
Landmark-Tree Map: a Biologically Inspired Topological Map

for Long-Distance Robot Navigation

Marcus Augustine*†‡

marcus.augustine@ovgu.de

Frank Ortmeier†

frank.ortmeier@ovgu.de

Elmar Mair*‡§

elmar.mair@dlr.de

Darius Burschka‡

burschka@cs.tum.edu

Annett Stelzer§

annett.stelzer@dlr.de

Michael Suppa§

michael.suppa@dlr.de

†Otto-von-Guericke University, Workgroup Computer Systems in Engineering, D-39106 Magdeburg, Germany.
‡Technische Universität München (TUM), Department of Computer Science, D-85748 Garching bei München, Germany.

§German Aerospace Center (DLR), Institute of Robotics & Mechatronics, D-82234 Wessling, Germany.

*The authors assert equal contribution and joint first authorship.

Abstract—Metric maps provide a reliable basis for mobile
robot navigation. However, such maps are in general quite
resource expensive and do not scale very well. Aiming for a highly
scalable map, we adopt theories of insect navigation to develop an
algorithm which builds a topological map for global navigation.
Similar to insect conduct, positions in space are memorized as
snapshots, which are unique configurations of landmarks. Unlike
conventional snapshot approaches, we do not simply store the
landmarks as a set, but we build a landmark tree which enables
us to easily free memory in case of a continuously growing map
while still preserving the dominant information. The resulting
navigation is not sensor specific and solely relies on the directions
of arbitrary landmarks. The generated map enables a mobile
robot to navigate between defined locations and let it retrace a
previously pursued path. Finally, we verify the reliability of the
Landmark-Tree Map (LT-Map) concept and its robustness on
memory limitations.

Index Terms—map, topological, navigation, landmarks, tree,
bio-inspired, efficient, scalable

I. MOTIVATION AND RELATED WORK

A crucial task of any mobile robot is to be aware of its

position and motion. It needs to localize itself within its

close surrounding to detect obstacles, feed the control loop

or solve a specific task (local navigation). However, there is

also the requirement to move between task-related workspaces

in a larger context, e.g., to find the path back to its starting

point – the so-called home location (global navigation). In

robotics, there are two major concepts how the perception of

the environment can be stored: either using metrical mapping

strategies or topological ones.

Metrical maps are wide-spread and are suitable for path

planning with a high degree of accuracy. The positions in

metrical maps are unambiguous definitions afforded by their

precise coordinates specified in a common reference frame.

The drawback is that they are often expensive to calculate,

because of the lack of a natural high level environment dis-

cretization, and they suffer from high memory consumption for

stretched environments [1]. As soon as outdoor scenarios are

considered, which are often huge, unstructured and dynamic,

most metrical approaches do not scale satisfiably. Hence, the

overall navigation performance of Simultaneous Localization

and Mapping (SLAM) algorithms that are based on metrical

maps suffers especially from increasing map sizes [2]. Tree

data structures, like quadtrees, octrees or k-d trees, are used

to provide an efficient representation of the metric space [3].

They are affected by computation overheads if the space-usage

is not balanced or by high map maintenance costs for re-

balancing.

(a) flying robot with a catadioptric
(up) and fisheye (down) camera

(b) crawling robot with a catadioptric
camera

Figure 1. Resource limited platforms are in general confined by a rather
small workspace due to memory limitations. Equipped with omndirectional
cameras and using novel navigation strategies their operation space can be
expanded significantly.

Topological maps, however, resemble graphs and do in

general not put the information in a metrical context. Distinct

places are represented as nodes, while edges denote the

adjacency between different locations [4]. Because of this

sparse representation of the environment, a high degree of

memory efficiency is achievable as far as the covered terrain

and the corresponding map size is taken into account. This

results in a good scalability behavior of such maps [5].

Powerful methods have been presented in literature how to

solve the navigation task in mobile robotics. Most of them

are based on metric maps which are used for both, local and

global navigation. However, the constraints on a local and a

global map are not the same. Local navigation aims for an

accurate localization within a specific, small-size workspace,

which requires a large number of landmarks and a high

metric resolution. A global navigation strategy tries to increase

978-1-4673-2127-3/12/$31.00 © 2012 IEEE

the dimensions of the workspace and, hence, focuses on a

representation of the world which is as sparse as possible.

Only the most dominant landmarks should be preserved, which

still allow a reliable guidance. Solving both tasks with a single

map inherently leads to trade-offs and an inferior performance

of both tasks, especially on resource limited systems like the

ones depicted in Fig. 1.

In [6], e.g., the navigation system for a micro aerial vehicle

(MAV) is presented. It employs a scrolling metric map with

a reduced number of landmarks, which leads to a trade-off

between localization accuracy and workspace dimensions. The

scrolling map allows the robot to move without limitations, but

it can lead to the loss of crucial information necessary to find

back, e.g., to its home location. To overcome these problems,

we encourage a separation of local and global navigation like

motivated in [7]–[9]. The idea is that local metric maps are

represented as nodes of a scalable topological map, which

represents the spatial relation between them. Such a spatial

semantic hierarchy [7] eases loop closure, higher level reason-

ing and memory management. However, general topological

map concepts do not offer a solution for an efficient map

thinning in case of memory limitations. Another interesting

solution to the global navigation problem is RatSLAM [10],

which builds a topological map with metric information, by

separating the topological and the metric layer. This approach

requires a proper scaling of the map in advance, because it

cannot be changed efficiently at runtime. All these concepts are

either based on dense meshes of metric maps or they connect

the local maps by metric information. The first case is not

resource efficient, because it might not be necessary to store

detailed metric information of some locations, like transitional

pathways. The latter case is error prone, due to drifts of the

odometry, and may fail over long distances. A method which

allows to store navigation information for long distances in an

efficient way and, thus, enables the transitions between specific

workspaces (as depicted in Fig. 2) would be of great interest.

Home

WS 2

WS 1

(a) metric map

Home

WS 2

WS 1

(b) sparse map

Figure 2. The left drawing denotes a conventional metric map covering the
full operation area of the robot. Especially, if the distances between specific
workspaces (denoted as WS1 and WS2) are much longer than the dimensions
of the workspaces, it makes more sense to delimit the metric maps to the
required area of operation and store the trajectories in between in a more
efficient way as depicted in the right picture. This allows also for a much
higher spatial resolution of the workspace maps.

Insects have only access to a restricted nervous system

with a small brain, but still manage the global navigation

task with unbelievably high robustness and reliability. Ants

for example, which have a 0.1 milligram sized brain, are

capable of locomotion, sensing and reasoning tasks in unpre-

dictable, complex conditioned and often extremely changing

habitats [11]. A vast amount of experiments with insects have

been conducted, backing the existence and functionality of

their navigational-toolkit [11]–[16]. Experiments show that the

insects rely heavily on visual cues [17], [18]. Ants appear

to limit the use of landmark memories solely to recognize

goals or to trigger procedural movement commands in order

to follow their route [14], [19]. Further experiments prove

that the surrounding panorama plays an important role for

global navigation [18]. In order to orient themselves in their

environment, the insects use view-dependent learning of vi-

sual scenes from particular vantage points [11]. They seem

to employ a retinotopically organized image matching. This

means that the insects store their retinal image, the image

they visually perceive at a distinguished place, and most likely,

those memories are internally linked with each other [11]. In

order to recognize a place and navigate themselves to a food

source or their nest, they consequently compare their currently

perceived retinal image with their memories [20].

Based on these experiments, several models for insect

navigation have been proposed in biology and were used as a

basis for technical realisations. However, it is not clear which

information insects store [21] – whether they use the full im-

age [22] or another signature [23]–[25] to memorize a location

as a so called snapshot or viewframe. The model in [26], e.g.,

requires an a-priori map of the approximate locations of the

major landmarks, whereas the approach described in [27] relies

on range information which would require the use of range

sensors.

In the following, we will present a novel approach which

was especially inspired by the snapshot model [12], [13] and

viewframe concept [28] as well as the topological map pre-

sented in [29]. They store a so called snapshot or viewframe as

the projection of the surrounding landmarks on a unit sphere.

We also rely only on the angles of the different landmarks

without any metric information. However, we do not simply

want to store the landmark sets as a characterization of a

specific location, but we propose a different storing strategy

which allows for more efficient memorization and memory

management. The landmarks are arranged in a tree, ordered

by their distance, without ever measuring it directly. This

simplifies the removal of landmarks which are only measurable

for a short time and, thus, enables an easy adaptation to

memory limitations. We also do not assume a specific sensor,

like a camera. In our work we use an abstract notion of

the term landmarks. Every feature that is distinguishable and

expressable under a certain angle relative to the robot may

serve as a landmark, irrespective whether it may be perceived

acustically, visually etc. However, for the sake of readability

but without loss of generality we will focus only on visual

landmarks in our explanations.

The remainder of this paper is structured as follows. In the

next section, we will present the Landmark-Tree Map (LT-

Map) concept, how to build and maintain such a map and how

a robot can navigate based on it. It is followed by an evaluation

of the approach in Section III. Finally, we will conclude with

a short outlook on future work and summarize the strengths

and limitiations of the proposed method.

II. THE LANDMARK-TREE MAP ALGORITHM

It is not feasible on resource limited platforms to consider

the whole image for snapshot memorization. The information

has to be preprocessed and only dominant, discriminative

landmarks should be used for path guidance. The question

remains how to store such a set of landmarks which defines a

location. Most landmarks will be observed for a longer period

of time and, thus, be present in several nodes of a topological

map. This leads to redundancies and is not efficient at all.

Furthermore, if the memory limits of the map are reached, it

is difficult to decide which snapshots can be removed in order

to free memory and enable a further extension of the map.

In our algorithm, we introduce a hierarchy in the landmark

structure which allows us to overcome these problems. In the

following we will describe how to build such a map and how

a robot can use it to navigate.

Let us first define a viewframe V as a representation of

a distinct location in the three dimensional Euclidean space1

R
3 by a unique configuration of landmark bearings defined

as vectors li pointing on the unit sphere. Each landmark

is identified by a unique id, which can most simply be its

descriptor. We assume the viewframes to be all rotationally

aligned with each other, either by using compass information

or by using the upper-level features of the map itself, as

described in the next section.

A. Tree-Based Map Representation

The core idea is to reassemble the detected landmarks into

a tree-like structure (the Landmark-Tree Map), sorting them

from global to local information. Considering, that the angles

of far distant landmarks remain static as the robot advances,

we can use this information for our purpose.

The LT-Map is always initialized with an empty root node.

The landmarks of the first view V1 acquired during exploration

are stored in the first child of the root as shown in Figure 3(a).

If the robot starts moving and former landmarks vanish or

their angles change significantly, these landmarks are put into

a new leaf of the tree as seen in Figure 3(b). If new landmarks

appear, these landmarks are also stored in a new leaf of the

tree (see Figure 3(c)), whereas the order of the leaves is

important. In that way, the landmarks, whose bearings remain

constant while the robot is moving, are stored in the upper

nodes, because they are shared by more viewpoints, while

more volatile landmarks are pushed into the lower level nodes

or even the leaves. The root node containing the empty set

is necessary to model views that do not share any landmarks

1Without loss of generality for other dimensional spaces.

∅

L1

L2

L3

(a) added V1

∅

L1

L2′

L3′

L2

L3

(b) added V2: the
landmarks L2 and
L3 changed their
bearing signifi-
cantly, whereas, L1

is shared by both
viewframes.

∅

L1

L2′

L3′′

L4

L3′

L2

L3

(c) added V3:
the landmark L3

changed its bearing
significantly and L4

was introduced as
a newly discovered
landmark.

Figure 3. Constructing the LT-Map by successively inserting viewframes.
Each path from the root to a leaf represents a specific viewframe (as illustrated
for V3). Hence, the order of the leaves is important.

with their predecessor. The exact algorithm is shown in detail

in Algorithm 1.

As a consequence, all nodes along a path from one leaf to

the root represent a certain viewframe and, thus, a specific

location. This is indicated with the grey line in Figure 3(c) forV3, the third viewframe that has been inserted in the LT-Map.

The landmarks in the upper nodes did not change their bearing

within a certain threshold for long parts of the exploration

trail, which means they are translation-invariant and, therefore,

correspond to far distant objects. The landmarks in the lower

nodes and leaves did change their bearing quickly, which

means they are part of close objects. Actually, the landmarks

in the leaves appeared only in a single viewframe with the

respective bearing.

In this way we achieve both stated aims:

1) The memory consumption is reduced, because the land-

marks which are shared by consecutive viewframes and

appear under a similar angle are only stored once.

However, in case the angle changes quickly, several

instances of a landmark will be stored. Thinking of

how the appearance of features in, e.g., cameras changes

when a landmark is seen from different angles, this

is actually an eligible feature. The algorithm uses the

new descriptor when inserting a new landmark and,

thus, it does not suffer from mismatches due to affine

transformation and virtual features.

2) In case of memory shortage one can easily prune the

leaves of the tree and forget the local, short-term infor-

mation while sticking to the more dominant global, long-

term information. If the lower levels of the tree are cut,

the robot does not follow the exact trajectory anymore,

but takes shortcuts wherever the local information is

missing. This is not further problematic as long as the

navigation to each leaf is in the catchment area of the

neighbouring leaves.

Algorithm 1: Append Viewframe To Tree

input : a viewframe V , a Landmark-Tree T

output : a Landmark-Tree T
′

precondition : V is not empty
postcondition: ∣T ∣ ≤ ∣T ′∣
if T .root not set then1

T .root = new Node(∅)2

Nodecurrent = T .root3

while V has elements do4

{SameElements} = shared elements in5

Nodecurrent.latestChild and V
{RemainingElementsNode} =6

Nodecurrent.latestChild / {SameElements}
{RemainingElementsViewframe} = V / {SameElements}7

if {SameElements} is empty then8

Nodecurrent.children ← new Node(V)9

V = ∅10

else11

if Nodecurrent.latestChild ⊂ V then12

if Nodecurrent.latestChild has children then13

Nodecurrent = Nodecurrent.latestChild14

V = {RemainingElementsViewframe}15

else16

if {RemainingElementsViewframe} ⊈ ∅ then17

Nodecurrent.latestChild.children ← new18

Node(∅)
Nodecurrent.latestChild.children ← new19

Node ({RemainingElementsViewframe})

V = ∅20

else21

TemporaryNode = new22

Node({RemainingElementsNode})
move children from Nodecurrent.latestChild to23

TemporaryNode
Nodecurrent.latestChild.children ← TemporaryNode24

Nodecurrent.latestChild.children ← new25

Node({RemainingElementsViewframe})
Nodecurrent.latestChild = {SameElements}26

V = ∅27

return T
′

28

Hence, the size of a memory limited map can theoretically

increase infinitely while exploring and only the probability of

the robot to get lost between two node-locations increases over

time. The remaining landmarks in the map inherently repre-

sent the best possible guidance-information acquired during

exploration. For a resource limited system, the depth of the

LT-Map changes over time from a rather deep representation

with a lot of local information into a wide tree with less depth,

but which can span a long path.

The hierarchical structure of the tree does not only help

to save resources and expand the map dynamically, but it

also eases loop-closure or allows for an efficient pose esti-

mation. The upper landmarks represent dominant, translation

invariant objects. Hence, a loop detector would only need

to compare the landmarks in the upper level nodes and

only in case of a match it has to proceed to the respec-

tive child nodes. Only a few landmarks need to be tested

instead of all possible snapshots. Furthermore, an inherent

separation into translation-invariant and translation-dependent

features enables a highly efficient pose estimation by the Z∞-

algorithm [30]. Accordingly, the upper landmarks can be used

to estimate the rotation like a visual compass, which eliminates

the need for a magnetic compass to align the viewframes

before processing.

B. Navigating Using the LT-Map

The question remains how to navigate based on the con-

structed map. The leaves of the tree denote the different

viewframes, which holds true also after a pruning operation.

Thus, to navigate from a specific node of the performed

trajectory to the desired node, one just has to follow each

intermediate location, defined by the respective viewframe.

The direction vector to each location can be computed by the

difference in the landmark bearings of the measured snapshot

and the reference viewframe stored in the tree. Different meth-

ods have been proposed in literature to compute the direction

vector to a reference viewframe based on two landmark sets.

We will make use of the so called secant method which was

inspired by the Average Landmark Vector (ALV) model [31].

As the name implies, the basic concept is the calculation of an

average landmark vector as the sum of all visible landmarks.

The difference between this average vector of the reference

snapshot and the measured snapshot represents the navigation

direction. Let li denote the unit vector in the reference frame

pointing to landmark Li and l̃i the unit-length measurement

vector pointing to the same landmark. For each tuple (li, l̃i)
the (secant) correction vector is computed and the sum of all

correction vectors results in the navigation vector v̂, such that

v̂ = 1

N

N∑
i=1

(li − l̃i) , (1)

with N denoting the number of visible landmarks. The advan-

tages of the secant method compared to other methods, like

the tangential method presented in [17], are that it estimates

a direct navigation vector to the goal and its computation is

highly efficient.

As soon as the landmarks correspond, the next viewframe

in the tree is used as a reference. The correspondence of

two snapshots is determined by a similarity value δ, which

is weighted by the Pseudo-Huber cost function [32], resulting

in

δ = 1

N

N∑
i=1

2b2
⎛⎜⎜⎝
¿ÁÁÁÀ1 + (lTi l̃i

b
)2 − 1⎞⎟⎟⎠ . (2)

This cost function weights small errors quadratically, but large

errors linearly with slope 2b to suppress outliers. The resulting

classifier is also used during the exploration phase to determine

whether a new viewframe should be acquired or not in order

to suppress too many intermediate leaves.

At this point we want to emphasize the importance of

wide field sensors, like omnidirectional cameras, for landmark

detection. It is obvious, that the deviation from the original

path in a certain direction can best be observed by landmarks

which are seen in the perpendicular direction to it, whereas

the landmarks on the line of deviation do not change their

bearing angles at all, like illustrated in Fig. 4. A wide aperture

angle allows not only for a better-posed computation of the

navigation direction but also for more robustness. The aim of

this algorithm is not to achieve a high accuracy when following

a previously explored path, but to gain a high efficiency,

flexibility and robustness. Hence, the accuracy, which could

be increased by a smaller field of perception is of less interest

than the possibility to stick to dominant landmarks in arbitrary

directions.

LM 2 LM 1

Figure 4. This drawing should motivate the use of omnidirectional sensors.
The dashed line represents the trajectory which should be followed and
the continuous line depicts the path travelled by the robot. Landmarks
perpendicular to the path deviation (red line), like LM 1, are most sensitive
to the error, whereas landmarks in the direction of the deviation, like LM 2,
do not measure the error at all.

III. EVALUATION

In the following, we will show some experiments in a

controlled simulation environment to evaluate the reliability of

the algorithm and its performance in case of memory shortage.

The simulations were performed in the two dimensional as

well as in the three dimensional space to meet the requirements

of both classes, ground or naval and air or submarine robots.

The visualisations do not include any units, so an arbitrary

scale may be chosen.

To demonstrate the robustness of the algorithm, we simu-

lated two different noise terms: angular measurement aberra-

tion modeling a measurement error with landmark angles and

a percentage of outliers. The angular aberration was modeled

as zero-mean white Gaussian noise and outliers were specified

by a probability Pout that the actual measurement of a landmark

is replaced by a random angle in the interval [0; 360)○. We de-

fined a realistic noise-scenario, with an angular measurement

noise of σ2

angle
= 5.0○ and Pout = 0.05.

A. Navigation-Vector Calculation Performance

First we want to illustrate the navigation vector computed

by the secant method described in Section II-B. Fig. 5 shows

the movement directions expressed as unit vectors that were

calculated for every position in a 50 × 50 example envi-

ronment. The green asterisks depict the landmarks, the red

filled circle denotes the goal position. The blue lines represent

the streamlines from the border positions: they start at the

marginal area of the grid and follow the calculated vectors

contained in the vector field. A good homing performance

was observed when the lines meet at the goal position, i.e.,

the robot reaches the goal. To stick back to the biological

motivation, they can also be considered as the trail of, e.g.,

ants released at the frame of the diagram and walking home-

bound from the foraging ground.

−50 −40 −30 −20 −10 0 10 20 30 40 50−50

−40

−30

−20

−10

0

10

20

30

40

50

X

Y

(a) error-free scenario: σ2
angle = 0

○ and Pout = 0

−50 −40 −30 −20 −10 0 10 20 30 40 50−50

−40

−30

−20

−10

0

10

20

30

40

50

X

Y

(b) realistic scenario: σ2
angle = 5.0

○ and Pout = 0.05

Figure 5. 2D secant method vector fields: the homing vectors calculated
with the secant method based on error-free and error-prone measurements.

Fig. 5(a) shows the calculated homing vectors in an error-

free environment, i.e., without any angular measurement aber-

rations or outliers. Fig. 5(b) shows the realistic case. Even

though the noise terms obviously were influencing the calcu-

lated homing vector, a strong tendency towards the red marked

goal position is visible.

B. Evaluation in 2D

Next, we performed navigation experiments in the two

dimensional space. An exemplary navigation run is shown in

Fig. 7. In total, 500 random landmarks within the X- and Y-

axis-value interval [−200; 200] were selected and represented

as green asterisks. The robot learning track depicted as blue

line is defined by 15 waypoints that are marked as red circles.

0

444
56

56

6

494

9

485

7

478

1

477

3

474

3

471

9

462

14

448

24

424

20

404

78
326

326

3

497

10

487

2

485

3

482

6

476

8

468

7

461

16

445

32

413

128
285

285

1

499

2

497

18

479

39

440

2

438

55

383

56
327

327

3

497

8

489

2

487

3

484

3

481

14

467

10

457

23

434

118
316

316

2

498

1

497

3

494

2

492

3

489

9

480

6

474

38

436

109
327

327

level 3 level 5

Figure 6. Visualisation of the original landmark tree and the pruning levels.
The nodes in this representation contain only the number of landmark angles
that are stored in the nodes of the landmark tree.

The navigation path of the robot (the calculated movement

vectors) is indicated by magenta crosses.

The final, unmodified LT-Map consists of 53 viewframes,

23860 landmark entries, and 100 node relations. The corre-

sponding landmark tree is sketched in Fig. 6. The resulting

navigation path, which relies on all this information, provides

a high congruency with the simulated learning path as shown

in Fig. 7(a). The jitter in the trajectory is due to the simulated

measurement aberrations.

Next, we pruned the landmark tree and evaluated the navi-

gation performance provided that only less memory resources

would be available. In Fig. 7(b), the LT-Map consisted only of

33.7% of the original data, expressing 22 viewframes that hold

8044 landmark data entries and were linked with 38 edges. As

information was purged from the tree and less intermediate

viewframes were available, shortcuts were taken and the track

was not followed in such a high precision as the previous run.

Finally, in Fig. 7(c) only 12 viewframes have been encoded

by the LT-Map, holding 3086 landmark data entries organised

with 18 edges between the tree nodes. This corresponds to a

memory reduction of 87.1% compared to the initial LT-Map,

but the robot still achieves a feasible navigation performance

and reaches the goal reliably.

−50 −40 −30 −20 −10 0 10 20 30 40 50
−50

−40

−30

−20

−10

0

10

20

30

40

50

W1W1

W5

W10

W15

L88

L92

L103

L137

L194

L198

L220

L262

L267

L282

L283

L289

L343

L366

L375

L403

L408

L424

L446

L460

L474

L477

Y

X

(a) navigation based on the unmodified LT-Map

−50 −40 −30 −20 −10 0 10 20 30 40 50
−50

−40

−30

−20

−10

0

10

20

30

40

50

W1W1

W5

W10

W15

L88

L92

L103

L137

L194

L198

L220

L262

L267

L282

L283

L289

L343

L366

L375

L403

L408

L424

L446

L460

L474

L477

Y

X

(b) navigation based on the LT-Map pruned at level 5

−50 −40 −30 −20 −10 0 10 20 30 40 50
−50

−40

−30

−20

−10

0

10

20

30

40

50

W1W1

W5

W10

W15

L88

L92

L103

L137

L194

L198

L220

L262

L267

L282

L283

L289

L343

L366

L375

L403

L408

L424

L446

L460

L474

L477

Y

X

(c) navigation based on the LT-Map pruned at level 3

Figure 7. Simulation of the navigation in 2D space using the secant method
on the full and two pruned landmark trees, where σ

2
angle = 5

○ and Pout = 0.05.

The relation between pruning level and path following

accuracy is illustrated in Fig. 8. It shows that several leaves

can be cut without significantly losing navigation accuracy and

only at a certain level the accuracy drops. In our simulation the

robot moves a certain length and then stops to acquire a new

measurement and compute the new direction of motion. This

discrete navigation together with the simulated measurement

noise prevents the robot from achieving a higher accuracy

using more (local) landmarks. However, the reduction of the

memory consumption, by pruning the first levels, is crucial as

it is also shown in Fig. 8. Hence, these diagrams underline the

efficiency improvements achieved by using the LT-Map, which

are gained without loosing significant navigation performance.

0510
0

2

4

6

8

10

truncation level of the landmark tree

av
g
.

d
is

ta
n
ce

to
w

ar
d
s

th
e

o
ri

g
in

al
p
at

h

0

0.5

1

1.5

2

⋅10
4

n
o
.

o
f

st
o
re

d
la

n
d
m

ar
k

an
g
le

s
in

th
e

tr
ee

Figure 8. Average distance of the steps towards the original path and
landmark angles that are stored within the LT-Map.

C. Evaluation in 3D

In the following we show some experiments of the LT-

Map in 3D navigation scenarios. We simulated 100 randomly

selected landmarks within the X-, Y- and Z-axis interval[−100; 100]. For the sake of clarity, the landmarks are not

displayed in the visualisation. In total, 8 waypoints (red

circles) have been selected to specify the track of the robot

(blue line). The full LT-Map consisted of 32 viewframes and

the tree had a maximum depth of 7 nodes. An experimental

navigation was conducted based on that tree as shown in

Fig. 9(a).

Fig. 9(b) shows the same navigation run after pruning

the landmark tree up to level 3 with only 19 viewframes

remaining. The stored landmarks have been reduced from 2673

to 1311 and the number of edges has been decreased from

58 to 34. Even though this small number of viewframes, the

initial robot track could be followed and the goal position was

reached reliably.

These experiments prove that the presented approach can

also be applied to more than two dimensional spaces and

still provide the previously seen efficiency and reliability

characteristics.

−30

−20

−10

0

10

20

−30−25−20−15−10−505101520

−25

−20

−15

−10

−5

0

5

10

15

Z

X

Y

(a) navigation based on the unmodified landmark tree

−30

−20

−10

0

10

20

−30−25−20−15−10−505101520

−25

−20

−15

−10

−5

0

5

10

15

Z

X

Y

(b) navigation based on the pruned landmark tree

Figure 9. Simulation of the navigation in 3D space using the secant method
on the full and a pruned landmark tree, where σ

2
angle = 5

○ and Pout = 0.05.

IV. DISCUSSION AND CONCLUSION

In this paper, we presented a novel mapping strategy which

due to its non-metric and hierarchic nature allows for a flexible

adaption to memory limitations. Thus, it is especially suited for

resource limited mobile robots in outdoor environments, which

need to cover long distances. It combines the power of tree

data structures as used for metric maps, and the information

clustering of topological maps. Unlike in conventional maps,

the tree structure is not built in the metric domain but in

a domain which splits the landmarks into close and far

distant landmarks. This allows us to easily adapt the tree to

the available resources and, at the same time, provides an

ordering of the landmarks which enables features like efficient

motion estimation by the Z∞-algorithm or the realization of

a visual compass. In our experiments, we have shown that

a reliable navigation could also be achieved using only a

small percentage of the available landmarks. Furthermore, the

algorithm has proven to be robust against noise and outliers,

like mismatches and occlusions.

The approach is limited to path following due to the missing

metric information and does not provide a high accuracy,

which could only be achieved if many near landmarks would

be stored with slightly different bearing information. This

would result in many redundantly stored landmarks and, thus,

inflate the tree. The algorithm has not been designed for

accurate navigation in unknown areas, but to connect wide

spread workspaces efficiently. For that it does not require a

high accuracy, but reliability and robustness. Even though it

can be assumed, that an acquired path is in general free of

obstacles, because it has already been taken during exploration,

a local obstacle avoidance should be provided due to the lack

of accuracy and changing environments.

As motivated earlier, a wide field of perception improves the

performance of the algorithm. Hence, our research platforms

are equipped with different omnidirectional cameras as shown

in Fig. 1. We currently evaluate these cameras as well as

various image-feature detectors and descriptors, aiming for

a high detection repeatability and good matching properties

in the large field of view of such cameras. Further steps are

finding loop closure mechanisms and heuristics to measure the

probability with which the robot can follow the path based

on the (pruned) map. The latter would enable the robot to

autonomously determine each time before pruning the tree

whether it should continue exploring or turn around because

of too high risk to get lost.

REFERENCES

[1] S. Thrun, “Robotic Mapping: A Survey,” Carnegie Mellon University,
Computer Science Department, Pittsburgh, PA, Tech. Rep., 2002.

[2] B. Siciliano and O. Khatib, Eds., Springer Handbook of Robotics.
Springer Verlag, Berlin, 2008.

[3] K. Koperski, J. Adhikary, and J. Han, “Spatial data mining: progress
and challenges survey paper,” in Proc. ACM SIGMOD Workshop on

Research Issues on Data Mining and Knowledge Discovery, Montreal,

Canada, 1996.
[4] B. Kuipers, “Modeling spatial knowledge,” Cognitive science, vol. 2,

no. 2, pp. 129–153, 1978.
[5] D. Filliat and J.-A. Meyer, “Map-based Navigation in Mobile Robots.

I. A Review of Localization Strategies,” Cognitive Systems Research,
vol. 4, no. 4, pp. 283–317, 2003.

[6] S. Weiss, M. Achtelik, S. Lynen, M. Chli, and R. Siegwart, “Real-time
onboard visual-inertial state estimation and self-calibration of mavs in
unknown environments,” 2012.

[7] B. Kuipers, J. Modayil, P. Beeson, M. MacMahon, and F. Savelli, “Local
metrical and global topological maps in the hybrid spatial semantic
hierarchy,” in Proceedings of the IROS, vol. 5. IEEE, 2004, pp. 4845–
4851.

[8] J. Modayil, P. Beeson, and B. Kuipers, “Using the topological skeleton
for scalable global metrical map-building,” in Proceedings of the IROS,
vol. 2. IEEE, 2004, pp. 1530–1536.

[9] H. Chang, C. Lee, Y. Hu, and Y. Lu, “Multi-robot slam with topo-
logical/metric maps,” in Proceedings of the IROS. IEEE, 2007, pp.
1467–1472.

[10] M. Milford, G. Wyeth, and D. Prasser, “Ratslam: a hippocampal model
for simultaneous localization and mapping,” in AAAI, vol. 1, april-1 may
2004, pp. 403 – 408 Vol.1.

[11] R. Wehner, “Desert Ant Navigation: How Miniature Brains Solve
Complex Tasks,” Journal of Comparative Physiology A: Neuroethology,

Sensory, Neural, and Behavioral Physiology, vol. 189, no. 8, pp. 579–
588, Aug. 2003.

[12] B. A. Cartwright, “Landmark Learning in Bees: Experiments and
Models,” Journal of Comparative Physiology, vol. 151, no. 4, pp. 521–
543, 1983.

[13] B. A. Cartwright and T. S. Collett, “Landmark Maps for Honeybees,”
Biological Cybernetics, vol. 57, pp. 85–93, 1987.

[14] M. Collett and T. S. Collett, “Insect Navigation: No Map at the End of
the Trail?” Current Biology, vol. 16, no. 2, pp. R48–R51, Jan. 2006.

[15] T. S. Collett, P. Graham, R. A. Harris, and N. Hempel De Ibarra,
“Navigational Memories in Ants and Bees: Memory Retrieval when
Selecting and Following Routes,” Advances in the Study of Behavior,
vol. 36, pp. 123–172, 2007.

[16] “Invertebrate Colour Vision,” in Invertebrate Vision, 1st ed., E. Warrant
and D.-E. Nilsson, Eds. Cambridge University Press, 2006, pp. 250–
290.

[17] K. Weber, S. Venkatesh, and M. Srinivasan, “Insect-Inspired Robotic
Homing,” Adaptive Behavior, vol. 7, no. 1, pp. 65–97, Jan. 1998.

[18] M. Collett, “Spatial Memories in Insects,” Current Biology, vol. 19,
no. 24, pp. R1103–R1108, Dec. 2009.

[19] R. Wehner, M. Boyer, F. Loertscher, S. Sommer, and U. Menzi, “Ant
Navigation: One-Way Routes Rather Than Maps,” Current Biology,
vol. 16, no. 1, pp. 75–79, Jan. 2006.

[20] J. Zeil and N. Boeddeker, “Visual Homing in Insects and Robots,” in
Flying Insects and Robots, D. Floreano, Ed. Springer Verlag, Berlin,
2009, ch. 7, pp. 87–100.

[21] R. Möller, “A Biorobotics Approach to the Study of Insect Visual
Homing Strategies,” p. 71, 2002.

[22] H. A. Mallot, H. H. Bülthoff, M. O. Franz, and B. Schölkopf, “Where
Did I Take That Snapshot? Scene-Based Homing By Image Matching,”
Biological Cybernetics, vol. 79, pp. 191–202, 1998.

[23] L. Gerstmayr, F. Röben, and R. Möller, “From Insect Visual Homing to
Autonomous Robot Cleaning,” 2008.

[24] A. Vardy and F. Oppacher, “Low-Level Visual Homing,” in Advances in

Artificial Life - Proceedings of the 7th European Conference on Artificial

Life. Springer Verlag, Berlin, 2003, pp. 875–884.
[25] T. Goedemé, M. Nuttin, T. Tuytelaars, and L. Van Gool, “Omnidirec-

tional Vision Based Topological Navigation,” International Journal of

Computer Vision, vol. 74, no. 3, pp. 219–236, Jan. 2007.
[26] K. Kawamura, A. B. Koku, D. M. Wilkes, and A. Sekmen, “Toward

Egocentric Navigation,” International Journal of Robotics and Automa-

tion, vol. 17, no. 4, pp. 135–145, 2002.
[27] T. S. Levitt, D. T. Lawton, and D. M. Chelberg, “Qualitative Landmark-

Based Path Planning and Following,” Proceedings of the AAAI, vol. 2,
pp. 689–694, 1987.

[28] D. Dai and D. T. Lawton, “Range-free Qualitative Navigation,” Proceed-

ings of the ICRA, vol. 1, pp. 783–790, 1993.
[29] M. O. Franz, B. Schölkopf, H. A. Mallot, and H. H. Bülthoff, “Learning

View Graphs for Robot Navigation,” Autonomous Robots, vol. 5, no. 1,
pp. 111–125, 1998.

[30] E. Mair and D. Burschka, “Monocular Localization Algorithm with
Uncertainty Analysis for Outdoor Applications,” in Mobile Robots

Navigation, A. Barrera, Ed. In-Tech, 2010, pp. 107–130.
[31] D. Lambrinos, T. Labhart, and R. Pfeifer, “A Mobile Robot Employing

Insect Strategies for Navigation,” Robotics and Autonomous Systems,
vol. 30, no. 1-2, pp. 39–64, 2000.

[32] R. Hartley and A. Zisserman, Multiple View Geometry in Computer

Vision. Cambridge University Press, 2004.

