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Abstract— This paper introduces a new comprehensive so-
lution for the open problem of uncalibrated 3D image-based
stereo visual servoing for robot manipulators. One of the
main contributions of this article is a novel 3D stereo camera
model to map positions in the task space to positions in a
new 3D Visual Cartesian Space (a visual feature space where
3D positions are measured in pixels). This model is used to
compute a full-rank Image Jacobian Matrix (Jimg), which solves
several common problems presented on the classical image
Jacobians, e.g., image space singularities and local minima.
This Jacobian is a fundamental key for the image-based control
design, where uncalibrated stereo camera systems can be used
to drive a robot manipulator. Furthermore, an adaptive second
order sliding mode control is designed to track 3D visual
motions using the 3D trajectory errors defined in the Visual
Cartesian Space, where a Torque to Position Model is designed
to allow the implementation of joint torque control techniques
on joint position-controlled robots. This approach has been
experimentally implemented on a real industrial robot where
exponential convergence of errors in the Visual Cartesian Space
and Task space without local minima are demonstrated. This
approach offers a proper solution for the common problem of
visual occlusion, since the stereo system can be moved manually
to obtain a clear view of the task at any time.

Index Terms— 3D Image-based Visual Servoing, Adaptive
Dynamic Control, Uncalibarated Stereo Cameras

I. INTRODUCTION

Visual servoing control (VSC) is an approach to control
the motion of a robot manipulator using visual feedback
signals from a vision system. This has been one of the
most active topics in robotics since the early 1990s [1].
We are concerned with Image-Based Visual Servoing (IBVS)
where the error function is defined directly in terms of image
features.

Two main aspects have a great impact on the behavior
of any visual servoing scheme: the selection of the visual
features used as input of the control law and the form of the
control scheme. In this work: First, the definition of a new
image Jacobian (Jimg) for a stereo camera system in fixed-
camera configuration (see Fig. 1). Second, the design of a
Dynamic Visual Servoing control for robot manipulators.

An IBVS usually employs the image Jacobian matrix
(Jimg) to relate end-effector velocities in the manipulator’s
task space to the feature parameter velocities in the feature
(image) space. The classical image Jacobian is defined using
a set of image feature measurements, denoted by s, and
it describes how image features change when the robot
manipulator pose changes ṡ = Jimgv. This explicitly implies

the implementation of the image Jacobian in the control
design. A full and comprehensive survey on Visual Servoing
and image Jacobian definitions can be found in [1], [2] and
more recently in [3].

In general, the image Jacobian can be computed using
direct depth information [4],[5], or by approximation via
on-line estimation of depth of the features [2], [3], [6], or
using depth-independent image Jacobian matrix [7],[8],[9].
Additionally, many papers directly estimate on-line the
complete image Jacobian in different ways [10],[11],[12],
[13]. However, all these methods use redundant image point
coordinates to define (as a general rule) a non-square image
Jacobian, which is a differentiable mapping from SE(3) to
s ∈ R2p (with p as the number of feature points). Then, a
generalized inverse of the image Jacobian matrix needs to
be computed, which leads to well-known problems such as
the image space singularities and local minima.

In the context of control schemes, kinematic-based con-
trols cannot yield high performance and guarantee stability
because the nonlinear forces in robot dynamics are neglected.
This problem known as Dynamic Visual Servoing was studied
by [14],[15]. In order to avoid tedious and costly camera
calibration, [16], [17], and [18] proposed to employ an adap-
tive algorithm to estimate the unknown camera parameters
on-line. However, these methods are applicable to planar
manipulators only. The problem of 3D uncalibrated visual
servoing with robot dynamics has been tackled with new
adaptive controllers [8],[9]. However, the image jacobians in
these approaches are not full-rank and they have the above
mentioned problems.

In this paper, we address the problem of controlling a robot
manipulator to trace time-varying desired trajectories defined
in an uncalibrated image space, taking explicitly into account
the robot dynamics in the design. In order to evaluate the
control approach and the proposed models, experiments have
been conducted on a real industrial robot. We integrate the
visual servoing system in a Human-Robot-Interaction (HRI)
scenario (see Fig. 1), where we reproduce a more realistic
environment including obstacles, robot singularities, visual
occlusion, collision avoidance and sporadic loss of targets.

A. Organization

The organization of this article is as follows: First, in
Section II we introduce a new 3D Camera Model to derive
a full-rank 3D Visual Jacobian, which will be used in the
Section III to design an adaptive image-based 3D visual
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Fig. 1. Description of robotic experimental setup.

servoing. In Section IV we present the adaptive image-based
torque controller which includes environment constraints.
Section V provides an overview of the HRI setup (Fig. 1)
and shows the obtained results under different conditions.
Finally, Section VI draws the conclusions and future work.

II. 3D CAMERA MODEL

A. Problem Statement

In the classical IBVS methods, the sensory feedback sig-
nals are directly chosen as the image feature measurements
s. The vector Xb ∈ R3×1 represents the position vector of a
target object in the task space, defined in the world coordi-
nate frame (wcf). The vector s = [x1,y1, ...,xp,yp]

T ∈ R2p×1

contains the image feature measurements of all p feature
points on the target object. Then, the relation between ṡ and
Ẋb is given by ṡ = JimgẊb, where Jimg ∈ R2p×3 is known as
the image Jacobian.

If we consider ∆Xb as the input to a robot controller,
then we need to compute the inverse mapping of ṡ as
∆Xb = J+img∆s, where ∆∗ is an error function defined in
the space ∗, J+img ∈ R3×2p is chosen as the Moore-Penrose
pseudoinverse of Jimg, which leads to the two characteristic
problems of the IBVS method: the feature (image) space
singularities and local minima. In this case, the image
Jacobian is singular when rank(Jimg) < 3, while the image
local minima are defined as the set of image locations
Ωs =

{
s|∆s = 0,∆Xb 6= 0,∀s ∈ R2p×1

}
when using redundant

image features.
In this work, we define a new type of visual features such

that a full-rank image Jacobian Matrix (Jimg ∈ R3×3) can
be obtained. The key idea of this model is to combine the
stereo camera model with a virtual composite camera model
to get a full-rank image Jacobian to map velocities of a target
object (ẊCl ) to velocities of the image features (in our case,
pixel velocities in the 3D visual space, denoted here by Ẋs),

see Fig. 2. The following sub-sections are devoted to explain
3 main steps to get this new 3D visual model in detail.
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Fig. 2. Image Projections: The figure depicts the different coordinate frames
used to obtain a general 3D visual camera model. Xb ∈R3×1 is the position
in meters [m] of an Object with respect to the world coordinate frame
(wcf) denoted by Ob. OCl and OCr are the coordinate frames for the left
and right cameras, respectively. Rb

Cl
∈ SO(3) represents the orientation of

wcf with respect to the left camera. OV is a reference coordinate frame for
the virtual orthogonal cameras Ov1,2 where RCl

V ∈ SO(3) is its orientation
with respect to OCl . λ is the distance from Ovi to OV along each optical
axis i. The vectors pl , pr ∈ R2×1 are the projections of the point Xb in the
left and right cameras. Finally, pvi ∈ R2×1 represents the projection of the
Object in the virtual cameras Ovi .

B. Stereo Vision Model

The stereo system is composed of 2 USB web cameras
fixed on a camera tripod (Fig. 1). Given the observed image
points in each camera, pl = [x1,y1]

T , pr = [x2,y2]
T , we can

perform triangulation [19] using the relation between the
right and left cameras (given by the orientation matrix Rr

l
and the translation vector tr

l ) to compute the relative position
XCl = [xc,yc,zc]

T of the point Xb with respect to the left
camera OCl .



Before integrating the stereo camera model with the virtual
composite model, the coordinate frame OCl is re-oriented by
defining a new coordinate frame OV with the same origin as
OCl . The projection XV = [xV ,yV ,zV ]

T of XCl in OV is defined
as (see Fig. 2)

XV = RCl
V XCl , (1)

where RCl
V is the orientation of the reference frame OV

1 w.r.t.
OCl .

C. Virtual Composite Camera Model
To construct the 3D visual space, we define two virtual

cameras attached to the stereo camera system using the
coordinate frame OV (see Fig. 2). We use the pinhole camera
model [19] to project the relative position XV to each of the
virtual cameras Ov1 and Ov2 .

The model for the both virtual cameras are given by

pv1 =

[
xv1
yv1

]
=

1
λ − yV

αR(θ)

[
xV −o11
zV −o12

]
+

[
cx
cy

]
(2)

pv2 =

[
xv2
yv2

]
=

1
xV +λ

αR(θ)

[
yV −o21
zV −o22

]
+

[
cx
cy

]
(3)

where θ is the rotation angle of the virtual camera along
its optical axis, Oi = [oi1,oi2]

T is the position of the optical
center with respect to the coordinate frame OV , C = [cx,cy]

T

is the position of the principal point in the image plane, λ

is the distance from the virtual camera coordinate frame Ovi

to the reference frame OV along its optical axis, α and the
rotation matrix R(θ) are defined as:

α =

[
f β 0
0 f β

]
R(θ) =

[
cosθ −sinθ

sinθ cosθ

]
(4)

Since this model represents user-defined virtual cameras, all
the parameters (extrinsic and intrinsic2) are known, in fact,
in the defined configuration of the virtual cameras, θ = 0
(see Fig. 2).

In order to construct the 3D visual Cartesian space Xs ∈
R3×1, we combine both virtual camera models as follows.

Using the properties of the rotation matrix R(θ) and the
fact that α is a diagonal matrix, from (2), xv1 can be written
in the form

xv1 = γ1
xV −o11

−yV +λ
− γ2yv1 + γ3, (5)

where the constant parameters γ1, γ2, γ3 ∈ R are explicitly

defined as γ1 =
f β

cosθ
, γ2 = tan(θ), and γ3 = cx + cyγ2.

Based on (3) and (5), we define the 3D Visual Camera Model
representation Xs = [xs,ys,zs]

T using the orthogonal elements
[xv1 ,xv2 ,yv2 ]

T

Xs =

 xv1
xv2
yv2

=

Rα︷ ︸︸ ︷[
γ1 01×2

02×1 αR(θ)

]
xV−011
−yV+λ
yV−021
xV+λ

zV−022
xV+λ

+ρ (6)

where ρ = [γ3− γ2yv1 ,cx,cy]
T .

1The reason to introduce the auxiliary coordinate frame OV is to simplify
the composite camera model by rotating the coordinate frame OCl in an
specific orientation, such as θ = 0.

2We can set the same intrinsic parameters and λ values for both cameras.

D. Visual Jacobian
In the previous section, we defined that the position of

a point XV projected in the 3D Visual Space is given by
Xs

3 as (6). The Optical Flow can be obtained with the time
derivative of (6) as follows4:

Ẋs = Rα JvẊV = Jα ẊV (7)

where the image Jacobian Matrix Jv ∈ R3×3 is defined as

Jv =


1

−yV+λ

xV−o11
(−yV+λ )2 0

− yV−o21
(xV+λ )2

1
xV+λ

0
− zV−o22

(xV+λ )2 0 1
xV+λ

 (8)

This image Jacobian Matrix Jv represents the mapping from
velocities defined in the reference frame OV to velocities
(pixels/s) in the 3D visual space. In order to complete the
3D visual mapping we need to include the transformations
from OV to Ob(see Fig. 2) XV = RCl

V (Rb
Cl

Xb + tb
Cl
)

where, Rb
Cl

and tb
Cl

are the rotation matrix and the translation
vector between frame OCl and Ob.

Taking the time derivative of XV and substituting the robot
Differential Kinematics Ẋb = J(q)q̇, equation (Ẋs) can be
rewritten in the form

Ẋs = Jα RCl
V Rb

Cl
Ẋb = JimgẊb = JimgJ(q)q̇ = Jsq̇ (9)

where J(q) ∈ R3×3 is the analytic Jacobian matrix of the
robot manipulator, and the image-based Jacobian matrix Js ∈
R3×3 is defined as the Visual Jacobian.

Then the inverse differential kinematics that relates gener-
alized joint velocities q̇ and 3D visual velocities Ẋs is given
by

q̇ = Js
−1Ẋs = J(q)−1Jimg

−1Ẋs (10)

Remark 1: Singularity-free Jimg.
From (9), Jimg

−1 = Rb
Cl

−1RCl
V
−1

Jv
−1R−1

α . The matrices
Rb

Cl
,RCl

V ∈ SO(3) are non-singular. Rα ∈R3×3 and Jv consist
of user-defined virtual camera parameters. Then, a non-
singular Jimg can be obtained by delimiting by the robot
workspace.

Hence, the singularities of Js are defined only by the
singularities of J(q). Therefore, to guarantee a non-singular
3D visual mapping, an approach to avoid robot singularities
is required. In Section IV, we discuss and propose a solution.

Remark 2: Sensitivity to Camera Orientation Rb
Cl

.
The orientation Rb

Cl
requires a special attention because can

cause system instability. Instead of demanding an exact off-
line calibration of this parameter, the problem is tackled in
two parts: a) A coarse on-line estimation of the orientation
matrix is computed using the real-time information generated
by the robot (see Section V-C) and b) Estimation errors for
the complete Jacobian Js are taken into account in the control
design. Thus, a robust control approach is designed to cope
with these errors, see Section III-C.

3In this work, we use Xs instead of the classical notation s because Xs is
more than a image feature measurement, in fact, it defines a position vector
in the 3D visual space.

4Given that θ = 0, then γ1 = f β , γ2 = 0 =⇒ ρ = [cx,cx,cy]
T and

Rα = diag( f β ) ∈ R3×3.



III. CONTROL LAW

In this section, we describe the design of an adaptive
image-based dynamic control (second order sliding mode
control) which includes the robot dynamics model in its
passivity proof. The proposed second order sliding mode
control is chattering free.

A. Non Linear Robot Dynamic Model
The dynamics of a serial n-link rigid, non-redundant, fully

actuated robot manipulator can be written as

M(q)q̈+C(q, q̇)q̇+G(q)+Bq̇ = τ. (11)

where q ∈ Rn×1 is the vector of joint positions, τ ∈ Rn×1

stands for the applied joint torques, M(q) ∈ Rn×n is the
symmetric positive definite inertia matrix, C(q, q̇)q̇ ∈ Rn×n

is the vector of centripetal and Coriolis effects, G(q) ∈Rn×1

is the vector of gravitational torques, and finally B ∈ Rn×n

is a diagonal matrix for the viscous frictions.
Subtracting the linear parameterization equation to (11),

produces the open-loop error dynamics

M(q)Ṡq +C(q, q̇)Sq = τ−YrΘ (12)

with the joint error surface Sq defined as Sq = q̇− q̇r, where
q̇r represents the nominal reference of joint velocities. This
nominal reference can be used to design a control in the 3D
visual space.

B. Joint Velocity Nominal Reference
Considering equation (10), q̇r can be defined as

q̇r = Js
−1Ẋsr (13)

where, the 3D visual nominal reference Ẋsr is given by

Ẋsr =

(
Ẋsd −Kp∆Xs +Ssd −K1

∫ t

t0
Ssδ

(ζ )dζ

−K2

∫ t

t0
sign

(
Ssδ

(ζ )
)

dζ

) (14)

Ssδ
= Ss−Ssd ,Ss =

(
∆Ẋs +Kp∆Xs

)
,Ssd = Ss (t0)e−κt (15)

where Ẋsd is the desired visual velocity; ∆Xs = Xs−Xsd is
the visual position error, ∆Ẋs is the visual velocity error,
Kp = Kp

T ∈ R3×3
+ and K j = K j

T ∈ R3×3
+ (with j = 1,2) and

Ssδ is the visual error surface.

C. Uncertainties in Js

The above definition of q̇r depends on the exact calibration
of Js. However, this is a very restricted assumption. Hence,
the uncertainties in the Visual Jacobian Js should be taken
into account in the control design. To achieve this, the un-
calibrated nominal reference is defined by ̂̇qr = Ĵs

−1
Ẋsr

where Ĵs is an estimate of Js such that Ĵs is full-rank
∀q ∈ Ωq, and Ωq =

{
q|det(J (q)) 6= 0,∀q ∈ Rn×1

}
defines

the singularity free workspace. Then, the uncalibrated joint
error surface is:

Ŝq = q̇− ̂̇qr = Sq−∆JsẊsr (16)

with ∆Js = Ĵs
−1− Js

−1 as the estimation errors, which in-
cludes both intrinsic and extrinsic parameters.

D. Control Design

Consider a robot manipulator in closed loop with the
following second order sliding visual servoing scheme,

τ =−Kd Ŝq + ŶrΘ̂, ˙̂
Θ =−ΓŶr

T Ŝq (17)

where Θ̂ is the on-line estimation of the constant robot pa-
rameter vector, Kd = Kd

T ∈Rn×n
+ and Γ∈Rm×m

+ are constant
matrices. This adaptive on-line estimation together with the
second order sliding mode in Ssδ

handle the uncertainties on
the robot dynamic/kinematic and camera parameters.

Exponential convergence of visual tracking errors:
Substituing (17) in the dynamic (12) using a sliding mode
exists at all times at Ssδ

(t)= 0, then Ss = Ssd , therefore ∆Ẋs =
−Kp∆Xs + Ss (t0)e−κt ∀t, which implies that the 3D visual
tracking errors converge to zero exponentially fast.

Remark 3: Convergence of ∆Xb without local minima.
Given that Jimg is full-rank ∀t, from (9) can be seen that
∆Xs = 0→ ∆Xb = 0 without local minima. This is the most
important impact of designing a full-rank image Jacobian
which, in general, is not obtained with the classical methods.

The robot motion may lead to unsafe/unstable situations,
e.g. the motion can take the robot to a singularity posi-
tions. This is critical specially in the case of Human-Robot-
Interaction, where the safety of the user is the primary
concern. To avoid this problem a dynamic trajectory planner
is introduced in the following section.

IV. 3D VISUAL SERVOING WITH ENVIRONMENT
CONSTRAINTS IN HRI SCENARIO

In the real experiment, we integrate the visual servoing
system in a HRI scenario, where enviroment constraints
such as: robot singularites avoidance, (self-/obstacle) col-
lision avoidance must be included to generate a safe and
singularity-free trajectory for the robot. In this work, we use
the Impedance Control schemes to connect different dynamic
phenomena together. This means, the complete environment
can be modeled as a single control input. External factors,
such as: singularity avoidance, (self- and object-) collision
avoidance and specially Human collision avoidance can be
integrated in a control strategy (e.g. visual servoing). Fig.
3 shows the integration of the control with the environment
constraints.

A. Environment Constraints

1) Singularity Force: An example of how to compute
this force is given by

Fr =−KrPrDr−BrẊe f (18)

where Ẋe f is the linear velocity of the end-effector, Kr,Br ∈
R3×3 are constant matrices, and we define ∆q as the absolute
value of the difference between qi and qsingularity, Dr is the
direction of gradient for the maximum manipulability factor
µ . Then, Pr = eαr∆q− 1, where αr is a constant to control
the stiffness of the applied force.



2) Collision Avoidance Forces: We use the artificial
potential field approach to compute the forces for collision
avoidance problem, where the obstacles are repulsive sur-
faces for the manipulator. This force is given by

Fo =−KoPoDo−BoẊe f (19)

with Po = eαo(Disto−ho)−1, where hs is the minimum distance
between the obstacle and robot arm on the xoy plane, and Do
is the direction of the force, obtained between the obstacle
and the end-effector.
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Fig. 3. 3D adaptive visual servoing including enviroment constraints

B. Torque to Position Model

This Impedance Control generates a virtual force that can
be used to define a desired dynamic behavior for a robot
manipulator. The changes in the robot dynamic behavior
are reflected in the robot trajectory which is generated
on-line and should take into account the target task and
information of the environment (external factors). One way
of generating this trajectory is to apply the forces to a virtual
robot, whose dynamic behavior should be similar to the
real robot. This virtual robot will generate the desired joint
positions/velocities (qd/q̇d), which will be used as the input
of a position/velocity controller of the real robot, this is
named as Torque to Position Model (see Fig. 3). The output
joint position/velocity processed by the open architecture
control of an industrial robot is certified and secure. This
also allows the implementation of different control strategies
in standard industrial robots.

This Torque to Position Model is designed to allow the
implementation of joint torque control techniques on joint
position-controlled robots. Robot torque control is essentially
accomplished by converting desired joint torques into in-
stantaneous increments of joint position inputs. This model
can be implemented applied to any conventional position-
controlled robot so that torque command to he robot becomes
available.

V. EXPERIMENTS

A. System Review

This system consists of 3 sub-systems: a) the Visual
Stereo Tracker, b) the Robot Control System and c) the 3D
visualization System, see Fig. 1.

B. Experimental Results

We use a simple color-based visual tracker to identify the
target (green, held by the human) and the robot end-effector
(red). The control goal is to follow this object with the end-
effector. The tracked positions of the red and green cubes are
mapped from the stereo coordinate space to the 3D visual
space to compute the errors. Using the adaptive control a
dynamic collision/singularity free trajectory can be obtained.

During the experimental validation, several behaviors are
evaluated. Fig. 4 demonstrates the visual servoing control in
combination with different forces. Fig. 4 a)- c) demonstrates
how the robot handles self-collisions and obstacle avoidance
while continuing to track the target, where the system
generates a collision-free trajectory (robot motion-red line)
instead of directly following the target (target motion-blue
line).The green circles are the robot and a static obstacle. Fig.
4 e) illustrates the result of singularity avoidance, the robot
does not reach the singular condition (q3 = 0), even when
the user tries to force it. Fig. 4 f) depicts table avoidance
where the motion of the robot in the z−axis is constrained
by the height of the table (the end-effector is not allow to
go under the table).

The system proves to be stable and safe for HRI scenarios,
even in situations where the target is lost (due to occlusions
by the robot or the human), see Fig. 4 d) and g). The visual
tracking is resumed as soon as the target is visible again.

One of the key contributions of this paper is the possibility
of handling situations where the target object is occluded,
and the stereo system can be moved to maintain the target in
the field of view. This feature is analyzed in next subsection.

C. On-line Orientation Matrix Estimation

In order to compute the visual Jacobian, in this work
a coarse on-line estimation of the orientation matrix is
computed using the real-time information generated by the
robot, where two sets of position points defined in each
coordinate frame Ob and OCl are used by using SV D(M)
(Singular Value Decomposition). The estimation errors for
the complete Jacobian Js can be handled in the controller to
some extent.

Object occlusion occurs in Fig. 4 h), where the stereo
system can then be moved to maintain the targets in the field
of view. The camera motion is detected by the system and
a process for the coarse estimation of the orientation matrix
between the stereo system and the robot base frame is started.
The robot performs a small motion and a set of points are
collected. We compare the actual end-effector position with
the recovered end-effector position that is obtained by using
the estimated rotation. Fig. 5 (a) depicts these two positions
trajectories. It can be clearly observed that the error between
them is close to zero after on-line rotation matrix estimation,
as illustrated in Fig. 5 (b).

A video where these behaviors are illustrated can be seen
under: http://youtu.be/UMjnFCQwThc

http://youtu.be/UMjnFCQwThc


Fig. 4. Experiment results: a) A collision-free trajectory. b) Obstacles avoidance. c) Self-collision avoidance. d) The robots stops when the target is lost
until is visible again. e) Singularity avoidance. f) Table avoidance. g) When the object is occluded, then robot changes its behavior. h) The camera can be
moved when the target is occluded. The orientation matrix is estimated on-line.
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Fig. 5. Results of the on-line orientation matrix estimation: (a) shows the
3D position of the end-effector in the base frame and the recovered position
for the end-effector using the estimated rotation, (b) shows the errors.

VI. CONCLUSIONS

We proposed a novel image-based controller for 3D image-
based visual servoing using uncalibrated stereo vision sys-
tem, which was evaluated on a real industrial robot. Results
show the stability of the control even with parametric uncer-
tainties. Furthermore, this work extends the adaptive image-
based control law to include enviroment constraints. As a
result, information about the environment and the kinematic
constraints can be integrated with the 3D visual servoing
to generate a robot dynamic system with trajectory free of
collisions and singularities. This approach was evaluated in a
real HRI scenario. The future work is to improve the object
tracking accuracy. Also, an extension to 6D (visually control
the position and orientation of the end-effector using the
visual Cartesian space) is being analyzed.
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