
Models for automatic generation of safety-critical real-time systems

Christian Buckl and Matthias Regensburger and Alois Knoll and Gerhard Schrott
Robotics and Embedded Systems

Department of Informatics
Technische Universität München

Email: {buckl,regensbu,knoll,schrott}@in.tum.de

Abstract

Model-based development has become state of the art
in software engineering. A number of tools, like Mat-
lab/Simulink or SCADE, are available for the automatic
generation of application code on basis of models. Unfor-
tunately, system aspects like process management, commu-
nication or fault-tolerance mechanisms are not covered by
these tools. One main reason is the non-existence of appro-
priate models with an explicit semantic to allow the auto-
matic code generation. In addition, there is a great need
to have the possibility to extend both the model and the
code generation abilities to allow a high coverage of the
used platforms, since such code is platform dependent. In
this paper, we will present an approach applying meta code
generators using template-based code generation to achieve
this extensibility and will discuss the properties of models
required for the use in model-based development of system
aspects for safety-critical real-time systems.

1. Introduction

Model-based design [18] has become state of the art in
software engineering. Especially the existence of diverse
tools for automatic code generation like Matlab/Simulink
[1] or SCADE is very attracting. Particularly for the domain
of safety-critical applications, where the developers are typ-
ically application domain experts with less background in
programming fault-tolerant real-time systems [16], the pos-
sibility to provide extensive code generation would be cru-
cial.
Unfortunately, the code generation abilities of existing tools
typically cover only the functional aspects of the appli-
cations like the control functions. System aspects like
process management, scheduling, inter-process communi-
cation, communication within the distributed system and
fault-tolerance mechanisms are not addressed in general.
One reason is the absence of adequate models with an ex-

plicit semantic. The widely used Unified Modeling Lan-
guage UML [9] for example lacks the precision and rigor
needed for code generation [12]. Only few models, such as
class or state machine diagrams, can be therefore used for
automatic code generation. A solution to this problem is the
usage of domain specific languages (DSL) [6].
Another big problem is the platform dependency of sys-
tem level code. Since safety-critical real-time software is
typically embedded in a larger system, there exists a huge
heterogeneity of the used platforms, the combination of
the hardware, operating system and programming language
[21]. Due to this variety, it is not possible to design a code
generator for system aspects that supports a priori all these
platforms. Rather, the code generator must support an easy
extension as well of the underlying model, as of the code
generation ability. Template-based code generators can be
used to achieve this extensibility regarding the code genera-
tion ability. In this paper, we will present an approach using
meta code generators applying template-based code genera-
tion to achieve extensibility both on the model and the gen-
eration side. In addition, we will discuss the properties of
models required for the use in model-based development of
system aspects for safety-critical real-time systems.
The paper is composed as follows: section 2 discusses re-
lated work with a focus on models used for automatic code
generation. In section 3, our approach is outlined and the
code generator architecture is explained. Since our tool is
intended as an add-on to other model-based development
tools like Matlab/Simulink, we discuss the aspects (system
level code, fault-tolerance mechanisms) that are covered by
our approach in detail in section 4. Afterwards, the differ-
ent models and their properties are discussed in section 5.
For illustration purpose, we use a simple example: a control
application using a PID controller, implemented on a Triple-
Modular-Redundancy- (TMR-) System. The paper is con-
cluded with a summary of our approach and an overview of
the current status regarding the practical realization in sec-
tion 6. Finally, we close with some remarks about future
work.

1

Second International Conference on Availability, Reliability and Security (ARES'07)
0-7695-2775-2/07 $20.00 © 2007

2. Related work

A number of tools for model-based development of ap-
plications exist, but typically these tools focus only on some
specific aspects of the whole system, mainly the functional
aspects like the control functions. Examples for such tools
are Matlab/Simulink by Mathworks [1] or SCADE.
Matlab/Simulink focuses on the development of algorithms,
data visualization, analysis and numeric computation. By
the use of the Real-Time Workshop, C code can be gener-
ated out of the models automatically. Features of distrib-
uted systems like networking or process management are
not covered by the Real-Time Workshop.
SCADE by Esterel Technologies is a tool for code gener-
ation of safety-critical applications based on synchronous
languages like Esterel[2] or Lustre [5]. The main idea of
SCADE is to generate sequential code to avoid problems
like race conditions. Therefore, features like networking
and process management are also not covered.
In addition to tools used for specific application domains,
there are also several more general tools, typically using the
unified modeling language UML [9] as modeling language.
While there are some diagram types that are suited for auto-
matic code generation like class or state machine diagrams,
most diagram types are only used for modeling the systems,
while the implementation has to be done by hand. Reasons
are the lack of precision and the ambiguous semantics of
these diagrams [12].
A more promising approach is the use of domain specific
languages [6] and models. One successful example of this
approach is Giotto [10, 11] from the University of Berke-
ley. Giotto is a time-triggered language used for the spec-
ification of distributed real-time systems. The applications
are interpreted on two virtual machines: the embedded and
the scheduling machine. Therefore the usable platforms are
restricted to platforms for which the virtual machines are
implemented. In addition, Giotto is not designed to support
the automatic realization of fault-tolerance mechanisms.
Regarding the realization of a fault-tolerant communication
using model-based development, the time-triggered archi-
tecture TTA [13] can be used. TTA is a framework for
the design and implementation of distributed fault-tolerant
applications with a focus on the automotive and aviation
industry. TTA provides different services like predictable
communication with small latency, clock synchronization
and membership service [14]. The approach is based on
a hardware solution, the so-called TTP/C controller [24],
running the TTP protocol that realizes time-triggered com-
munication on redundant communication channels. Be-
cause TTA concentrates only on a fault-tolerant communi-
cation, the implementation of mechanisms for the toleration
of other error sources has to be done by the developer itself.
Another disadvantage of TTA is the restriction on special-

Figure 1. Code Generation Process

ized hardware. Therefore the application area is restricted.
The increase of code reuse is the main goal of component-
based approaches [23] and architecture description lan-
guages [17]. However, most of these approaches do not
provide any possibilities to adapt the behavior of the com-
ponent to application needs, which is one requirement for
safety-critical embedded software. Particularly in the con-
text of fault-tolerance mechanisms, the strong correlation
between application design and required component behav-
ior becomes obvious. This problem is addressed within
FRACTAL [3], which provides a component model with
extensive reflection capabilities. The usability of this ap-
proach for embedded software was shown in the project
Think [8]. In contrast to our approach, the developer has
to have however in-depth knowledge of the available com-
ponents using FRACTAL. Our approach has to be seen
much more as a meta-programming technique: all imple-
mentation details are hidden from application programmers,
the selection of appropriate components/templates and the
adaptation is automated.

3. Code generator architecture

In the previous sections the need for a new code gen-
erator architecture for model-based development of safety-
critical real-time systems was motivated. Since it is impos-
sible to design a code generator that supports all platforms
a priori, the code generator must be designed to support
extensibility, even by the user. This extensibility must be
realized on two different levels: regarding the meta-model
used for code generation and regarding the code generation
ability. A solution for this problem is the use of template-
based code generators. In such code generators, the gen-
eration ability is outsourced to templates. Therefore, the
code generator’s task is limited to the selection of appropri-
ate templates and the adaptation to the application needs.
New templates can be easily added by the developer to sup-

Second International Conference on Availability, Reliability and Security (ARES'07)
0-7695-2775-2/07 $20.00 © 2007

port further platforms or new functionality.
Instead of implementing a new code generator, we use
for our approach an existing tool, called openArchitecture-
Ware [7]. OpenArchitectureWare is a modular MDA/MDD
generator framework. It is implemented as plug-in for
the Eclipse development environment that also provides a
graphical interface to design the model. The code genera-
tion process is depicted in figure 1. The input of the code
generator is the model describing the application and the
application dependent code, e.g. the control function.
The code generation is performed by using templates. A
single template can offer an application independent solu-
tion for one aspect of the system, e.g. scheduling, or may
combine other templates. Thus a hierarchical order of the
templates is possible. Templates are typically designed for
a specific platform, because of the code dependency.
The adaptation of the templates to the model by the code
generator is performed using a technique similar to pre-
processor macros. A detailed description of this technique
can be found in [4].
In case there are no appropriate templates for a specific
application available, the application developer can design
new templates or change existing ones. Thus the extensi-
bility of the code generation ability to support diverse plat-
forms is guaranteed.
The extensibility issue regarding the meta-model can be
solved by the use of a meta-code generator. Figure 2 de-
picts the process of generating a code generator. Within
our system, we are providing a basic meta-model and in-
structions on how to adjust this meta-model. Therefore the
application developer can adjust the meta-model very eas-
ily to the application needs, for example by adding a new
operating system or new network settings. On the basis of
the meta-model, a code generator including a model parser,
a graphical modeling environment and a template parser are
generated. In addition, a template interface description is
generated that can be used to design new templates or ad-
just existing ones.

4. Automatically generated features

As seen in section 2, there are a number of tools with
code generators that cover the application aspects, but not
the system aspects. In this section the features that are cov-
ered by our approach are explained in more detail. In ad-
dition the requirements on the model to generate automati-
cally these features are discussed.
We assume the application to consist of different tasks ex-
ecuted on a distributed system. On each control unit some
real-time operating system, e.g. VxWorks or RTLinux, is
operated and the nodes are connected via a network. Each
of the control units is equipped with an internal clock and

Figure 2. Meta Code Generator

some of the units may have sensors and actuators.
Our goal is to generate automatically the system aspects
for this setting, more precisely the application execution
including timing, process management and inter-process
communication, networking and I/O aspects as well as
fault-tolerance mechanisms. These different aspects are ex-
plained in more detail in the following subsections.

4.1. Application execution

One main task of the generated code is the coordination
of the application execution. This includes the management
of the start and end of the different processes as specified in
the model, the temporal correct execution of I/O operations
and the management of the temporal correct communica-
tion between sensors, actuators and the control processes.
To allow an automatic generation of these mechanisms, the
model must comprise a precise execution model, especially
regarding the exact specification of timing issues and the
exclusion of race conditions by design.

4.2. Process management

Related to process management, the basic process man-
agement (creation, deletion), inter-process communication
as well as the scheduling are realized automatically in our
approach. Race conditions regarding the inter-process com-
munication can be avoided by clear communication seman-
tics within the model. Violations or inconsistencies must be
detectable at model level.
To realize an efficient scheduling algorithm, clear schedul-
ing criterions (for example deadlines) must be available
within the model. One prerequisite for an automatic code
generation is the possibility to specify details about the used
operating systems and programming languages within the
model.

Second International Conference on Availability, Reliability and Security (ARES'07)
0-7695-2775-2/07 $20.00 © 2007

4.3. Networking

Besides the realization of the pure network communi-
cation, also some means to achieve temporal synchroniza-
tion of the different nodes in the distributed system must be
available. To reduce the network load, this temporal syn-
chronization should be combined with the regular messages
of the application. The network type and network settings
must be also contained within the model.

4.4. I/O

For several standard devices an automatic code genera-
tion would also be very useful. Typical devices can be dig-
ital/analog boards, the serial interface or the network. The
input and output semantics, e.g. blocking or non-blocking,
must be clearly contained within the model to allow an au-
tomatic code generation.

4.5. Fault-tolerance mechanisms

Finally the code generator should also be able to gen-
erate standard fault-tolerance mechanisms at system level.
This includes error detection, e.g. by voting or plausibility
checks, hot or cold standby, exclusion of erroneous nodes
and the integration of repaired nodes.
Since the fault-tolerance mechanisms are implemented at
system level, it is not possible to perform the error-detection
and localization at application level. For example, it is pos-
sible to detect an erroneous result by using a triple modular
redundancy (TMR) architecture, but it may not be possible
to detect the reason for this error. In addition, since the re-
action to failures are very often application dependent, there
must be the possibility for the user to define appropriate re-
actions. Within our system the standard reactions to errors
are to restart the process, to reboot the control unit or to omit
any output. Alternatives can be defined and implemented by
the user.
To allow the generation of such fault-tolerance mechanisms,
there are several requirements posed to the model. The first
requirement is related to voting: there must be some mean
to achieve replica determinsm [19]. To allow also the auto-
matic realization of reintegration, the state of a unit must be
automatically determinable. Therefore, the system’s state
and the system’s behavior must be separated within the
model.

5. Models

As seen in the previous section, several requirements are
posed to the model:

1. Suitability for replica redundancy

2. Separation of functional behavior and state

3. Clear execution and timing semantic

4. Details about platform: hardware architecture, operat-
ing system, programming language

Different techniques are used to meet these requirements,
which will be described in the following. Since the sys-
tem must be described in several dimensions, we have cho-
sen to split up the model into four distinct sub models: an
application model describing the software architecture, a
system model to describe the hardware architecture, a fault
model containing the assumptions about faults and the fault-
tolerance model describing the fault-tolerance mechanisms
and the reactions to faults. In the following each model is
explained in more detail and the purpose of the models is
illustrated by the use of a simple control application, imple-
menting a PID controller on a TMR architecture.

5.1. Application model

The application model contains information about the
tasks of the application, the temporal requirements, the
communication and the input and output. The main require-
ments as stated above concerning the application model
are the need to accomplish replica redundancy within this
model and a clear execution and timing semantic.
These requirements are accomplished by the use of the
time-triggered paradigm [13]. In such models, all exe-
cutions are triggered by the advancement of time rather
than by internal or external events. The developer has to
specify the points in time when tasks should logically start,
by reading some input, and when they should logically
stop their computation, by publishing the results. The
concrete scheduling of the tasks itself becomes transparent
to the user. Since all communication is also performed in a
time-triggered manner, race conditions can be excluded by
design and violations can be automatically detected.
Replica determinism can be achieved by using the knowl-
edge about the execution times [20] : at specific points in
time a deterministic behavior of the system is guaranteed,
while between these points in time, the process execution
and scheduling can be carried out in different ways on the
individual units.
The time-triggered paradigm has also the advantage that
there are previously known points in time, when the execu-
tion of voting and temporal synchronization algorithms has
to be performed. This is the prerequisite for a successful
implementation of distributed voting and synchronization
algorithms. The messages in the time-triggered communi-
cation can also be used for the synchronization algorithm
as required: by means of the expected and the actual arrival
time of the voting messages, a logical global clock can be

Second International Conference on Availability, Reliability and Security (ARES'07)
0-7695-2775-2/07 $20.00 © 2007

computed [15, 22]. The precision of the temporal synchro-
nization is limited by the maximal network message delay
and by the precision of the system clock. Within our tests,
we achieved maximal synchronization errors below 200 µs
using standard Ethernet.
Another requirement on the model was to support automatic
state synchronization and voting. The state synchronization
functionality is necessary to allow a repaired unit to
reintegrate into the system during system execution. The
generated run-time system supports the state synchro-
nization and voting by separating the functionality of the
application, reflected in the concept of tasks, from the
application’s state, reflected in the concept of ports. Thus,
these states can be simply compared during voting, while
an integration is possibly by copying the state of a fault-free
unit to the integrating unit.
To support simplicity and a fast learning process, the model
consists of only seven different objects that are explained
in the following.

Port All communication in the application model is
performed via ports. A port is a unique space in memory
with a predetermined size and a specified representation.
The values of the ports represent the state of the electronic
control units. Therefore, the voting on units and the state
synchronization can be based on the values of these ports.
For a successful synchronization, it is required that the
application functions have no internal states. An easy
example is a PID controller: while such a controller is
often implemented with two internal variables to store the
current integral and derivative part, these variables must be
realized by using ports in our model. Otherwise a generic
state synchronization could not be achieved.
In the following, the attributes of ports are described. Ports
are persistent, that means a port keeps its value over time
until the port is updated. The update access is performed
time-triggered and has to be deterministic: the access times
are previously known and simultaneous write accesses
by more than one unit are not allowed. This condition is
checked by the code generator while parsing the functional
model and in addition at run-time.

Task Tasks are periodically called functions that realize
the actual functionality of the application. Tasks can be ex-
ecuted in parallel, but an interaction between the executions
of two tasks is not allowed, since this would contradict the
requirement for determinism in the execution. Since syn-
chronization points are not allowed, the task functions rep-
resent simple sequential programs. Thus, the implementa-
tion of these task functions is simplified and race conditions
are excluded by design.

The communication of the tasks between each other and
with the environment is exclusively performed via ports.
The access of tasks on ports occurs in a time-triggered man-
ner: at the beginning of every invocation the task reads the
values of its input ports, at the end of the invocation the re-
sults are written into the output ports of the task. Here, the
begin and the end refers to the invocation period as speci-
fied in the functional model. The port access is realized by
the generated run-time system and is performed in logical
zero time.
The actual execution of the task on the CPU is scheduled
by the run-time system and is transparent to the developer.
Nevertheless, the developer has to guarantee that the worst-
case execution times (WCETs) of the tasks allow a com-
pletion of the tasks satisfying the temporal restrictions as
specified in the functional model.

Sensor and Actor Sensors and actors realize the commu-
nication of the application with the environment and should
not be mistaken for the hardware devices. Sensors are func-
tions that are executed to read values from the environment
and to write these values into ports, actors are functions to
read values from the port and write these values to the envi-
ronment.
The execution of the sensor and actor functions is also per-
formed time-triggered. The execution frequency has to
be specified by the developer. The sensor execution takes
thereby place at the begin of each interval, the actor exe-
cution at the end of each interval. Both executions are re-
garded as instantaneous. To legitimate this assumption the
functions must represent short sequential code without syn-
chronization points and blockages. For example, in case of
a network device the sensor function may check the arrival
of a message and copy the message into a port, but a block-
age until the receive event of a new message is not allowed.

Mode Applications can have different operation modes.
To support this feature, our model includes modes. A mode
is a set of tasks, sensors and actors that is currently exe-
cuted. In addition, a mode cycle duration is assigned to
every mode. Within each mode cycle the tasks, sensors and
actors are executed according to their frequency as specified
in the mode declaration.

Modechange To enable the switch between different op-
eration modes, modechanges can be used. A modechange is
a function implemented by the developer that evaluates, if a
mode should be switched or not. The developer has to spec-
ify the target mode and a non-empty set of source modes
within the modechange declaration. The evaluation of the
function, which is based on the values of the assigned ports,
takes place always at the end of the source mode cycles.
Mode switches must be deterministic; this means that for

Second International Conference on Availability, Reliability and Security (ARES'07)
0-7695-2775-2/07 $20.00 © 2007

Figure 3. Application model: a PID controller

every achievable configuration (port values and modes) at
most one assigned modechange can reach a positive evalu-
ation for a modechange. This condition is checked the gen-
erated run-time system at run-time.

Guard Guards are another possibility to change the be-
havior of the application. Guards are similar to mod-
echanges functions based on port values, but while mod-
echanges should be used for different operation modes,
guards can be used to control individual tasks. For this rea-
son the guard is assigned to a certain task. At the begin of
every invocation of this task, the guard function is evaluated
and only in case of a positive evaluation the according task
is started. The main advantage of guards over modechanges
is their flexibility. A guard can be used also within a mode
cycle and not only at the end of the mode cycle as in the
case of modechanges.

Example An exemplary model of a control application
implementing a PID controller is depicted in figure 3. A
sensor is executed every 1ms and the result of the invocation
is written into the port senseResult. The task performing
the PID control algorithm reads the value of this port as well
as two other auxiliary ports, used for the calculation of the
integral part and the derivative part, and writes the results
to the result port and updates the auxiliary ports. An actor
outputs the value of the result port periodically.

5.2. System model

The system model describes the hardware architecture
of the system including the electronic control units, the net-
work, the sensors and actuators. The model contains most
of the information that is necessary for the appropriate tem-
plate selection. Due to the vast heterogeneity, this model is
also the model that needs to be augmented most likely for
future applications.
The model contains amongst others, the used operating sys-
tems and programming languages, the timer capabilities of
the control units, network settings like IP addresses and

ports for Ethernet and so on. An easy extensibility is guar-
anteed by an extension guide containing several examples.
Figure 4 shows an example for a triple modular redun-
dancy (TMR) architecture: three redundant electronic con-
trol units (ECU), each equipped with a sensor and one ac-
tuator (single point of failure) for the output. Within the
description of the actuator the developer can specify that
the actuator has three input channels with exactly once se-
mantics. This means that no voting is performed by the
actuator and that only one connected electronic control unit
must perform the output at a time. Therefore the only task
of the actuator is to delegate the output value to the environ-
ment, the voting and the guarantee that exactly one correct
value is send to the actuator must be realized within the au-
tomatically generated software.

5.3. Fault model

Within the fault model, all possible faults and their ef-
fects on the system are specified by the developer. In addi-
tion, the fault model contains also information which faults
should be tolerated. If possible, the developer can also state
the probability of the different faults. To simplify this spec-
ification typical faults are suggested to the developer on the
basis of the system model. The fault model covers only
faults that can be detected at system level. Therefore, iden-
tifying the task that causes the fault is the minimal granu-
larity of faults that can be achieved within the application
code. Other fault sources are the communication, missed
deadlines and errors related to the sensors and actuators.
For our PID controller example, we assume that all sin-
gle faults within one sensor or electronic control units must
be tolerated. In addition, the use of an unreliable network
medium is indicated: within each communication round one
message loss should be tolerated. The actuator is assumed
to be error-free.

5.4. Fault-tolerance model

Within the fault-tolerance model, the developer can spec-
ify mechanisms used to achieve fault tolerance. The initial
mechanisms to detect defects are plausibility checks, check
points and voting. Typical fault-tolerance mechanisms are
hot- and cold-standby, fault masking and backward recov-
ery. To repair erroneous units the mechanisms that are real-
ized within the generated code are the restart of the system
or to reboot the unit. Additional mechanisms can either be
added by augmenting the model and implementing appro-
priate templates (in case the functionality can be reused for
several applications) or be implemented within the applica-
tion code.
Since replica non-determinism can also be the result of

Second International Conference on Availability, Reliability and Security (ARES'07)
0-7695-2775-2/07 $20.00 © 2007

Figure 4. System model: a TMR system

small clock differences (since the synchronization algo-
rithm can only guarantee a deviation of the local clock from
the global clock smaller than ε), of N-Version programming
or of imprecision in results of measurement, the correct port
values are typically situated in a small interval. To over-
come this problem, interval decisions can be used for vot-
ing.
The fault-model and the fault-tolerance model can be
checked automatically for consistency by checking if all
faults that should be tolerated are covered by the ap-
plied mechanisms. The specification of the applied fault-
tolerance mechanisms involves also the combination of the
application and the system model. All software objects
(tasks, sensors, actors) are assigned to the appropriate hard-
ware object (ECU, sensor, actuator). Depending on the
applied fault-tolerance mechanisms, some software objects
may be assigned to more than one hardware object. In our
example the sensor and task execution is performed redun-
dant on the three ECUs of the TMR-system. Similarly, the
voting is realized as a distributed algorithm. It is executed
on all three ECUs and performs two communication rounds
to cope with the unreliable network.

6. Conclusion

Within this paper, we have presented an approach to use
model-based development and code generation also for sys-

tem level code. One main goal of our approach was the ex-
tensibility of both the underlying meta-model, as well as the
code generation ability. By the use of a meta-code genera-
tor and template-based code generation this goal could be
accomplished.
Since standard modeling languages like UML lack the pre-
cision and rigor to generate code, a domain specific model
had to be designed. The usage of the time-triggered ar-
chitecture was very useful to achieve the main require-
ments posed to enable an automatic code generation of
fault-tolerance mechanisms: determinism in the execution,
replica determinism and the possibility of state synchro-
nization and automatic voting.
Besides the application model, it was also necessary to
use other models describing the hardware and the fault-
tolerance mechanisms that should be applied.
The approach is already tested in some lab applications. We
have implemented for instance the described PID applica-
tion to control a rod by switched solenoids with control re-
sponse times of 1ms. The automatic code generation rate
reached up to 95% of the total code [4].
For this realization, a sub set of the current system was
used. The model consisted only of the application model
and some minor information about the platform. As fault-
tolerance mechanisms, we implemented voting and failure
masking on a triple-modular redundancy system. The used
templates are designed for the operating system VxWorks
and the programming languages C and C++.

Second International Conference on Availability, Reliability and Security (ARES'07)
0-7695-2775-2/07 $20.00 © 2007

Currently we are implementing additional templates that al-
low also the generation of other fault-tolerance mechanisms
as already foreseen in the model. In addition, the approach
will be tested for feasibility by applying the code generator
in industrial development processes. This latter project is
funded by the German ministry for education and research
BMBF.

References

[1] P. Barnard. Software Development Principles Applied to
Graphical Model Development. In AIAA Modeling and
Simulation Technologies Conference and Exhibit, San Fran-
cisco, Aug. 2005.

[2] G. Berry and G. Gonthier. The esterel synchronous program-
ming language: Design, semantics, implementation. Science
of Computer Programming, 19(2):87–152, 1992.

[3] E. Bruneton, T. Coupaye, M. Leclercq, V. Quéma, and J.-B.
Stefani. The fractal component model and its support in java.
Software - Practice And Experience, 36(11-12):1257–1284,
2006.

[4] C. Buckl, A. Knoll, and G. Schrott. Model-based develop-
ment of fault-tolerant embedded software. In Second Inter-
national Symposium on Leveraging Applications of Fomal
Methods, Verification and Validation (IEEE-ISoLA), pages
113–120, 2006.

[5] P. Caspi, D. Pilaud, N. Halbwachs, and J. A. Plaice. Lustre:
a declarative language for real-time programming. In POPL
’87: Proceedings of the 14th ACM SIGACT-SIGPLAN sym-
posium on Principles of programming languages, pages
178–188. ACM Press, 1987.

[6] A. Deursen, P. Klint, and J. M. Visser. Domain-specific lan-
guages. Technical report, CWI (Centre for Mathematics and
Computer Science), 2000.

[7] S. Efftinge, M. Volter, A. Haase, and B. Kolb. openArchi-
tectureWare - Documentation.

[8] J. Fassino, J. Stefani, J. Lawall, and G. Muller. Think: A
software framework for component-based operating system
kernels. In Usenix Annual Technical Conference, Monterey
(USA), Monterey (USA), June 2002.

[9] O. M. Group. OMG Unified Modelling Language Specifica-
tion, 1.3 edition, June 1999.

[10] T. A. Henzinger, B. Horowitz, and C. M. Kirsch. Embedded
control systems development with giotto. Proceedings of

the International Conference on Languages, Compilers, and
Tools for Embedded Systems (LCTES), pages 64 – 72, 2001.

[11] T. A. Henzinger, B. Horowitz, and C. M. Kirsch. Giotto: A
time-triggered language for embedded programming. Pro-
ceedings of the First International Workshop on Embedded
Software (EMSOFT), pages 166 – 184, 2001.

[12] I. Johnson, C. Snook, A. Edmunds, and M. Butler. Rigor-
ous development of reusable, domain-specific components,
for complex applications. In CSDUML’04 - 3rd Inter-
national Workshop on Critical Systems Development with
UML, 2004.

[13] H. Kopetz and G. Bauer. The Time-Triggered Architecture.
Proceedings of the IEEE, 91(1):112 – 126, Jan. 2003.

[14] H. Kopetz, G.Grnsteidl, and J.Reisinger. Fault-tolerant
membership service in a synchronous distributed real-time
system. In Dependable Computing for Critical Applications,
pages 411–429, 1991.

[15] L. Lamport and P. M. Melliar-Smith. Synchronizing clocks
in the presence of faults. J. ACM, 32(1):52–78, 1985.

[16] P. A. Lee and T. Anderson. Fault Tolerance: Principles and
Practice. Springer-Verlag New York, Inc., Secaucus, NJ,
USA, 1990.

[17] N. Medvidovic and R. N. Taylor. A classification and com-
parison framework for software architecture description lan-
guages. Software Engineering, 26(1):70–93, 2000.

[18] J. Miller and J. Mukerji. MDA Guide. Object Management
Group, Inc., June 2003. Version 1.0.1 (omg/03-06-01).

[19] S. Poledna. Replica determinism in distributed real-time
systems: A brief survey. Real-Time Systems, 6:289–316,
May 1994.

[20] S. Poledna, A. Burns, A. Wellings, and P. Barrett. Replica
determinism and flexible scheduling in hard real-time de-
pendable systems. IEEE Transactions on Computers,
49:100–110, Feb. 2000.

[21] S. Sastry, J. Sztipanovits, R. Bajcsy, and H. Gill. Scanning
the issue - special issue on modeling and design of embed-
ded software. Proceedings of the IEEE, 91(1):3–10, 2003.

[22] U. Schmid and K. Schossmaier. Interval-based clock syn-
chronization. Real-Time Systems, 12(2):173–228, 1997.

[23] C. Szyperski. Component Software. Addison-Wesley Pro-
fessional, nov 2002.

[24] TTTech Computertechnik AG. Time Triggered Protocol
TTP/C High-Level Specification Document. 2003.

Second International Conference on Availability, Reliability and Security (ARES'07)
0-7695-2775-2/07 $20.00 © 2007

