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Abstract— We introduce a method based on support vector
machines which can detect opening and closing actions of the
human thumb, index finger, and other fingers recorded via
surface EMG only. The method is shown to be robust across
sessions and can be used independently of the position of the
arm. With these stability criteria, the method is ideally suited
for the control of active prosthesis with a high number of active
degrees of freedom. The method is successfully demonstrated on
a robotic four-finger hand, and can be used to grasp objects.

I. INTRODUCTION

The focus on the properties of prosthetic robotic hands is

currently undergoing a slow but steady shift. Whereas the

cosmetic aspect traditionally was and still remains an impor-

tant issue for most patients, regained dexterity becomes more

prominent as advances in mechatronic systems offer such pos-

sibilities. Consequently, most prosthesis manufacturers (e.g.,

Otto Bock, Motion Control, Liberating Technologies), besides

their line of cosmetic hands, also offer a line of active hands.

Such hands are controlled over myoelectric (EMG) interfaces,

measuring the activity of the patient’s muscles (viz. their motor

units) in the lower arm.

Such active hands however suffer from low acceptance

among patients with amputated hands. One reason for this is

the limited dexterity that such hands offer to the patient: with

only one active degree of freedom, the hand can only open

and close on command, and can thus only be used for very

coarse grasping and handling.

Whereas already many highly integrated prosthetic hands

are under development or at production level (e.g., the DLR-

HIT hand, the Cyberhand, the Fluid hand), control of such

hands using noninvasive interfaces is still problematic and

cannot be used on patients. Limitations lie with the number of

fingers that can be controlled, session independence without

retraining, and insensitivity to other arm muscle use, e.g., w.r.t.

arm pronation or supination.

In this article we present a highly integrated approach to

the use of EMG recording of the human lower arm in order

to control the opening and closing of three fingers of the

hand. Although user independence is problematic, we do attain

optimal results with respect to session independence, allowing

a patient to wear use the prosthetic device in the morning

without having to retrain it. Also we demonstrate the ability

of using the device independent of the position of the arm. The

method is demonstrated on a robotic four-finger hand, and can

be used for grasping objects.

II. EMG DATA ACQUISITION/SETTING/EMG SETUP

A. EMG Hardware

The EMG data are recorded using ten commercial Otto

Bock R© active double differential electrodes 13E200=50 and a

custom-built, low data-rate USB AD-converter for EMG data

acquisition. Each electrode includes an amplifier with a factor

of up to 100,000 changeable on a scale from 1 to 7 as well

as a rectifier; in the experiments, the amplification is set to 4.

B. Properties and Problems of Recorded Signals

The surface EMG signals are influenced by several factors

not related to finger movements [1]. All of these factors

may influence the measured EMG signal and thus disturb the

classification. We investigated most of these disturbances and

discuss how we handle them.

Depending on the size of the muscle that is measured

and its position relative to the electrode, the EMG signal

will be weaker or stronger. Thus with different electrode

placements the EMG amplitudes at maximum force production

of underlying muscles may be very different.

On top of these between-electrode differences one can

often see global changes in which the signal amplitude in all

electrodes increases or decreases. Such changes can be due

to muscle fatigue, a subjective change in the perception of

the force produced during a finger action, or due to external

influences related to electromagnetic pollution.

However, probably the most challenging property of the

surface EMG signal with respect to a robust classification is

that it changes with arm posture, because underlying muscles

especially towards the wrist change their position relative to

the electrodes on the skin when the hand is rotated.

C. Finger Movements and Corresponding Electrode Positions

In the following we describe the automatic detection of

extension and flexion of the thumb, the index finger, and the

middle, ring and little fingers together (hereafter “remaining”).

We will refer to these six movements as “finger actions” to

highlight their binary character.
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For each finger action, a separate muscle or set of muscles

is responsible. We distribute our ten electrodes over these

muscles as follows. One electrode is placed above the extensor

pollicis brevis and longus for thumb extension, two above

the flexor pollicis longus for thumb flexion, one above the

extensor indicis for index extension, two above the distal part

of the flexor digitorum superficialis for index flexion, two

above the extensor digitorum for remaining extension, and two

above the proximal part of the flexor digitorum superficialis

for remaining flexion.

III. LEARNING HUMAN FINGER ACTIONS

In our approach to the control of active prostheses we

try to minimize the effort for the patient. We consider it of

key importance that the system adapts itself to the user, not

the other way around. Consequently, we apply state-of-the-

art machine learning techniques to discriminate user-specific

finger actions. In this section we present our classification

system which mainly consists of a set of Support Vector

Machines.

A. Preprocessing

The Otto Bock electrodes output an amplified, filtered, and

rectified signal. The AD converter we use sends new data

whenever the value of at least one electrode changes. With this

setup we get a sampling rate of about 35Hz on average, with

a maximum of up to 125Hz when values in many electrodes

are rapidly changing.

Nevertheless it is still hard to classify single samples and

therefore we always concatenate five samples to a sequence,

representing one data point. Thus we are classifying data

points extending over the last 140ms on average.

Furthermore we normalize training data points to have mean

zero and a standard deviation of one in each dimension or

electrode, respectively. This largely eliminates the between-

electrode differences mentioned above in the training data set,

but because we use the so estimated normalization constants

for testing, too, some of the differences still might recur in

the normalized test set and have to be taken care of by the

classifier.

B. Support Vector Machines for Finger Actions

Support Vector Machines (SVMs) [2] have proven to be

powerful classification tools [3]. They linearly separate two

data sets by placing a hyperplane between them such that the

distance of both data sets to the hyperplane is maximally large.

By the clever usage of kernels the algorithm can be extended

to non-linear separation without significantly increasing cal-

culation costs.

In their original formulation SVMs can separate only two

data sets which does not suffice for our application. Adapted

methods have been proposed to the combination of several

SVMs to a multi-class classifier [2]. We decided to use a one-

versus-rest approach in which one SVM per class is trained

to separate that class against all others. Input data is classified

by that class giving the highest classification result.

C. Posterior Probabilities

In the standard formulation of SVMs the classification result

is interpreted as binary, i.e., an SVM either assigns the one

class (1) to a data point or the other (−1). This is not suitable

in the multi-class case when two one-versus-rest SVMs signal

a positive classification, because then it is not possible to

discriminate between them.

Fortunately, the true classification result of an SVM is

proportional to the distance of the data point to the separat-

ing hyperplane and it can be assumed that, with increasing

distance, the affiliation to the corresponding class is more

secure. In [4] a method is proposed with which such SVM

classification results are mapped to the posterior probabilities

P (class = c|SVM = x) c ∈ {−1, 1}, x ∈ R,

computing the likeliness that a data point belongs to a certain

class. Accordingly, we apply this method to all our SVMs and

thus obtain a better and particularly more distinctive ground

for deciding for one of six finger actions.

D. Accepting a Classification

If the maximum of the posterior probabilities for the six

finger classes is above a certain threshold (in our case, we

used 0.95 which worked well in practice) we accept this class

as classification result. Any classification below that threshold

is discarded and the previously obtained class is used.

This fallback mechanism has turned out to be very help-

ful to increase the robustness of the system, because it is

capable of bridging subsequences of data points for which

classification is difficult and thus prevents false classifications

which is especially important within a sequence of data points

corresponding to a single finger action.

IV. CLASSIFICATION RESULTS

With the described classification system we achieve very

good results with respect to robustness in several aspects. In

the following we will show that the six finger actions can be

discriminated with different arm postures and across sessions

between which the electrodes were replaced on the arm, even

after several days.

Our results are reported in terms of performance p. We

define performance as the relative frequency of correctly

classified data points

p =
# correct data points

# data points
.

Thus a performance of 1 would be perfect. Nevertheless

it is never achieved which is also due to inaccuracies in

the registration of classes for training and test data. Such

inaccuracies occur as slight shifts between the end of a finger

action and the beginning of a new finger action. Accordingly

we define a tolerable error as an error which lies in a window

of 300ms from the borders of a finger action to another

one and where the error consists of wrongly classifying one

finger action as its neighbour. For our system we find that a

performance of over 0.9 with a relative frequency of tolerable
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errors to overall errors (short: tolerable error εt) exceeding

0.3 is acceptable for our application. Note also that errors

are expressed in terms of single data points and that they

often occur only as short sequences with 10 to 20 data points

corresponding to an error length of not more than 300ms.

A. Relax

We first classify the six finger actions in EMG data which

was recorded while the lower arm was in a relaxed position

(relax). We learn1 on one such data set consisting of 3,000 data

points and test on another data set of the same size which was

recorded during the same session.

In 15 such tests our classifier gives results with 0.89 ≤
p ≤ 0.97. The mean performance is p̄ = 0.94 with a standard

deviation of 0.025. For the tolerable error these values are

similarly good with ε̄t = 0.62 ± 0.17 (mean±std).

We present an example classification result in figure 1. With

p = 0.92 and εt = 0.51 this represents a moderately good

example, but it still has the very nice property that a sequence

of data points corresponding to a single finger action is not

interrupted by an error. All errors occur either at the beginning

or the end of a finger action. This classification continuity is of

great importance, because a user of the system, for example,

would not want to lose hold of a glass when drinking. Also

note that in this example all finger actions have eventually

been correctly recognised while the subject had no feedback

to adjust his actual movement.

B. Pronation

Rotation movements of the lower arm or hand, respectively,

pose a challenge for robust classification of finger actions.

Especially downward rotations of the palm (pronation), e.g.

for typing tasks, are a problem, because these movements have

strong effects on amplitude characteristics of some electrodes.

To quantify the problems with pronation we learned2 the

classifier on a relax data set and tested it on a pronation data set

from the same session in accordance with above. The average

performance for 8 such tests is p̄ = 0.74 ± 0.1 with ε̄t =
0.16 ± 0.11. Accordingly the resulting classifiers are almost

useless, because single finger actions are interrupted or some

finger actions are even never recognised.

By combining relax and pronation data for training it should

be possible to learn pronation patterns, too. We once recorded

16 data sets within one session consisting of 12 relax sets and

4 pronation sets. We trained the system on all combinations

of one relax and one pronation data set and tested its resulting

performance on the remaining data sets.

Figure 2 shows these performances separately for relax

and pronation test data for each pronation training data set

averaged over the different relax training sets. It can be seen

that the performance on relax data (p̄ > 0.94, ε̄t > 0.45)

is excellent independent of which pronation set is used for

training, but although training with three out of four pronation

sets results in usable to very good classifiers (0.90 ≤ p̄ ≤ 0.94,

1SVM parameters: linear Kernel, C = 0.1
2linear kernel, C = 0.1
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Fig. 2. Performances for learning a combination of one relax and one
pronation data set from a single session averaged over different relax training
sets. Y-axis: pronation data sets used for training. X-axis: test sets with
different arm posture, relx – relax, pron – pronation. For relax test data
p > 0.94 and εt > 0.45. For pronation test data pronation set 3 has p = 0.87
with εt = 0.07, but learning with other pronation sets is better with p > 0.9
and εt > 0.35

0.36 ≤ ε̄t ≤ 0.56), the system learned with pronation set 3

still has problems on unseen pronation test data (p̄ = 0.87,

ε̄t = 0.07).

The session from which we report here was one of the first

sessions we recorded. After its recording we made adjustments

to electrode positions which improved classifiability of the

data. Nevertheless, one can see that even for this session it is

possible to achieve good classification results while the lower

arm is pronated.

C. Session Independence

From session to session, it is impossible to place electrodes

at the exact same position. In our data we see that electrodes

which are lying exactly next to each other, c.q. record data

from positions on the arm not more than 1.5cm apart, can have

very different amplitude characteristics. Thus, even moderate

displacements of electrodes can lead to sensitive changes in

amplitude patterns.

Under the assumption that a large body of training data

contains the most important amplitude patterns, we trained3

our classifier on one relax and one pronation data set from

four sessions, and tested its performance on a remaining

session. We did this in turn for all of five test sessions and so

implemented a cross-validation procedure.

While we get excellent performance on almost every trained

session (mean±std, relax: p̄ = 0.95± 0.03, ε̄t = 0.55± 0.21,

pronation: p̄ = 0.94±0.04, ε̄t = 0.41±0.20) we also achieve

high performances on the untrained data which can be seen in

figure 3. There the performances on almost all data sets are

partly even clear above 0.9. However some problems occur in

the two remaining data sets. The fact that in these two cases

the performances are acceptable when the arm is in a different

posture suggests that at least one electrode has been shifted

too far away from its designated position which is at least

partly corrected by a rotation of the arm.

3rbf kernel, σ = 7, C = 20
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Fig. 1. Example of classification result for one data set. Single data points are shown. Blue dots: correctly classified data points. Green dots: correct class
of data points falsely classified as indicated by red pluses. p = 0.92, εt = 0.51 Longest error: 760ms. No ongoing finger action is interrupted by errors.
Example would be perfectly usable in an online test.
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Fig. 3. Cross-validation performance for multiple session learning. Y-axis:
session left out for testing, x-axis: data sets with different arm posture, relx –
relax, pron – pronation. All pronation data sets have p > 0.94 except those
in session 1 (p = 0.86). For session 5 p = 0.89 on relax data sets, all others
have p > 0.91. Lowest εt is 0.27 (session 3 relx, session 4 pron). For all
other data sets εt > 0.3.

This result shows that session independence is achieved, but

if the differences between trained and untrained sessions are

too large, for example because electrode displacements are too

large, the system has to be retrained to adapt to these changes.

V. APPLICATION TO A ROBOTIC 4-FINGER HAND

The method described above has been used for the control of

the DLR four-finger hand II [5]. Since we are only interested

in the control of three fingers, the fourth finger has been

configured to move parallel with the third finger.

The DLR Hand II is a four-finger hand with thirteen active

DoF: three per finger, and one for opposition of the thumb. In

the four identical fingers, the motion of the third phalanx is

coupled to that of the second. The actuation system consists

of brushless DC motors, tooth belts, harmonic drive gears and

differential bevel gears in the base joint. The differential joint

allows the use of full power of the two actuators for flexion

or extension, thus allowing the use of optimally small motors,

obtaining 30N force at the finger tip. The high joint speed of

over 360◦/s allows for high finger speed, important for, e.g.,

ball catching. Besides force and position sensors, we use joint

torque sensors and specially designed potentiometers in each

joint. Furthermore, a tiny six-dimensional force/torque sensor

is used in the finger tip.

A simplified version of this hand, targeted at the prosthetic

market, is available as the DLR/HIT hand [6], [7].

In the EMG experiment, all used phalanxes of each robotic

finger move with equal speed and displacement, so as to obtain

natural motion patterns when opening or closing the fingers

or the whole hand. Measured and classified muscle activity is

transferred to the robot hand, which then follows a predefined

trajectory to open or close the finger.

Fig. 4. Placing the electrodes on the arm.

Figure 4 shows the placement of the electrodes on the arm.

A total of ten electrodes is used in the experiments, in order

to obtain optimal results even when the arm is in supination.

Example use of the interface is demonstrated in figure 5.

The EMG interface can be well used to grasp objects. Since

no force feedback is possible using this interface, the patient

can use her visual feedback to interact with the object via the

prosthetic hand (see figure 6).

VI. CONCLUSIONS

We have obtained unparalleled results with the classification

of finger movements using surface EMG on the human lower

arm. Apart from obtaining session independence, thus making

the system optimally suited for every-day use by amputees,

the system is insensitive to pronation and supination of the
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Fig. 5. The robotic four-finger hand controlled with EMG interface.

lower arm, allowing the opening and closing of three fingers

(thumb, index finger, and other fingers).

Crawford et al. [8] also use an SVM-based approach for

EMG classification with 7 electrodes, distinguishing 8 classes.

Even though their immediate results are very good, the robust-

ness of the system between sessions without retraining is not

demonstrated and half of their classes depend on the arm being

pronated or supinated, thus making the system less useful for

a prosthetic application.

Corresponding with the position of the relevant muscles in

the lower arm, correct placement of the electrodes on the arm

remains a key ingredient to obtaining high success rates. As

is common practice in the fitting of commercially available

active prosthesis, a professional is required to perform this

step, including the training of the system.

Future investigation of the system may include the use of a

cuff fitted with a large array of electrodes, worn on the lower

arm. Whereas the system proposed in this article uses 10 active

electrodes with a market value of several hundred euros each,

an array of electrodes would be differently constructed, where

the signal amplifications would not occur on-site. Such a cuff

would be universally fittable, so that only training sessions

have to be done before the system can be used.

Fig. 6. Grasping an object using the EMG interface.
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