τ∗(t)),

which is true as shown in Fig. 9.
We assume that Eq. 14 is true for the task τhc n (n 6=

1). Then, for the task τhc (n+1), by using the Real-Time
Interface analysis,

β̂′Gn+1(∆, t) = RT (β̂′Gn (∆, t), lbhc (n+1)(∆, t))

= sup
0≤λ≤∆

{
max{0, (1−Rn(t)) ·∆− τ∗(t)−Bn(t)}

− bn+1(t)− rn+1(t) · λ
}
.

As β̂′Gn+1(∆, t) ≥ 0, β̂′Gn+1(∆, t) can be rewritten as follows



τhc n τhc 2 τhc 1

lbhc n(∆, t) lbhc 2(∆, t) lbhc 1(∆, t)

β̂′G
n β̂′G

3 β̂′G
2 β̂′G

1

bdf(∆, τ∗(t))

1

Figure 9: The flow of forward derivation for a FP
system with multiple high-critical tasks

for brevity,

β̂′Gn+1(∆, t) = max
{

0, (1−Rn(t)− rn+1(t)) ·∆
− τ∗(t)− (Bn(t) + bn+1(t))

}
= max

{
0, (1−Rn+1(t)) ·∆− τ∗(t)−Bn+1(t)

}
Note that, to guarantee the system is schedulable, 1−Ri(t)

in Eq. 14 should be greater than 0.

Theorem 2. By using the conservatively representation

lbhc i(∆, t) ≥ αhc i(∆, t) to compute β̂′Gi (∆, t), under the
condition of Eq. 13, all high-critical tasks can meet their
deadlines.

Proof. As β̂′Gi (∆, t) ≥ βdhc i(∆, t) is true for all high-
critical tasks, one only needs to prove that the actual service

β̂′ACTi (∆, t) is equal to or greater than β̂′Gi (∆, t). We proof
this also by induction.

When n = 1,

β̂′ACT1 (∆, t) = bdf(∆, τ∗(t)) = β̂′G1 (∆, t).

We assume β̂′ACTn (∆, t) ≥ β̂′Gn (∆, t) is true for the task
τhc n (n 6= 1). Then, for the task τhc (n+1), we have

β̂′ACTn+1 (∆, t) = RT (β̂′ACTn (∆, t), αhc n(∆, t))

= sup
0≤λ≤∆

{
β̂′ACTn (λ, t)− αhc n(λ, t)

}
.

As β̂′ACTn (∆, t) ≥ β̂′Gn (∆, t) and lbhc n(λ, t) ≥ αhc n(λ, t), we
have

β̂′ACTn+1 (∆, t) = sup
0≤λ≤∆

{
β̂′ACTn (λ, t)− αhc n(λ, t)

}
≥ sup

0≤λ≤∆

{
β̂′Gn (∆, t)− lbhc n(λ, t)

}
= β̂′Gn+1(∆, t).

Therefore, as β̂′ACTi (∆, t) ≥ β̂′Gi (∆, t) ≥ βdhc i(∆, t) is true
for all tasks, all deadlines can be met.

5.2.3 Leaky bucket representation
The closed-form equation β̂′Gi (∆, t) of Eq. 14 is a rate-

latency function w.r.t. Ri(t) and Bi(t). With this closed-
form rate-latency function, one only needs compute the
maximum τ∗(t) with the constraint of n inequalities of
Eq. 13. Now we show how to get parameters Ri(t) and
Bi(t) during the runtime.

As described in Section 3.3, the future events are bounded
by the prediction of using the dynamic counters. The future
events bound, together with the backlogged events, provide
the workload arrival curve and deadline service demand. Let
Uhc i(∆, t) denote the future event arrival bound of high-
critical task τhc i at time t. To bound the future workload
and service demand, the backlogged demand is also included.

Definition 2. (Backlogged Demand [8]) Suppose the set
of unfinished events of Shc i in the buffer at time t are
denoted as Ei(t). Let Di,j denote the absolute deadline for
event ei,j ∈ Ei(t) of the task τhc i. A backlogged demand for
stream Shc i is defined as

Bhc i(∆, t) = ci ·
{

(j − 1), Di,j − t < ∆ ≤ Di,j+1 − t,
|Ei(t)|, ∆ > Di,|Ei(t)| − t,

in which, ci is the Wcet, and Di,0 is defined as t for brevity.

Hence, the workload arrival curve and deadline service
demand for every high critical task at time t are:

αhc i(∆, t) = ci · Uhc i(∆, t) + ci · |Ei(t)|. (15)

βdhc i(∆, t) = ci · Uhc i(∆−Di, t) +Bhc i(∆, t). (16)

From the Eqs. 1, 2, 15, we know the composition of
αhc i(∆, t) is the minimum of a set of staircase functions,
and every staircase function is tracked by a dynamic counter.
In principle, any leaky bucket can be used as long as this
leaky bucket is equal to or greater than αhc i(∆, t). But,
in order to make our computation more tight, the leaky
bucket should be as close to αhc i(∆, t) as possible. Since the
leaky bucket corresponding to the staircase function with the
largest period in Uhc i is close to αhc i(∆, t) in the long term,
we use the staircase function with the largest period in Uhc i
to compose a leaky bucket to represent the workload arrival
curve αhc i(∆, t). As the period of each staircase function
in a task and the Wcet of each task is known offline and
unchanged during the runtime. Therefore, the leaky rate
ri(t) is fixed to be Wcet/(largest period). Hence, 1−Ri(t)
in Eq. 14 is also known offline and fixed during the runtime.

Then, to get β̂′Gi (∆, t), one only needs to know the bucket

size bi(t). Suppose for the task τhc i, DC
#
i is the counter for

tracking the staircase function with the largest period δmaxi

in Algo. 1. At time t, it can be derived from Eqs. 1, 2, 15
that

bi(t) = ci·|Ei(t)|+ci·

{
DC]i +

t−k]i ·δ
max
i

δmax
i

if DC]i < N ]u
i

DC]i if DC]i = N ]u
i

(17)

where k]i is the auxiliary variable corresponding with DC]i
in Algo. 1. Then, bi(t) is easy to get by just applying Eq. 17.

β̂′Gi (∆, t) can also be conveniently obtained as Ri(t) is fixed
and Bi(t) is easy to obtain with the support of Eq. 17.

5.2.4 Deriving Lfii

To solve the maximization problem with the constraint
of Eq. 13, the first step is to use the current parameters

in monitors to update the β̂′Gi (∆, t) and βdhc i(∆, t), as

shown in Fig. 7. To solve the inequality of β̂′Gi (∆, t) and

βdhc i(∆, t), one needs to compare β̂′Gi (∆, t) with βdhc i(∆, t).

As ∆ = +∞, it is impossible to compare β̂′Gi (∆, t) with
βdhc i(∆, t) in whole ∆+∞. Actually, in this comparison, only

a limited segment of ∆ needs to be compared. If β̂′Gi (∆, t) ≥
βdhc i(∆, t) in this limited segment, β̂′Gi (∆, t) ≥ βdhc i(∆, t) in
any interval ∆.

In a schedulable system, suppose for a high-critical task
τhc i, at time t, there is |Ei(t)| events that are backlogged in
the buffer, and the absolute deadline trace is Di,j , where j
indicates the j-th event, as shown in Fig. 10. ci is the Wcet
for this high-critical task τhc i.



b

b b

b b

b b

b b

b bb

b b

⋆
⋆

⋆
⋆

⋆◦
⋆◦Comparison End Deadline

Comparison Deadline ⋆

Di,1Di,2Di,3 Di,4 Di,5 Di,6

βd
hc i(∆, t)

δmax
i δmax

i

Binary Search

β̂′G
i (∆, t)

Figure 10: An illustration how to do the comparison

Lemma 2. If Di,x+1−Di,x = δmaxi and x > |Ei(t)|, then
for the absolute deadline of k-th event (k ≥ x), we have

Di,k+1 −Di,k = δmaxi . (18)

Proof. From Eq. 16, we know the deadline trace is
decided by Uhc i(∆ − Di, t) and Bhc i(∆, t). As x >
|Ei(t)|, the absolute deadline for x-th event only depends
on Uhc i(∆ − Di, t). Uhc i(∆ − Di, t) is convex and is the
minimum over all staircase functions. For the x-th and
(x + 1)-th events, if Di,x+1 − Di,x = δmaxi , it indicates
that Uhc i(∆−Di, t) only depends on the staircase function
with the largest period. As Uhc i(∆ − Di, t) is convex,
for the k-th event (k ≥ x), Uhc i(∆ − Di, t) also depends
on the staircase function with the largest period. Hence,
Di,k+1 −Di,k = δmaxi .

Lemma 3. Suppose the task τhc i is schedulable with a
rate-latency function β(∆). For the x-th and k-th event in
Lem. 2, if β(Di,x) ≥ βdhc i(Di,x, t) ≥ 0, we have β(Di,k) ≥
βdhc i(Di,k, t).

Proof. Assume β(∆) = max{0, r ·∆ + b}, as β(Di,x) ≥
βdhc i(Di,x, t) ≥ 0, i.e.,

r ·Di,x + b ≥ βdhc i(Di,x, t),

r ·Di,x + b+ (k − x) · ci ≥ βdhc i(Di,x, t) + (k − x) · ci.

From Lem. 2, as Di,k+1 − Di,k = δmaxi , βdhc i(Di,k+1, t) −
βdhc i(Di,k, t) = ci. We have

βdhc i(Di,k, t) = βdhc i(Di,x, t) + (k − x) · ci.

As r > ci
δmax
i

for a schedulable system, we have

r ·Di,x + b+ (k − x) · ci ≤ r ·Di,x + b+ r · (k − x) · δmaxi

r ·Di,x + b+ (k − x) · ci ≤ r ·Di,k + b

Therefore, β(Di,k) = r ·Di,k + b ≥ βdhc i(Di,k, t).

Lem. 3 indicates that, if a rate-latency function β(∆) ≥
βdhc i(∆, t) within a interval of [0, Di,x], β(∆) will be greater
than βdhc i(∆, t) in any interval. In this paper, we define the
earliest deadline that satisfies Eq. 18 as the comparison end
deadline, as shown in Fig. 10. With the Lem. 3, to do the

comparison of Eq. 13, one only needs to compare β̂′Gi (∆, t)
with βdhc i(∆, t) before the comparison end deadline. For
example, as shown in Fig. 10, there are only 5 deadlines

before the comparison end deadline. If β̂′Ghc i(Di,j , t) is
greater than βdhc i(Di,j , t) in these 5 deadlines, this rate-
latency function in other deadlines is also greater than the
βdhc i(Di,j , t). As 0 ≤ τ∗(t) ≤ Di,1, we use the binary search
to get the maximum τ∗(t). The computing complexity for
one high-critical task is O(log(m)).

i = 1 i = n β̂′G
i ≥ βd

hc i

Compute
new τ∗(t)

Output
τ∗(t)

i = i+ 1

N N

Y

Y

Figure 11: The program diagram to compute the
maximum τ∗(t) with the constraint of n inequalities

pooling update
(τ∗(t))

q.enqueue

noHighCriticalTaskInProcessingeventArrival

enqueueFinish updateFinish

Figure 12: Finite state transitions of our shaper

In short, for our proposed lightweight scheme, only n
inequalities need to be solved. As we only need to get
the maximum τ∗(t) that makes all inequalities hold, it is
not necessary to compute τ∗(t) for every inequality. The
bubble sorting with one iteration can be used to pick out
the maximum τ∗(t). It works like this, as shown in Fig. 11,
we start the searching with a very large τ∗(t). As this large

τ∗(t) will make β̂′G1 < βdhc 1, a new τ∗(t) will be computed

by solving β̂′G1 ≥ βdhc 1. This τ∗(t) is used in the second

inequality. If the rate-latency function β̂′G2 with τ∗(t) is

greater than β̂dhc 2, this τ∗(t) is used in the third inequality.
If not, we compute a new τ∗(t) of the second inequality, and
use this new τ∗(t) in the third inequality. τ∗(t) is computed
in this way till the last inequality. The computed τ∗(t) is
the maximum Lfii that satisfies all inequalities. The whole
computing complexity is O(n · log(m)).

5.3 Shaping Runtime Behavior

Algorithm 2 Shape the incoming flow of low-critical tasks

Input: signal s;
1: if s = event arrival then
2: qi.enqueue() � store event
3: end if
4: if s = noHighCriticalTaskInProcessing then
5: update(τ∗) � update the τ∗

6: end if
7: while min(qi.length) > 0 ∧ τ∗ > 0 do
8: for i = 1 → n do � pooling to find the right event
9: if ci ≤ τ∗ then

10: qi.dequeue() � send event
11: τ∗ = τ∗ − ci � reduce τ∗ by Wcet
12: break
13: end if
14: end for
15: end while

The shaper controls the workload inflow of low-critical
tasks based on the Lfii τ∗(t). In general, we have to
decide when to update the Lfii τ∗(t) and how to regulate
the workload inflow of low-critical tasks. Our shaper is
designed as a finite state machine, as shown in Fig. 12.
Normally, our shaper is in the pooling state. There are
two signals that interrupt the pooling state. One signal is
noHighCriticalTaskInProcessing, which means there is no
high-critical tasks that are being processed in the processor.



Table 1: Event streams according to [4]
S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

p[ms] 198 102 283 354 239 194 148 114 313 119
j[ms] 387 70 269 387 222 260 91 13 302 187
d[ms] 48 45 58 17 65 32 78 - 86 89
w[ms] 12 7 7 11 8 5 13 14 5 6

Table 2: The set of high-critical event streams
Sets Streams Utilization Sets Streams Utilization
Set 1 S3,S8,S2 0.2162 Set 3 S8,S3,S7,S2,S1,S6 0.3904

Set 2 S5,S3,S8,S9,S4,S2 0.2967 Set 4
S10,S7,S5,S8,S9,
S2,S4,S3,S1

0.4956

This signal is used to interrupt the pooling state to the
state of update(τ∗(t)). The reason for using this signal as
the updating signal is that, the deadline service demand of
Eq. 16 assumes that there are no pending high-critical tasks
that are being processed. Therefore, to update Lfii τ∗(t),
in the processor, there also should be no high-critical tasks
that are being processed. Otherwise, the computed Lfii
τ∗(t) will not be accurate.

Another signal is the low-critical event arrival. When the
low-critical event arrives, it is first stored in a queue in the
shaper. The workflow of our shaper is shown in Algo. 2. For
every event stream, a queue is used in the shaper to store
them. The shaping policy is that, any event is first stored in
a queue. The shaper pools the queue to find the candidate
events whose Wcets are less than τ∗(t), and picks up the
highest-priority event from the candidates to send it to the
processor, as shown in line 2, 10 in Algo. 2.

6. IMPLEMENTATION AND EVALUATION
In this section, we evaluate the proposed runtime shaping

method and compare its shaping performance with the
offline shaping. The simulator is implemented in Matlab
by applying MPA and RTC/S tools from [24]. All the
results are obtained from a simulation host with Intel Q9300
processor and 5 GB RAM.

6.1 Evaluation Setup
We use the system shown in Fig. 2 for our experiments.

The model contains a set of low-critical tasks and a set of
high-critical tasks. The event streams for high-critical tasks
are taken from [4], which are shown in Tab. 1. For the
evaluations, 4 sets of high-critical event streams are chosen,
as shown in Tab. 2. The utilizations of the 4 sets are also
shown in Tab. 2. The relative deadline Di of a stream Si
is set equal to its period. The low-critical tasks are pseudo-
random testcases, which are five event streams generated by
using UUniFast [2]. The low-critical tasks are independent
from each other, and are activated randomly, while their
mean interarrival times were chosen, such that together they
impose an additional utilization varying from 0.3 to 0.7. We
don’t set the deadlines for low-critical events, and don’t drop
any events. Note that, if the Wcet of low-critical tasks is
larger than the largest Lfii, their events will be blocked
forever.

In this work, three shaping performances are evaluated,
as shown in the following

• Shaping by offline computed bound.

• Shaping by backward derivation online.

• Shaping by our proposed lightweight scheme.

For every simulation, we simulate 10 seconds for 100 times,
and count the delay of low-critical events from the time of
entering into the queue to the time of going out from the
queue. We use the average delay as a metric of showing
the shaping performance. The system utilization is also
recorded, which indicates how long the processor is busy
with processing tasks in 10 seconds.

6.2 Evaluation Results

0.3 0.4 0.5 0.6 0.7
0

200

400

600

800

1000

1200

Input Utilization of Low−Criticality Tasks

A
ve

ra
ge

 D
el

ay
[m

s]

 

 
Offline Shaping
Backward Derivation Online
Lightweight Scheme

(a) Average Delay

0.3 0.4 0.5 0.6 0.7
0.5

0.6

0.7

0.8

0.9

1

Input Utilization of Low−Criticality Tasks

S
ys

te
m

 U
til

iz
at

io
n

 

 
Offline Shaping
Backward Derivation Online
Lightweight Scheme

(b) System utilization

Figure 13: Performance evaluation of online shaping
and offline shaping

Firstly, we show the performance difference of the online
shaping and the offline shaping. For this comparison, set 1
is chosen as inputs of high-critical tasks. The utilization of
low-critical tasks varies from 0.3 to 0.7. Fig. 13(a) shows
the average delay by using the online shaping with the
backward derivation and the lightweight scheme, and the
offline shaping. From it, we can see that, when the input
utilization of low-critical tasks is smaller than 0.45, the delay
keeps a small value for all shapings. But when the input
utilization is greater than 0.45, the average delay of offline
shaping increases sharply. This is because this utilization
exceeds the largest utilization that this shaping bound can
reach. For the online shaping, the delay keeps small and
increases slowly. Fig. 13(b) shows the system utilization. It
can be seen that the highest system utilization of the offline
shaping can only reach about 0.75, and the highest system
utilization of online shaping can reach 0.9. Besides, the two
subfigures show that the shaping effect with the lightweight
scheme is the same for the online shaping with the backward
derivation.

Secondly, we observed the influence of high-critical tasks
on the online shaping performance. Four sets of event
streams with the utilization of about 0.2, 0.3, 0.4, 0.5 are used
as the inputs for activating high-critical tasks. By varying
the imposed utilization of low-critical tasks, the event delay
is compared based on the same system utilization for the four
sets. The results are shown in Fig. 14. The left axis shows
the delay per event, and the right axis shows the difference
ratio (lightweight scheme/backward derivation) between the
lightweight scheme and the backward-derivation method.
From the four figures, we can see the average event delay
increases with an increasing of system utilization. It can also
be seen that there is little difference in the online shaping
between with the backward-derivation method and with the
lightweight scheme if the system utilization is below 0.8.

Lastly, the computation time of updating the Lfii τ∗(t)
is compared with the backward-derivation method and the
lightweight scheme. For the backward-derivation method,
the program will overflow if workload prediction is used
without any approximation. To make the backward
derivation work, the interception of workload prediction



0.6 0.7 0.8 0.9
4

6

8

10

12

14

Set 1

A
ve

ra
ge

 D
el

ay
 [

m
s]

 

 

0.6 0.7 0.8 0.9
1

1.02

1.04

1.06

1.08

1.1

D
if

fe
re

nc
e 

R
at

io

Backward Derivation online
Lightweight Scheme
Difference Ratio

(a) Set 1

0.6 0.7 0.8 0.9
0

10

20

Set 2

A
ve

ra
ge

 D
el

ay
 [

m
s]

 

 

0.6 0.7 0.8 0.9
1

1.1

1.2

D
if

fe
re

nc
e 

R
at

io

Backward Derivation online
LIghtweight Scheme
Difference Ratio

(b) Set 2

0.6 0.7 0.8 0.9
5

10

15

20

Set 3

A
ve

ra
ge

 D
el

ay
 [

m
s]

 

 

0.6 0.7 0.8 0.9
1.1

1.15

1.2

1.25

D
if

fe
re

nc
e 

R
at

io
Backward Derivation online
Lightweight Scheme
Difference Ratio

(c) Set 3

0.6 0.7 0.8 0.9
10

20

30

40

Set 4

A
ve

ra
ge

 D
el

ay
 [

m
s]

 

 

0.6 0.7 0.8 0.9
1

1.2

1.4

1.6

D
if

fe
re

nc
e 

R
at

io

Backward Derivation online
Lightweight Scheme
Difference Ratio

(d) Set 4

Figure 14: The event delay with system utilization

with a length of 10 relative deadlines is used. Fig. 15
presents the worst, best, and average case computational
expenses of updating τ∗ with respect to the number of high-
critical event streams. For the backward-derivation method,
the average computation time for one stream is 7.9 ms, and
increases linearly with the number of streams. For the
lightweight scheme, the average computation time for one
stream is only 36.1µs, which is two orders of magnitude
lower than the computation time by using the backward-
derivation method. This figure also shows that, even for
10 streams, the average computation time of using the
lightweight scheme is only 164.7µs. The result indicates
that the timing overhead of the lightweight scheme is
considerably smaller.

7. CONCLUSIONS
This paper presents an approach to adaptively shape the

inflow workload of low-critical tasks based on the actual
demand of the high-critical tasks at runtime. Compared to
the shaping with the offline bounds, the low-critical event
delay is reduced, and the system utilization is improved.
Since our adaptation method is a lightweight scheme with
the complexity of O(n · log(m)), our approach is suitable
for online application to update the shaping bound. The
experiments also demonstrate the efficiency and effectiveness
of shaping scheme, and it also shows that the timing
overhead with our proposed lightweight scheme is two orders
of magnitude lower than using the backward-derivation
method.

8. ACKNOWLEDGMENTS
This work has been partly funded by China Scholarship

Council, German BMBF projects ECU (grant number:
13N11936) and Car2X (grant number: 13N11933).

9. REFERENCES
[1] S. K. Baruah, A. Burns, and R. I. Davis. Response-time analysis

for mixed criticality systems. In RTSS, pages 34–43. IEEE, 2011.

[2] E. Bini and G. C. Buttazzo. Measuring the performance of
schedulability tests. Real-Time Systems, 30(1-2):129–154, 2005.

[3] A. Burns and R. Davis. Mixed criticality systems: A review.
University of York, Tech. Rep, 2013.

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 1  2  3  4  5  6  7  8  9  10

C
om

pu
ta

tio
n 

E
xp

en
se

s 
[m

s]

# Streams

Backward Derivation

Lightweight Scheme

Figure 15: Computation time of updating the Lfii

[4] A. Hamann and R. Ernst. Tdma time slot and turn optimization
with evolutionary search techniques. In DATE, pages 312–317.
IEEE, 2005.

[5] B. Hu, K. Huang, G. Chen, and A. Knoll. Evaluation of runtime
monitoring methods for real-time event streams. In ASPDAC,
pages 582–587. IEEE, 2015.

[6] K. Huang, G. Chen, C. Buckl, and A. Knoll. Conforming the
runtime inputs for hard real-time embedded systems. In DAC,
pages 430–436, 2012.

[7] K. Huang, L. Santinelli, J.-J. Chen, L. Thiele, and G. C.
Buttazzo. Adaptive dynamic power management for hard real-
time systems. In RTSS, pages 23–32. IEEE, 2009.

[8] K. Huang, L. Santinelli, J.-J. Chen, L. Thiele, and G. C.
Buttazzo. Applying real-time interface and calculus for dynamic
power management in hard real-time systems. Real-Time
Systems, 47(2):163–193, 2011.

[9] B. James, B. Todd, B. Pam, H. Jon, P. James, S. Prakash,
S. John, S. Peter, S. Douglas, and U. Russell. A research agenda
for mixed-criticality systems.

[10] K. Lampka, K. Huang, and J.-J. Chen. Dynamic counters and
the efficient and effective online power management of embedded
real-time systems. CODES+ISSS, pages 267–276, 2011.

[11] K. Lampka, S. Perathoner, and L. Thiele. Analytic real-time
analysis and timed automata: A hybrid method for analyzing
embedded real-time systems. EMSOFT, pages 107–116, 2009.

[12] J.-Y. Le Boudec and P. Thiran. Network calculus: a theory of
deterministic queuing systems for the internet. Springer, 2001.

[13] M. Neukirchner, P. Axer, T. Michaels, and R. Ernst. Monitoring
of workload arrival functions for mixed-criticality systems. In
RTSS, pages 88–96, Dec 2013.

[14] M. Neukirchner, T. Michaels, P. Axer, S. Quinton, and R. Ernst.
Monitoring arbitrary activation patterns in real-time systems. In
RTSS, pages 293–302, Dec 2012.

[15] M. Neukirchner, S. Quinton, R. Ernst, and K. Lampka.
Multi-mode monitoring for mixed-criticality real-time systems.
CODES+ISSS, pages 1–10, Sept 2013.

[16] M. Neukirchner, S. Quinton, T. Michaels, P. Axer, and R. Ernst.
Sensitivity analysis for arbitrary activation patterns in real-time
systems. In DATE, pages 135–140, March 2013.

[17] L. Phan and I. Lee. Improving schedulability of fixed-priority
real-time systems using shapers. In RTETAS, pages 217–226,
April 2013.

[18] J. A. Rowson and A. Sangiovanni-Vincentelli. Interface-based
design. In DAC, pages 178–183. ACM, 1997.

[19] S. Tobuschat, M. Neukirchner, L. Ecco, and R. Ernst. Workload-
aware shaping of shared resource accesses in mixed-criticality
systems. In CODES+ISSS, page 35. ACM, 2014.

[20] S. Vestal. Preemptive scheduling of multi-criticality systems with
varying degrees of execution time assurance. In RTSS, pages
239–243. IEEE, 2007.

[21] E. Wandeler. Modular performance analysis and interface-
based design for embedded real-time systems. PhD thesis, ETH
Zurich, Sept 2006.

[22] E. Wandeler, A. Maxiaguine, and L. Thiele. On the use of greedy
shapers in real-time embedded systems. ACM Trans. Embed.
Comput. Syst., 11(1):1:1–1:22, Apr. 2012.

[23] E. Wandeler and L. Thiele. Real-time interfaces for interface-
based design of real-time systems with fixed priority scheduling.
In EMSOFT, pages 80–89, 2005.

[24] E. Wandeler and L. Thiele. Real-Time Calculus (RTC) Toolbox.
http://www.mpa.ethz.ch/Rtctoolbox, 2006.


