
Development of Dependable Real-Time Systems with Zerberus

Christian Buckl and Alois Knoll and Gerhard Schrott
Department of Informatics

TU München
Garching b. München, Germany
{buckl,knoll,schrott}@in.tum.de

Abstract

Although the main fault-tolerance techniques are known
for a long time, there exists no consistent approach for im-
plementing dependable applications in the sense that the
fault-tolerance mechanisms are generated automatically by
development tools.

With the Zerberus System we developed such a tool. The
main concept of Zerberus is the platform independent spec-
ification of the functional model (application tasks, inter-
action with environment, temporal constraints) by the de-
veloper using the Zerberus language. Based on this func-
tional model the code for the fault-tolerance mechanisms is
generated automatically for the desired platform using pre-
implemented templates.

Due to this automatic code generation the development
process is accelerated and the developers are enabled to im-
plement dependable application without expert knowledge
of fault-tolerance techniques. Our approach offers also the
possibility to accelerate the certification process by using
certified templates for the fault-tolerance mechanisms.

1. Introduction

Although the main fault-tolerance mechanisms are
known for a long time [3], there exists no general devel-
opment model especially designed for dependable systems.
Therefore most of the systems are built from scratch which
leads to a time-consuming and cost-intensive development
process. In addition the fault-tolerance mechanisms and the
application functionality are often mixed up thus complicat-
ing the certification process.

Within Zerberus a development process is suggested to
the user that attempts to reduce the development times and
costs, while increasing the reliability and safety of the soft-
ware. The main concept of Zerberus to achieve these fea-
tures is to separate the functional design of the application
from the platform dependent implementation and to provide

a set of pre-implemented fault-tolerance mechanisms in the
form of templates. The separation is realized by the speci-
fication of the functional model of the application. On the
basis of the functional model, Zerberus is enabled to gener-
ate automatically the necessary fault-tolerance mechanisms.
Thus the task of the developer can be minimized to the im-
plementation of the application-dependent code.

The fault-tolerance techniques currently supported by
Zerberus are based on structural redundancy. At least three
redundant units (in the following denoted as Zerberus units)
are executing the application in parallel. To reduce the costs
for system design commercial-off-the-shelf hardware com-
ponents are supported. The system generates automatically
facilities for temporal synchronization of the units, voting
on the states of the units, exclusion of erroneous units and
the reintegration of the repaired Zerberus units.

The focus of this paper is laid on the Zerberus language
used for the platform independent specification of the func-
tional model. The functional model of an application speci-
fies the systems tasks, the interaction among each other and
with the environment as well as the temporal constraints.
Since the functional model is used as base for the realiza-
tion of the fault-tolerance mechanisms, the main properties
required were the suitability for replica determinism and the
existence of previously known points in time for the execu-
tion of distributed voting and synchronization algorithms.
These properties could be fulfilled by the appliance of the
time-triggered paradigm. To allow a automatic generation
of voting and reintegration algorithms, the functional model
must separate the application’s state from the application
execution.

The paper is structured as follows: first of all related
work is summarized in sec. 2. A short overview of the
development process is given in sec. 3. In sec. 4 the re-
quirements on the Zerberus language are elaborated and the
concepts of the language are described. Sec. 5 describes a
case study to point out the benefits of our approach. At the
end this paper is summarized and we give a short overview
of the planned future research.

1



2. Related work

Different research groups have observed the demand for
a development process for safety critical real-time systems.
Most of these solutions are based on the time-triggered par-
adigm [6]. The time-triggered approach guarantees the im-
portant aspect of determinism of the system execution since
all points in time when system components are interacting
are known in advance.

One important representative for the time-triggered ap-
proach is TTP/C [10]. TTP/C, the Time-Triggered Proto-
col, is a TDMA protocol designed to handle highly depen-
dent real-time applications implemented in distributed net-
works. The protocol offers clock synchronization, clique
avoidance, deterministic message sending and membership
services. The TTP/C protocol itself offers nevertheless
no built-in fault-tolerance mechanisms at application level.
Several other projects addressed this problem (MARS [5] or
DECOS [11]). All these approaches have one major draw-
back in our opinion: the restriction to special hardware (like
TTP/C controllers), programming languages or operating
systems.

Our attempt was to design a development process that
allows the usage of commercial-off-the-shelf hardware and
that has no constraints towards programming languages and
operating systems. This approach is shared with the re-
search project Giotto [4], from the University of California
at Berkeley. On the one hand, Giotto is based on the time-
triggered approach, but on the other hand it also uses re-
sults of the research on synchronous languages like Esterel
[1]. Like the synchronous languages, Giotto introduces an
abstraction level that separates the software design process
from the actual hardware. By using the concept of FLET
(Fixed Logical Execution Times), the applications designed
with Giotto are not only deterministic regarding the val-
ues of the results (like Esterel), but also have a determin-
istic temporal behavior. Giotto offers a language for the
specification of the platform independent functional model
for distributed real-time applications. A platform in the
sense of Giotto (and in the sense of Zerberus) comprises the
hardware, the operating system and the programming lan-
guage. The mapping of the platform independent functional
model to executable code is realized by a code generator.
Since Giotto was designed primarily for the use in distrib-
uted systems, Giotto has no built-in fault-tolerance.Within
our project we developed the Zerberus Language, based on
Giotto, to describe the functional model of the safety critical
systems.

3. Development Process

The Zerberus System suggests six steps in the develop-
ment process for dependable systems. In each step the sys-

Figure 1. Development process

tem assists the developer to accelerate the process (for ex-
ample by automatic code generation) and to improve the
results by tool support or by providing guidelines. The in-
dividual steps to produce executable code are illustrated in
fig. 1 and are described below. Since for most of the safety-
critical systems a certification by an authority is required,
this problem is also addressed.

Specification of the Functional Model Within this step
the user has to specify platform independent the functional
elements of the application , their relationship towards each
other and to the environment as well as the temporal con-
straints. The specification is realized by the use of the Zer-
berus Language, which is described in more detail in sec.4.

Analysis of the Requirements on the Dependability
Currently Zerberus offers active structural redundancy as
fault-tolerance mechanism. At least three Zerberus units
compute the application in parallel. At specified points in
time the units perform a distributed voting and synchroniza-
tion algorithm. Erroneous units are excluded from the com-
putation and can perform error recovery algorithms. Since
error recovery algorithms are most times application depen-
dent the current run-time systems offers only a restart or a
reboot of the system. In addition the developer can spec-
ify further fault reactions and recovery algorithms. After
a successful completion, protocols allow the reintegration
into the running system.

Since a replication of identical units permits no tolera-
tion of design errors, the system also supports diversity in
hardware and software. While hardware diversity leads to
no or only few additional costs as a result of the support
of COTS hardware, N-Version programming is often not
considered due to the extra effort necessary for the imple-
mentation of the individual versions. Since the implemen-



tation effort in Zerberus is reduced to the implementation
of the pure application functionality, this disadvantage of
N-Version programming can be decreased.

The voting in Zerberus is performed in two rounds to ad-
ditionally support the usage of a non-reliable communica-
tion network and is based on the voting algorithms as sug-
gested by Klaus Echtle [3]. The voting messages are also
used for the synchronization algorithm : by means of the
expected and the actual arrival time of the voting messages
a logical global clock can be computed [7, 9]. The initial
clock synchronization at start up is based on the algorithm
implemented in the TTP/C [10] protocol.

Implementation of Application Dependent Code In this
step the developer has to implement the code for the appli-
cation. As already implied in the previous section this code
is restricted to the pure application dependent functionality
of the main parts which were identified within the design
process of the functional model. By this restriction, the im-
plementation effort can be reduced to a minimum. The im-
plementation step is platform dependent. This implies that
for every platform used, the code has to be reimplemented
by the developer.

Selection of run-time systems Run-time systems realize
the execution of the application on the individual platform
and provide the fault-tolerance mechanisms. Several run-
time systems are provided by Zerberus, but to guarantee the
generality of our approach the developer can also design his
own run-time system, e.g. if the desired platform is not sup-
ported. All run-time systems are implemented independent
of a particular application in form of templates so that for
each platform a run-time system must be implemented only
once.

Code Generation The transformation of the functional
model, the application dependent code and the selected
fault-tolerance mechanisms into executable code is per-
formed automatically by the Zerberus code generator. Both
the functional model and the run-time systems are parsed
by the code generator and syntactic and semantic checks
are performed.

Certification of the Zerberus System By using pre-
implemented templates for the fault-tolerance mechanisms,
the certification effort can be reduced to the certification of
the application code implemented by the developer, once
the templates and the generation tools are initially certified.
For this reason we are currently collaborating with the Ger-
man control authorization TÜV to get a initial certification
for one application and for our tools.

For a successful certification the system must of course
apply to the certification standards. These standards differ

from the fields of application. In general this means that the
system must be re-engineered for each such standard. In
case a certification is achieved, the system can be reused for
applications of the same domain without a repeated certifi-
cation of the templates. We intend to achieve such a certifi-
cation for the medical domain.

4. The Zerberus language

After the overview of the development model the Zer-
berus language is explained in more detail. While this chap-
ter explains the language in a general way, the syntax of the
language is shown in the next chapter 5 in the context of
one example. The concrete syntax is specified in a technical
report [2]. The main feature of the language to support vot-
ing, synchronization and integration algorithms is replica
determinism. This is a non-trivial issue since different plat-
forms can be used to achieve fault-tolerance. This includes
the simultaneous use of different hardware, operating sys-
tems, programming languages and control algorithms in one
control system. To achieve replica determinism neverthe-
less the Zerberus Language is based upon the time-triggered
paradigm [6]. Similar to the approach in [8] replica deter-
minism can be achieved by using the knowledge about the
execution times: the points in time when the distributed syn-
chronization and voting algorithms take place are known in
advance and between these points in time the execution and
scheduling of the different processes can be carried out in
different ways on the individual Zerberus units.

To avoid a long learning process the language was de-
signed very simple and consists of only seven different ele-
ments described in the following paragraphs.

Port All communication in the Zerberus System is per-
formed via ports. A port is a unique space in memory with a
predetermined size and a specified representation. To guar-
antee the platform independence the possible port types are
not based on a specific programming language or hardware.
The realization of the different port types for a given plat-
form is the task of the run-time systems.

The values of the ports represent the state of the Zer-
berus units. Therefore a comparison of the different Zer-
berus units can be based on the values of these ports. It is
required that there are no spaces in memory to store internal
states besides the ports. Thus the state synchronization can
also be based on the values of the ports during the reinte-
gration of a Zerberus unit. The platform independent speci-
fication of the size and the representation of the port values
is the foundation to enable the use of N-Version program-
ming using different programming languages and operating
systems.

In the following the attributes of ports are described.
Ports are persistent, that means a port keeps its value over



time until the port is updated. The update access is per-
formed time-triggered and has to be deterministic: the ac-
cess times are previously known and simultaneous write ac-
cesses by more than one unit are not allowed. This con-
dition is checked by the code generator while parsing the
functional model and in addition at run-time.

Replica non-determinism can also be the result of small
clock differences (since the synchronization algorithm can
only guarantee a deviation of the local clock from the global
clock smaller than ε), of N-Version programming or of im-
precision in results of measurement. Due to these effects
the correct port values are typically situated in a small inter-
val. To support this fact the comparison of ports can also be
based on an interval decision. This can be done by declar-
ing a voting function for the port that has to be implemented
by the developer. In case no voting function is specified the
voting of the port values is based on the bit-by-bit compari-
son.

The voting on the value of a specific port takes place at
least every time an output is performed based on this port
value. For a faster detection of errors the developer can also
specify shorter voting intervals.

Task Tasks are periodically called functions that realize
the actual functionality of the application. Tasks can be ex-
ecuted in parallel, but an interaction between the execution
of two tasks is not allowed since this would contradict the
requirement for determinism in the execution. Since syn-
chronization points are not allowed the task functions repre-
sent simple sequential programs. Thus the implementation
of these task functions is simplified.

The communication of the tasks between each other and
with the environment is exclusively performed via ports.
The access of tasks on ports occurs in a time-triggered man-
ner. At the beginning of every invocation the task reads the
values of the input ports, at the end of the invocation the
results are written into the output ports of the task. Here the
begin and the end refers to the invocation period as specified
in the functional model. The port access is realized by the
Zerberus run-time system and is performed in logical zero
time.

The actual execution of the task on the CPU is scheduled
by the Zerberus run-time system and is transparent to the
developer. Nevertheless the developer has to guarantee that
the worst-case execution times (WCETs) of the tasks allow
a completion of the tasks satisfying the temporal restrictions
as specified in the functional model.

Sensor and Actor Sensors and actors realize the commu-
nication of the application with the environment and should
not be mistaken for the hardware devices. Sensors are func-
tions that are executed to read values from the environment
and to write these values into ports, actors are functions to

read values from the port and write these values to the envi-
ronment.

The execution of the sensor and actor functions is also
performed time-triggered. The execution frequency has to
be specified by the developer. The sensor execution takes
thereby place at the begin of each interval, the actor exe-
cution at the end of each interval. Both executions are re-
garded as instantaneous. To legitimate this assumptions the
functions must represent short sequential code without syn-
chronization points and blockages. For example in case of a
network device the sensor function may check the arrival of
a message and copy the message into a port but a blockage
until the receive event of a new message is not allowed.

Mode Applications can have different operation modes.
To support this feature the Zerberus Language introduces
modes. A mode is a set of tasks, sensors and actors that is
currently active on the Zerberus units. In addition, a mode
cycle duration is assigned to every mode. Within each mode
cycle the tasks, sensors and actors are executed according to
their frequency as specified in the mode declaration.

Modechange To enable the switch between different op-
eration modes, modechanges can be used. A modechange
is a function implemented by the developer that evaluates
if a mode should be switched or not. The developer has
to specify the target mode and a non-empty set of source
modes within the modechange declaration. The evaluation
of the function, which is based on the values of the assigned
ports, takes place always at the end of the source mode cy-
cles. Mode switches must be deterministic, this means that
for every achievable configuration (port values and modes)
at most one assigned modechange can reach a positive eval-
uation for a modechange. This condition is checked by Zer-
berus at run-time.

Guard Guards are another possibility to change the be-
havior of a Zerberus program. Guards are similar to mod-
echanges functions based on port values, but while mod-
echanges should be used for different operation modes,
guards can be used to control individual tasks. For this rea-
son the guard is assigned to a certain task. At the begin of
every invocation of this task, the guard function is evaluated
and only in case of a positive evaluation the according task
is started. The main advantage of guards over modechanges
is therefore their flexibility. A guard can be used also within
a mode cycle and not only at the end of the mode cycle.

5. Case study

For demonstration we have implemented a system to bal-
ance a rod under the control of switched solenoids. For a



Figure 2. Functional model

stable control, sample rates in the range of few milliseconds
are necessary. The system‘s setup consisted of three com-
puters equipped with AMD K6 processors, connected with
switched ethernet and equipped with an AD/DA-board. As
real-time operating system we used VxWorks and C as pro-
gramming language.

While the implementation of a non fault-tolerant applica-
tion took about two weeks, the conversion of this version for
a single machine into a fault-tolerant application could be
realized within two hours. The students that implemented
the application needed less than 100 lines of code. For the
description of the functional model (see figure 2) 30 lines of
code were needed. The application consists of three ports
for the measurement value, the differential and integral part
for the controller and one port for the result. In addition
a sensor and an actor, as well as one task for the control
function had to be declared.

In addition four functions had to be implemented by
the developers: read(), to read the current value from the
AD/DA board, control(), the real control function realiz-
ing a PID controller, compare() realizing an interval voting,
write() for output on the AD/DA board. The code for these
functions consisted of less that 70 lines of code.

The addition of the fault-tolerance mechanisms (voting,
synchronization, integration), the communication between
tasks, sensors and actors, as well as the scheduling is real-
ized by the system. We achieved a sample rate of 1000 Hz
for this setup.

This example proves the applicableness for small control
applications. However we are currently working on two pi-
lot projects with the industry. The goals of these projects
are on the one hand to point out the feasibility, but on the

other hand also to adopt industrial standards in Zerberus to
increase the acceptance rate in the industry.

6. Conclusions and Further Research

We have introduced in this paper the Zerberus Sys-
tem that helps the developer to accelerate the development
process for dependable real-time systems. The main idea
of Zerberus is the automatic generation of fault-tolerance
mechanisms using templates. This generation can be real-
ized on base of the functional model of the application de-
scribed in the Zerberus language. Due to its platform inde-
pendence the system is not restricted to special hardware, a
certain programming language or an operating system. Cur-
rently there exist two different run-time systems for the op-
erating system VxWorks and the programming languages C
and C++.

In the future work we will concentrate on an advanced
support of the fault-tolerance mechanisms. We intend to
offer a tool for the specification of points during the execu-
tion when fault-tolerance mechanisms should be executed
(events) and exception handlers to address the occurrence
of failures. Thus we want to add new fault-tolerance tech-
niques besides error masking like forward or backward re-
covery, plausibility and liveliness checks, to enable the user
also to design fault-tolerant systems without structural re-
dundancy.

References

[1] G. Berry and G. Gonthier. The esterel synchronous program-
ming language: Design, semantics, implementation. Science
of Computer Programming, 19(2):87–152, 1992.

[2] C. Buckl. Zerberus Language Specification Version 1.0.
Technical Report TUM-I0501, TU München, Jan. 2005.

[3] K. Echtle. Fehlertoleranzverfahren. Springer Verlag, 1990.
[4] T. A. Henzinger, B. Horowitz, and C. M. Kirsch. Giotto: A

time-triggered language for embedded programming. Pro-
ceedings of the First International Workshop on Embedded
Software (EMSOFT), pages 166 – 184, 2001.

[5] H. Kopetz. The distributed, fault-tolerant real-time operat-
ing system mars. IEEE Operating Systems Newsletter, 6(1),
1992.

[6] H. Kopetz and G. Bauer. The Time-Triggered Architecture.
Proceedings of the IEEE, 91(1):112 – 126, Jan. 2003.

[7] L. Lamport and P. M. Melliar-Smith. Synchronizing clocks
in the presence of faults. J. ACM, 32(1):52–78, 1985.

[8] S. Poledna, A. Burns, A. Wellings, and P. Barrett. Replica
determinism and flexible scheduling in hard real-time de-
pendable systems. IEEE Transactions on Computers,
49:100–110, Feb. 2000.

[9] U. Schmid and K. Schossmaier. Interval-based clock syn-
chronization. Real-Time Systems, 12(2):173–228, 1997.

[10] TTTech Computertechnik AG. Time Triggered Protocol
TTP/C High-Level Specification Document. 2003.

[11] Website DECOS. http://www.decos.at/.


