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Abstract. The throttle valve is a technical device used for regulating a
fluid or a gas flow. Throttle valve control is a challenging task, due to its
complex dynamics and demanding constraints for the controller. Using
state-of-the-art throttle valve control, such as model-free PID controllers,
time-consuming and manual adjusting of the controller is necessary. In
this paper, we investigate how reinforcement learning (RL) can help to
alleviate the effort of manual controller design by automatically learning
a control policy from experiences. In order to obtain a valid control
policy for the throttle valve, several constraints need to be addressed,
such as no-overshoot. Furthermore, the learned controller must be able
to follow given desired trajectories, while moving the valve from any
start to any goal position and, thus, multi-targets policy learning needs
to be considered for RL. In this study, we employ a policy search RL
approach, Pilco [2], to learn a throttle valve control policy. We adapt the
Pilco algorithm, while taking into account the practical requirements and
constraints for the controller. For evaluation, we employ the resulting
algorithm to solve several control tasks in simulation, as well as on a
physical throttle valve system. The results show that policy search RL is
able to learn a consistent control policy for complex, real-world systems.

1 Introduction

The throttle valve, as shown in Figure 1, is an important and widely-used techni-
cal device for many industrial and automotive applications, such as for pressure
control in gasoline combustion engines and flow regulation in air conditioning
and heat pumps. Usually, the throttle valve system consists of a valve and an
actuator, e.g. a DC-motor. The throttle valve control task is to move the valve
from arbitrary positions to given desired positions by regulating the actuator
inputs.

Controlling the throttle valve is a challenging task. Due to the spring-damper
design of the valve system, we have a highly dynamic behavior. As many un-
known nonlinearities are involved, such as complex friction, accurate physical
models of the valve dynamics are hard to obtain. In practice, the valve needs to be



controlled at a very high rate, e.g. 200Hz, and desired valve positions need to be
reached as fast as possible. While requiring a fast control performance, no over-
shoot is allowed here, i.e. the valve position must not exceed the desired position.

Fig. 1. Example of a throttle valve
used in combustion engines for au-
tomotive applications.

This requirement is essential for pressure con-
trol in gasoline combustion engines for auto-
motive application, as addressed in this paper.
Here, an open valve corresponds to a car ac-
celeration and, thus, an overshoot during the
valve control would result in undesirable jerks
of engine torque. These constraints, e.g. un-
known nonlinearities and fast control without
overshoot, make the throttle valve controller
design difficult in practice.

In the literature, several approaches are
discussed to tackle challenges of throttle valve
control based on methods of classical control
theory [12–14]. These approaches usually in-
volve tedious, manual tunning of controller
parameters. Furthermore, profound knowl-
edge of the physical system is required in order to obtain a good parametrization
of the controller in this case. These limitations motivate the approach used in
this study. We investigate how machine learning techniques, especially, Rein-
forcement Learning (RL), can be employed to successfully learn a control policy
from experience, while incorporating required practical constraints. Beside the
mentioned challenges, several RL problems need to be tackled, such as learning
multi-targets and handling large data during the learning process. In this paper,
we employ a probabilistic, model-based RL approach, e.g. the probabilistic infer-
ence for control algorithm (Pilco) [2], for learning the control policy. We modify
Pilco taking in account the discussed requirements. The method is implemented
and evaluated in simulation, as well as on a real throttle valve system. The eval-
uation shows the feasibility of the presented RL approach and, thus, indicates
the suitability of RL for real-world, industrial applications.

The remainder of the paper is organized as follows: in the next section, we
introduce the throttle valve system and motivate the use of RL. In Section 3,
we briefly review the basic idea behind RL and introduce Pilco. Section 4 shows
how probabilistic RL, especially, Pilco, can be modified to match the required
constraints. Evaluation of our method in simulation, as well as on a real throttle
valve, is provided in Section 5. Finally, a conclusion is given in Section 6.

2 The Throttle Valve System

Throttle valve systems are widely used in many industrial applications, ranging
from semi-conductor manufacturing to cooling systems for nuclear power plants.
However, one of the most important applications can be found in automotive
control, where throttle valves are employed to regulate the flow of air entering a



combustion engine. As shown in Figure 1, the valve system basically consists of a
DC-motor, a spring and a flap with position sensors. Depending on the position
of the flap, the gasoline-to-air ratio in the combustion chamber is adjusted and,
subsequently, influences the torque generated by the engine. The dynamics of
the throttle valve system can be simplified by the model [10] to be[

α̇(t)
ω̇(t)

]
=

[
0 1
−Ks −Kd

] [
α(t)
ω(t)

]
+

[
0

Cs −Kf sgn(ω(t))

]
+

[
0

T (t)

]
, (1)

where α and ω are the flap angle and corresponding angular velocity, T is the ac-
tuator input. The parameters Ks, Kd, Kf and Cs are dynamics parameters and
need to be identified for a given system [18]. Model-based valve controllers rely
on this model [5] and, thus, identification of dynamics parameters is necessary.
However, parameter identification using sampled data can be time-consuming
and difficult. It it hard to create sufficiently rich data in order to obtain plausi-
ble dynamics parameters. Furthermore, the parameters that optimally fit a data
set, are often not physically consistent and, hence, physical consistency con-
straints have to be imposed on the identification problem [17]. Using data-based
nonparametric models for RL - as employed in this paper - for learning optimal
control policies can help to overcome these limitations.

2.1 Requirements for Throttle Valve Control

As the throttle valve is a real-time system, precise and fast control is crucial
to provide optimal performance. In order to obtain fast control, we employ a
fixed radial-basis function structure as parametrization of the controller, which
can be evaluated in real-time. As shown in Section 5, the learned controller
can be evaluated at a frequency of about 200Hz. Furthermore, for learning the
dynamics used for model-based RL we employ a NARX-structure [9] to represent
the system dynamics, as described in Section 4.1. A well-approximated dynamics
model is prerequisite for learning a good control policy with model-based RL.

Typical RL problems are goal oriented [1], i.e. RL is formulated for reaching
single, desired goal positions. However, when employing throttle valve control,
trajectory tracking is inevitable. The learned policy needs to be able to follow
desired trajectory and, thus, multi-target RL as described in Section 4.2 is re-
quired here. It is shown in the evaluation that the learned policy can generalize
well for unknown goals and trajectories.

In addition to the fast control requirement, no overshoot of the trajectory is
essential. As an overshoot corresponds to undesirable jerks in engine torque, the
valve trajectory must not go beyond the desired valve position. On the other
hand, it is required that the valve moves to the desired position as close and
fast as possible. Taking in account these requirements, we design an appropriate
cost function in Section 4.3. The cost is defined such that the requirements are
accomplished and the resulting RL formulation remains solvable in closed form.



3 A Brief Review on RL

In this section, we provide a short review on the basic concepts of RL [1, 3].
Subsequently, we proceed to discuss the probabilistic policy search approach
Pilco [2].

3.1 General Setting

In RL, we consider an agent and its interactions with the environment. The state
of the learning agent is defined by s ∈ S. The agent can apply actions a ∈ A
and, subsequently, moves to a new state s′ with probability given as p(s′|s, a).
The controller π : S → A determines in every state the action which should be
used. If the controller is applied for T timesteps, we get a state-action sequence
{s0, a0}, {s1, a1}, . . . , {sT−1, aT−1}, sT , which we call rollout of the controller.
In case of uncertainty and noise, multiple rollouts will not be identical and the
rollout must be described by probability distributions. The environment rates
states si with a cost function c : S → R (and, thus, gives a rating for the
controller). The goal of the learning algorithm is to find a controller, which
minimizes the expected sum J(π) of collected cost, i.e.

min
π
J(π), J(π) =

T∑
t=0

Est(c(st)), (2)

where p(s0), . . . , p(sT ) are the resulting state distributions on application of the
controller π. The cost function c must be set according to the learning goal. The
tuples si, ai, si+1 are saved as experience and are used to optimize the controller.
RL algorithms differ in the way they use this experience to learn a new, improved
controller π. Two important properties that characterize RL techniques, are
model-free and model-based, as well as Policy Search and Value-function. Next
we will shortly describe the approaches and examine their suitability for throttle
valve control.

3.2 Approaches in Reinforcement Learning

Model-based RL describes algorithms, where the experience samples si, ai, si+1

are used to learn a dynamics model f : S × A → S and the controller π is
optimized using the dynamics model as internal simulation. Model-free RL al-
gorithms, on the other hand, directly optimizes the controller π without usage
of a dynamics model. In the last decades, model-free RL got much attention
mainly because for discrete state and action sets, convergence guarantees can
be given. However, often many trials are necessary to obtain a good controller.
Model-based RL methods potentially use the data more efficient, but it is well
known that model bias can strongly degrade the learning performance [4]. Here,
a controller might succeed in simulation but fails when applied to the real sys-
tem, if the model does not describe the complete system dynamics. To address



this problem, it is important to incorporate uncertainty — which can result
from a lack of experience or due to stochasticity in the system — and to employ
probabilistic dynamics models.

Besides model-free and model-based, RL methods can be divided into policy
search algorithms and value-function approaches. Policy search methods directly
operate on the parameters θ of a controller πθ to optimize the sum of expected
cost given in Equation (2). Therefore, a parametrized control structure has to be
defined by the user. This allows to include prior knowledge about good control
strategies, but the structure also limits the set of strategies that can be learned.
In contrast to policy search, value-function approaches try to estimate a long-
term cost for each state.

3.3 Pilco: A Model-based Probabilistic Policy Search

For the throttle valve control task — as for many physical systems — it is
not possible to perform several thousands of experiments on the real system
until the learning process converges. Thus, it is important to reduce interactions
with the system. This favours model-based RL approaches. Furthermore, the
throttle valve has high requirements on the control frequency due to the fast
system dynamics. For example, evaluation of the controller given the current
system state must take at most 5ms. Therefore, policy search RL, with a control
structure that can be evaluated fast, seems to be an appropriate approach.

Pilco3 is a model-based RL algorithm, which uses Gaussian processes (GP)
for modeling the system dynamics [2]. Based on this probabilistic dynamics
model, a control policy can be inferred. The controller can, for example, be
parametrized as a radial basis function network (RBF) with Gaussian shaped
basis function. Thus, the controller is given by

π(s) =

N∑
i=0

wiφi(s),

with φi(s) = σ2
f exp(− 1

2 (s − si)
TΛ(s − si)), S = [s0, s1, . . . , sN ]T the set of

support points and w representing the weight vector. The hyperparameters of
the controller are given by Λ = diag(l21, . . . l

2
D)−1 and σf . The number N of

support points is a free parameter that needs to be adjusted. The support points,
the weight vector and the hyperparameters build the set θ of control parameters
that need to be optimized during learning.

For learning the controller, we start with a Gaussian state distribution p(s0).
The RBF network controller returns an action for every state, therefore we get a
distribution p(at) =

∫
p(at|st)p(st)dst. This distribution is analytically approx-

imated to a Gaussian. Given the state distribution p(st) and the approximated
Gaussian action distribution p(at), the joint distribution p(st, at) is approxi-
mated. The dynamics model takes this distribution as input and returns the dis-
tribution p(st+1) for the next state. The expected cost J(θ) =

∑T
t=0Est(c(st))

3 We thank Marc Deisenroth for providing us the Pilco code.



Algorithm 1 Pilco: model-based policy search

1: D := Dinit, θ := random . initialize dynamics data set D and control parameters θ
2: for e := 1 to Episodes do
3: Learn dynamics model GPdynamics : S ×A→ S
4: Improve policy:
5: Estimate rollout p(s0), p(s1), . . . , p(sT ) of πθ using GPdynamics
6: Rate policy-parameters J(θ) =

∑T
t=0Est(c(st))

7: Adapt policy-parameters θ = θ +∇J(θ)
8: Apply controller πθ on system, D := D ∪ {s0, πθ(s0) = a0, s1, . . .}
9: end for

can subsequently be computed from these rollout results. Based on generated
cost values, the controller can now be optimized. The optimization step can
be performed using gradient descend procedure, where analytical gradients are
computed on the hyperparameters. The resulting algorithm [2] is summarized in
Algorithm 1.

4 Learning Throttle Valve Control with RL

In Section 2, we described the throttle valve system and the task specific require-
ments for throttle valve control. In this section, we adapt the Pilco algorithm
described in the previous section taking into account the desired requirements.
First, we show how the system dynamics can be modeled using Gaussian pro-
cesses while employing a NARX-structure with state and action feedback. Addi-
tionally, to handle the large amount of dynamics data occurring during learning,
an information gain criterion is used for selecting informative data points. As
the learned controller must be able to follow arbitrary trajectories, we describe
the setting for multiple start and goal states. Finally, we define a cost function
addressing the no-overshoot restriction, while the integrals involved in the Pilco
learning process can still be solved analytically. The analytical gradients, which
are essential for policy optimizing, will be provided.

4.1 Modeling Throttle Valve Dynamics

A dynamics model describes the behavior of a system, i.e. the probability p(s′|s, a)
that the system state changes to s′ when action a is applied in state s. Here,
the actions a correspond to the input voltage u of the DC-motor. The open-
ing angle α of the valve changes dynamically depending on the input voltage.
As shown in Equation (1), the dynamics of the valve can be approximated
by a second-order system. Due to this insight, the RL state st is defined as
st = [αt, αt−1, αt−2, ut−1, ut−2]. Thus, the resulting state st has the well-known
Nonlinear Autoregressive Exogenous (NARX) structure [9], as shown in Figure
2. For modeling the dynamics, nonparametric Gaussian process regression is
employed to predict αt+1 given a state st and the current action ut.
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Fig. 2. NARX-structure with state and action feedback to model the throttle valve
dynamics. The current valve opening αt, as well as past valve openings αt−1, αt−2 and
input voltage ut−1, ut−2 are jointly used to predict αt+1. For modeling the dynamics,
GP regression is employed.

A further challenge in modeling the throttle valve dynamics is the amount
of data generated by the system. Dynamics data is sampled at a high frequency,
e.g. 200 samples per second, leading to massive data sets. Here, we employ an
information gain criterion [8] to reduce the sampled data while retaining relevant
dynamics information. This significantly reduces the overall learning time as well
as the memory requirements. A GP is employed for modeling the dynamics, the
information gain criterion can be computed analytically and efficiently. See [8]
by Seeger et. al. for more details.

4.2 Multiple start and goal states

For throttle valve control, it is important that the learned controller can follow
arbitrary trajectories. Thus, the controller must be able to move the valve from
any given start position to any goal position. One approach would be to learn
seperate controllers for a set of goal states and combine these controllers for
arbitrary goal positions. However, this is complex for non-linear systems and
may not be optimal globally. Instead, we include the goal position g as input to
the controller, i.e. u = πθ(s, g), as described in [11]. Now, one joint controller
is learned for all goal positions. This formulation allows to set the goal state
dynamically on controller application.

In the standard Pilco framework, the control parameters θ are optimized with
respect to the sum of expected cost, J(θ) =

∑T
t=0E(c(st)), where st ∼ N (µ,Σ)

is a Gaussian distribution. For multiple start states sit and goal states gi, the
objective function can be modified (see [11]) to

J(θ) =

|Z|∑
i=0

T∑
t=0

E(c(sit, g
i)) , (3)
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Fig. 3. The upper left figure shows the Gaussian process dynamics model for a fixed
action. The lower picture shows two state distributions. The right upper plot shows the
corresponding next state distributions, after mapping the state distributions through
the dynamics GP. When the start distribution is too broad, the state distribution after
mapping is too complicated to approximate by a Gaussian as performed in Pilco.

where Z represents pairs of start and goal states, e.g. Z =
{

(s00, g
0), (s10, g

1), . . .
}

.
The start distributions given by si0 ∈ Z and σ0 as well as the goal states gi in Z
are determined such that they cover the relevant state space parts. The variance
of the start distributions si0 ∈ Z needs to be chosen appropriately. Given a
very broad start distribution s0, the next state distribution — after mapping it
through the dynamics GP model — can be difficult and, thus, more complicated
when approximated by a Gaussian as done by Pilco. However, when the start
variance is small, performance might me suboptimal for some start states not
covered by the start distributions. Figure 3 illustrates the effects when mapping
different state distributions through the GP dynamics model.

4.3 Cost Function for Learning Throttle Valve Control

In this section, we define an appropriate cost function for policy optimization.
The saturated immediate cost [2] given by cd(s, g) = 1− exp(−‖s− g‖2 /(2d2))
with goal state g is a general, task unspecific cost function. Here, the hyper-
parameter d describes the width of the cost. However, this cost function is not
appropriate for learning throttle valve control, as it does not avoid valve trajec-
tory overshoot. Taking in account the no-overshoot restriction, we introduce an
asymmetric saturating cost function

c(s, g) =

{
cd1(s, g), if s ≤ g
cd2(s, g), otherwise

, (4)

where cdi is the saturating cost with width di and g is the goal state. This
continuous, smooth function can be described as a saturating cost function with
variable steepness on both sides of the goal depending on the parameters d1, d2.
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Fig. 4. The left figure shows the symmetric saturating cost over states given on the
x-axis. The goal state is indicated by the red vertical line. The right figure shows the
asymmetric saturating cost with variable steepness on both sides. Overshooting the
goal state (here, states right of the goal state) implies high costs, while approaching
the goal from a state left of the goal leads to decreasing cost.

In contrast to the usual symmetric saturating cost, this allows us to assign a
decreasing cost when the state converges to the goal state while overshoot is
punished, see Figure 4.

To estimate the cost for a given set of parameters in the probabilistics model-
based RL framework, the expected cost E(c(s, g)) is required for a Gaussian state
distribution s ∼ N (µs, Σs). For the asymmetric saturating cost in Equation (4),
E(c(s, g)) is given as

E(c(s, g)) =

∫ g

−∞
cd1(s, g)p(s)ds+

∫ ∞
g

cd2(s, g)p(s)ds

=
1√

2πσ2

[∫ g

−∞
e`1ds+

∫ ∞
g

e`2ds

]
=

1√
2πσ2

[
w1

v1
r1 +

w2

v2
r2

]

with

`i = −
(
1/d2i + 1/σ2

) [
s−

(
gσ2 + µd2i
σ2d2i

)]2
− (g − µ)2

d2i + σ2
, wi = e

(
−(g−µ)2

d2
i
+σ2

)

vi =

√
1

d2i
+

1

σ2
, ui =

gσ2 + µd2i
σ2 + d2i

, r1 =

∫ v1(g−u1)

−∞
e−q

2

dq, r2 =

∫ ∞
v2(g−u2)

e−q
2

dq

Using the error function
∫ b
−∞ e−q

2

dq =
√
π
2 (erf(b) + 1), we have

r1 =

√
π

2
(erf(v1 (g − u1)) + 1) , r2 =

√
π

2
(1− erf(v2 (g − u2)))



Given E(c(s, g)), the gradients for the policy optimization can be given as

δE(c(s, g))

δµ
=

1

2
√

2πσ2

2∑
i=1

wi
vi

1

d2i + σ2

[
2ri(g − µ) + (−1)ivie

−(vi(g−ui))2
]

,

δE(c(s, g))

δσ2
=
−1

2σ2
E(c(s)) +

2∑
i=1

wi
vi

[
ri

2σ4v2i
+
ri(z − µ)2

(σ2 + d2i )
2

+(−1)ie−(vi(g−ui)
2)

√
2

π
(δvi(g − ui)− δuivi)

]

where

δui =
d2i (g − µ)

(σ2 + d2i )
2
, δvi =

1

2
v−1i σ−4 , δwi = e

(
−(z−µ)2

σ2+d2
i

)
(z − µ)

2

(σ + d2i )
2 .

5 Evaluations

In this section, we evaluate the presented RL approach on a throttle valve sim-
ulation, as well as on a physical throttle valve system. The experiment setting
and learning process are described in detail.

5.1 Simulation Results

First, learning is performed on a throttle valve simulator. We employed the Pilco
algorithm as given in Algorithm 1 with an RBF control structure using 40 base
functions. The controller can be evaluated in approximately 1ms, which allows
for a control frequency of at most 1000Hz. In all experiments, a control frequency
of 200Hz was used.

As a first step, we learn a controller for a single start and target state, i.e.
a trajectory starting from α0 = 70◦ with desired valve opening g = 10◦. To
obtain initial dynamics data Dinit, random actions are applied twice for 0.16
seconds leading to two trajectories starting in α0. A NARX-structure is estab-
lished for modeling the dynamics (see Section 4.1). Optimization is performed
with respect to the asymmetric saturating cost with width d1 = 0.5, d2 = 3.5.
Figure 5 shows the learning process over several episodes. It can be seen that the
learning converges to a near optimal solution after 4 Episodes. Next, we compare
learning result for the symmetric saturating cost with the asymmetric cost func-
tion introduced in Section 4.3. It can be seen in Figure 6 that the asymmetric
cost function significantly reduces the overshoot (on the right) compared to the
standard symmetric saturating cost (on the left).

So far, the learned controller was optimized for a single trajectory from a
single start angle to a single goal angle. We now employ multiple start and goal
states as described in Section 4.2. Here, we choose 10 different combinations of
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Fig. 5. The figure shows the learning process for the start angle α0 = 70 with goal angle
g = 10. The left-most plot shows the two random trajectories used as initial dynamics
data set. After 2 episodes, the learned controller gets close to the learning goal, but still
overshoots and does not reach the goal angle accurately. After 4 episodes, the learning
has converged and the resulting control policy shows a near optimal behavior.
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Fig. 6. On the left, the learning result for the symmetric saturating cost function is
shown, the result for the asymmetric saturating cost is shown on the right. While the
symmetric cost leads to significant overshoot, the behavior for the asymmetric cost is
near optimal.
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Fig. 7. The figure shows the cost
over episodes of 4 independent learn-
ing attempts in simulation. In 3
of 4 cases, the learning converges
to a near optimal solution after 3
episodes.
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Fig. 8. The controller is applied to
move the valve from 22 degree valve
opening to 50 degree on the throttle
valve simulator. At times 0.03, 0.13
and 0.23 torque disturbances are in-
troduced. The controller handles the
disturbance well and returns to the
goal angle quickly.
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Fig. 9. The learned controller (blue) is applied on the simulated throttle valve with
a step trajectory (red) as desired goal trajectory. The left plot shows the valve angle
over time, while the right plot shows the applied voltage. The results show, that the
learned controller successfully matches the desired trajectory.

start positions and goal positions covering the state space equally, e.g.

Z̃ =
{

(α0
0, g

0), (α1
0, g

1), . . .
}

= {(30, 40), (30, 45), (30, 60), (40, 55), (45, 55),

(45, 60), (55, 40), (60, 30), (60, 45), (60, 50)} .

The standard deviation of the Gaussian start state distributions was set to
σ0 = 3◦. We repeated 4 independent runs. The cost over episodes for the runs
are shown in Figure 7. In 3 out of 4 cases, the optimal solution was already found
after 3 episodes. Next, the learned controller of a successful run is evaluated with
respect to its robustness towards torque disturbances. Figure 8 shows a trajec-
tory, where three disturbances are applied, the learned controller returns the
valve to the desired angle in a robust manner as expected. Finally, we apply the
learned controller to follow an arbitrary step trajectory. The resulting trajectory
as well as the voltage applied by the controller is shown in Figure 9.

5.2 Real Throttle Valve Results

In this section, the RL controller is learned on a real throttle valve system. The
performance of the RL controller is tested on different control tasks.

For learning on the real system, we use the same setting as described for
simulation in the previous section. Again, an RBF control structure using 40
basis functions is employed, data is sampled at a rate of 200Hz. Here, we directly
handle the case of multiple start and goal states on the real system. As in
simulation, the controller is optimized with respect to 10 combinations of start
states and goal states. In each episode, additional dynamics data is sampled
by application of the controller for 1.2 seconds. In this 1.2s timeslot, a step
trajectory consisting of the 10 start/goal combinations is employed as desired
trajectory. The information gain criterion significantly reduces the overall size of
the dynamics data set, e.g. the 1200 dynamics samples gathered after 4 episodes
are reduced to a training set of only 300 elements.
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Fig. 10. In the learning process a rollout is performed after each learning episode. The
figure shows the accumulated cost (see Equation (3)) for each episode rollout for the
asymmetric saturating cost function and d1 = 2, d2 = 0.5.
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Fig. 11. The learned controller (blue) is applied on the physical throttle valve system
with a step trajectory (red) as desired trajectory. While the left figure shows the valve
angle over time, the voltage over time is shown on the right. As can be seen, the learned
controller performs well and is able to follow the desired trajecotry in a robust manner.
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Fig. 12. As a next test case, we used a more complex step trajectory (red). The learned
controller (blue) is able to follow the step trajectory, while the accurarcy varies with
the goal angle in a range of approximately 1 degree.



0 0.5 1 1.5 2 2.5

30

35

40

45

50

55

60

Time (sec)

A
n

g
le

 (
d

eg
re

e)

0 1 2 3 4 5 6 7 8

30

35

40

45

50

55

60

Time (sec)

A
p

p
lie

d
 T

en
si

o
n

 (
vo

lt
)

Fig. 13. The figure on the left shows the learned controller (blue) following a desired
sine trajectory (red) on the physical valve. The resulting trajectory is shifted by a small
amount of time, because of the time required to reach a new desired goal angle. On
the right, the controller follows a ramp trajectory of varying steepness and amplitude.

Figure 10 shows the cost of controller application after each episode. The
learning was stopped after 4 episodes, since the controller already reached near
optimal performance. The controller learned after 4 episodes is evaluated on
various desired trajectories. In Figure 11, the performance of two of the 10
learned trajectories is illustrated. Figure 12 shows the application of the learned
controller on a more complex trajectory with arbitrary steps. Further, we used a
sine as well as variable ramps as desired trajectories, see Figure 13. In all cases,
the learned controller was able to follow the desired trajectories in an accurate
and robust manner without significant overshoot.

Finally, we compare the learned controller to a classical PID controller with
manually tuned parameters. Furthermore, we test the robustness of both con-
trollers towards torque disturbances. The discrete time PID structure is give as

ut = KP et +KI

t∑
i=0

eidt+KD
et − et−1

dt
, (5)

where T is the current time index, error et = αt − g, 1/dt equals the control
frequency. The gains KP ,KI ,KD are free parameters and need to be adjusted.
This tuning involves several trade-offs, such as accuracy versus no overshoot. It
must be kept in mind that inappropriate parameters lead to unstable control
behavior that potentially damages the system. For the subsequent experiments,
we use the parameters obtained after extensive tuning with help of a system
expert.

Figure 14 shows the learned controller compared to PID control. While both
controllers are able to follow the desired trajectory, the learned controller outper-
forms the PID control in terms of accuracy. Next, we examine both controllers
with respect to disturbances. Figure 15 illustrates the behavior when a constant
disturbance is introduced for a small amount of time. Compared to the learned
controller, the impact of the disturbance is significantly higher for the PID con-
trol. This results from a slightly longer time period until the PID controller
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Fig. 14. The figure shows applica-
tion of the learned controller (blue)
and the PID controller (green) on
the physical throttle valve. Both
controller are able to follow the de-
sired step trajectory (red), the accu-
racy of the learned controller exceeds
the PID performance.
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Fig. 15. At timestep 1s, a torque
disturbance is introduced to the sys-
tem until timestep 2.2s. The learned
controller (blue) handles the dis-
turbance well, while the PID con-
trol (green) shows a stronger impact
of the disturbance and deteriorated
performance afterwards.

counteracts the disturbance. Furthermore, the accuracy of the PID control is
significantly reduced after the disturbance due to the integration element I (see
Equation (5)). More advanced methods of control theory help to improve the
results compared to the standard PID control. However, this often increases the
number of free parameters that need to be tuned. could help to increase the
robustness of the controller.

A video was created to illustrate the learning process described in chapter 3,
algorithm 1. A controller is learned over the course of 4 episodes and the learning
progress is shown through rollouts on the throttle valve system on each episode:
www.youtube.com/watch?v=-HpzKsxios4.

6 Conclusion

In this study, we investigate how throttle valve control can be learned from expe-
rience, while showing a practical application of probabilistics RL on a real-world
problem. A throttle valve is an important industrial device to regulate flows of
gas or fluids and has various application, e.g. pressure regulation in combustion
engines. As analytical models are hard to obtain due to complex dynamics and
unknown nonlinearities, model-based position control of the throttle valve is a
challenging problem. In this paper, we modify the probabilistic inference for con-
trol algorithm (Pilco) to match the requirements of throttle valve control, such
as no-overshoot restriction. We evaluated the approach in simulation, as well as
on a real throttle valve system. The results show that policy search RL is able
to learn a consistent control policy for complex, real-world systems.
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