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Abstract—In this paper, we present an uncalibrated position-
based fixed-camera Visual Servoing for robot manipulators,
where the goal is to track the 3D position and orientation of the
target. The stereo system with 2 USB cameras is uncalibrated
with respect to the robot base frame and the transformation
between them is estimated on-line while performing the task.
Dynamic impedance control is designed to generate a dynamic
trajectory for the robot manipulator considering the dynamic
environment constraints, such as: robot singularities avoidance
and (self-/obstacle-) collision avoidance. Experiments have been
carried out to verify performance of the proposed system on a
real industrial robot, where the calibration estimation process and
handling of all uncertainties in the environment are demonstrated.
Moreover the uncalibrated stereo camera system can be manually
moved while performing the task in order to obtain a clearer view
and the re-calibration is performed automatically and on-line.

I. INTRODUCTION

Visual Servoing (VS) is an approach to control motion
of a robot manipulator using visual feedback signals from a
vision system. Over the last decade, there has been significant
growth in practical applications of Visual servoing. The use of
a camera in closed-loop control schemes seems to be efficient,
and many control laws and modeling have been proposed [1].
However, application of typical VS to large robot motions, i.e.,
industrial manipulators can result in unstable trajectories, due
to: (i) the end-effector and the target object can move beyond
the visual scope of the camera in the eye-to-hand robot system;
(ii) the robot being commanded to move beyond its mechanical
limits, or beyond its actuation limits; or (iii) the robot arm
physically colliding into other objects within its workspace.
This work aims to simultaneously address all three of the above
challenges for visual servoing of large robot motions.

Visual servoing requires an object in the field of view
of the camera, in order to use the feature error to control
the robot [2]. Otherwise, the virtual link is broken and the
control loop cannot continue to be closed. One solution is
using two or more cameras to be fixed in the workspace in
order to guarantee a panoramic sight of the workspace [1].
This approach requires calibration of the camera w.r.t the robot.
However, in practice, due to the presence of uncertainties
in the camera calibration parameters, consistent and accurate
calibration is difficult and even small changes forces a re-
calibration. Hence an uncalibrated visual servoing approach
is beneficial and often necessary in many circumstances.

Uncalibrated Visual Servoing approaches have been pro-
posed in [3], [4], [5] and [6]. But all these mentioned methods
are applicable when there are no obstacles in the workspace.

Hosoda et al. [7] present an obstacle avoidance method by
using a trajectory generator and an uncalibrated visual servoing
controller. It does not need priori knowledge of the robot and
the cameras, but this method is only suitable for static targets.
Qing shan et al.[8] presented a uncalibrated visual servoing
approach with obstacle avoidance, which ensures that the robot
avoids the obstacle safely and tracks the target as accurately
as possible. But this approach works only when the cameras
are fixed and the obstacle is static.

This paper presents an implementation of uncalibrated,
position-based stereo Visual Servoing with obstacle avoidance.
The system is initially uncalibrated but the intrinsic camera
parameters are known in the stereo system, which is a rea-
sonable assumption since the camera intrinsics don’t usually
change. The transformation matrix between the stereo camera
space and the base of a StaeubliTX90 robot is estimated on-
line using real operating data. The advantage of this system
is that it can avoid moving obstacles including the Humans
safely during tracking moving targets. The controller has been
designed to be able to control the dynamics of the robot.
Virtual Impedance control is used to represent the dynamic
environment constraints, such as: robot singularities avoidance
and (self-/obstacle-) collision avoidance. Moreover the uncal-
ibrated stereo camera system can be manually moved during
performing the task in order to keep the target in the field of
vision or avoid occlusion, and the re-calibration is performed
automatically and on-line.
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Fig. 1: Description of robotic experimental setup.

This paper is organized as follows: In Section II we intro-
duce a stereo vision model and describe how the uncalibrated
stereo system works. This model will be used in the Section
III to design an virtual impedance control to generate the



(a) (b)

Fig. 2: The Stereo Camera Model: (a) shows a 3D point projects in two cameras, (b) puts the world coordinate frame on the
left camera frame point.

robot trajectory dynamically. Section IV presents a real-world
experiment (as illustrated in Fig. 1) and shows the results
obtained in a dynamic environment. Finally, Section V draws
the conclusions and presents directions for future work.

II. UNCALIBRATED STEREO TRACKING SYSTEM

A. 3D Recovery from Stereo System

In a two camera setup, each camera gives a different 3D
back projection line. These two back projection lines usually
coincide at exactly one point (Fig. 2a). So, given a stereo setup
it is possible to find the 3D position of a point by observing
its position in two different cameras[9].

For two cameras with two projection matrices P1 and P2
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We know the observed image points in each camera x1,
y1, x2 and y2, given by a1/w1, b1/w1, a2/w2 and b2/w2

respectively, but we cannot assume that w1,2 = 1. We wish to
solve for Xw = [X,Y, Z]T , since this is the 3D position in
the world frame.

Multiplying out in terms of the Pi, and substituting into
xiwi = ai and yiwi = bi gives:
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where i is 1 or 2, and pi11 denotes element 1,1 in Pi.
Since we want to solve this for Xw = [X,Y, Z]T , these

terms are collected on the left and other terms on the right,
and the equation is then rewritten as:
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We need to solve this for Xw. Since A is not square, so the
pseudo inverse is used:

Xw = (ATA)−1ATB (6)

B. Stereo Vision Model

If we put the world coordinate frame Ow at the left camera
origin point OcL , see Fig.2b, then given the relation between
right camera and left camera (defined by the orientation matrix
RLR ∈ SO(3) and the translation vector tLR ∈ R3×1), we can
define the projection matrices PcL and PcR ∈ R3×4 for each
camera as

PcL = KL

[
I3×3 03×1

]
PcR = KR

[
RL

R tLR
]

(7)

where KL and KR are the intrinsic camera matrices of the left
and right cameras respectively1.

Then, defining the observed image points in each camera
as pL = [xL, yL]T , pR = [xR, yR]T , we can use triangulation
[9] to compute the relative position XcL = [xc, yc, zc]

T with
respect to the left camera OcL , which is shown in (6).

In order to control the robot, we need to compute the 3D
position with respect to the robot base coordinate frame Or.
By knowing the transformation between Ow (the same as OcL )

1These parameters can be computed off-line.



and Or, Twr = T cLr = [RcLr tcLr ], we can get the robot end-
effector position

Xef = Xr = RcLr XcL + tcLr (8)

C. On-line Calibration of the Stereo System

We define this system as uncalibrated because we not
only assume that the calibration of the stereo vision system
(left camera OcL ) with respect to the robot base frame (Or)
is unknown, but we also consider the possibility of on-line
modification of the parameters that define this relationship (e.g.
RcLr ). In our system, we estimate the transformation T cLr on-
line without stopping robot during the task execution using the
real-time information generated by the robot.

Finding the optimal/best rotation and translation between
two sets of corresponding 3D point data, such that they are
aligned, is a common problem. An illustration of the problem
is shown below for the simplest case of 3 corresponding points
(the minimum required points to solve).

Fig. 3: Two sets of corresponding 3D point data A and B

Let the given 3D datasets A and B be represented in two
coordinate frames. We want to find the best rotation R and
translation t that will align the points in dataset A to dataset
B.

P iB = RP iA + t (9)

where i = 1, 2, ..., n, (n ≥ 3), P = [x, y, z]
T , PA and PB are

points in dataset A and B respectively.
Finding the optimal rigid transformation matrix can be

broken down into the following steps:
1) Find the centroids of both dataset: This bit is easy, since

the centroids CA,B are just the average points and can be
calculated as follows:

CA =
1

n

n∑
i=1

P iA CB =
1

n

n∑
i=1

P iB

2) Estimation of Base Orientation R: There are several
ways of finding optimal rotations between points. The easi-
est yet accurate way is using Singular Value Decomposition
(SVD), as discussed in [10]. Define a 3 × 3 matrix M as

M =

n∑
i=1

(
P iA − CA

) (
P iB − CB

)T
(10)

Then a least-squares fit of the rotation matrix can be written
as

R = Udiag
(
1, 1, det

(
UV T

))
V T (11)

where (U, S, V ) = svd(M).

3) Compute the translation t: After R is obtained, t can be
solved as:

t = CB −RCA (12)

In our case, PB is defined as a set of end-effector 3D
positions Xr with respect to robot base frame Or, while PA
denotes a set of the corresponding position vectors XcL in
stereo camera coordinate frame OcL .

This on-line estimation of the transformation will be used
in the next section to control the robot.

III. CONTROL LAW

A. Virtual Impedance Control

We put a virtual mass at the end-effector of the robot, which
is a virtual Spring-Damper system, see Fig.4. The Stereo track-
ing system provides position of the target, which is considered
as the desired position Xmd = [xmd, ymd, zmd] ∈ <3×1 of
the mass. We control the mass movement dynamically while
generating a safe path for the end-effector of the manipulator.
The task can be divided in two steps: the first is to get the
mass position Xm = [xm, ym, zm] ∈ <3×1 and the second is
to set the desired robot movement qd.

m Virtual Mass

Desired Position

Xm

xr

yr

zr

Xmd
Fm

Fig. 4: A virtual mass is attached to the end-effector of the
robot in order to control the robot, and Fm is the attractive
force from the virtual mass to the target.

The dynamics of the virtual mass can be represented as:

mẌm = F −BẊm −KXm

Ẍm = m−1(F −BẊm −KXm)
(13)

with
F = Fm + Fo (14)

where Fm is the attractive force. We use the artificial potential
field approach to compute virtual forces Fo for collision
avoidance, where the obstacles are repulsive surfaces for the
manipulator. Fig.5 shows all the models for these repulsive
forces.

Fo = Fr + Ft + Fc + Fh (15)

Then the robot control loop consists of the following steps:
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1) Compute total F :
a) Compute the attractive force:

Fm = −Km(Xm −Xmd)−BmẊm (16)

where Km and Bm are 3×3 matrix constants, and
Ẋm is the mass velocity.
In our stereo vision system, we only get the 3D
position with respect to the left camera. So the force
(16) can be rewritten as

Fm = −KmR
cL
r (Xm s−Xmd s)−BmẊm (17)

where Xm s and Xmd s are 3D positions in the
stereo system, RcLr is the rotation matrix from robot
base frame to the stereo system, which is estimated
on-line in sec II-C .

b) Robot singularity avoidance force:

Fr = −KrPrDr −BrẊm (18)

where Kr and Br are 3×3 matrix constants, and we
define ∆q as the absolute value of the difference
between q3 and π/2, Dr is the direction of the
difference. Then

Pr = eαr∆q − 1

where αr is a constant.
c) Table collision avoidance force:

if zm > Distt, where Distt is the table height
threshold, then

Ft = [0, 0, 0]T Ft ∈ <3×1

else: we define ht is the distance between the Xm

and the table in z dimension.

Ft = KtPtDt −BtẊm (19)

where
Pt = eαt(Distt−ht) − 1

Dt = [0, 0, 1]
T

d) Self-collision avoidance force:
if hc > Distc, where Distc is a constant repre-
senting the threshold on the distance (hc) between
the mass and robot base center in xoy plane, then

Fc = [0, 0, 0]T Fc ∈ <3×1

else:
Fc = KcPcDc −BcẊm (20)

where Dc is the direction of mass position in the
xoy plane, and

Pc = eαc(Distc−hc) − 1

e) Obstacles avoidance force:
Using this framework, the robot can also be con-
trolled in a way that it avoids collision with static
entities (workbench) and dynamic entities (the hu-
man and the moving objects) in its environment. If
the minimum distance of an obstacle to the robot
body (hh) is below a chosen security threshold
(Disth), virtual forces can be computed and ap-
plied on the robot using potential fields.
Therefore when hh > Disth then

Fh = [0, 0, 0]T Fh ∈ <3×1

else:
Fh = KhPhDh −BhẊm (21)

where Dh is the normal directions of the obstacle
surface, and

Ph = eαh(Disth−hh) − 1

2) After computing the total force F , we can use dynamics
of the mass system to get the velocity and the position
of the virtual mass Xm, Ẋm, given by (13).

B. Dynamic Trajectory Generation

As we discussed in the previous subsection, virtual
impedance control can generate a safe and singularity-free
dynamic trajectory for the robot which also includes collision
avoidance.

Once the mass position has been set, the new end effector
desired position Xef = Xm is known. In our experiment,
we detect 4 points on the robot end-effector. Therefore we
can compute the end-effector pose which includes 3D position
Xef and orientation information Ref . Then the desired qdi,
i = 1, 2, ..., n can be calculated from the Inverse kinematics
of the robot. This qdi is transmitted to the robot’s control unit
in real time.



IV. EXPERIMENTS

Experiments are performed to validate and evaluate this
work on a standard industrial robot. In this task, we use real
time tracking using AR markers2 for identifying the target
pose and the current pose of the robot end-effector. The target
is carried by a human, and the robot end-effector tracks the
target in a dynamic environment. Every marker provides 2D
image features for 4 corner points, which can be used to
compute the 3D position and orientation of the marker with
respect to the camera frame. Several robot attributes such as
singularity avoidance, self-collision and obstacles avoidance
are implemented to ensure safety of the robot and human. This
experiment also shows how the orientation matrix is estimated
on-line enabling an uncalibrated visual servoing system, where
occlusions due to camera placement can be handled in a natural
and intuitive way by simply manually moving the camera to a
better position.

A. System Overview

This system consists of 3 sub-systems, see Fig. 1: a) the
Visual Stereo Tracker, b) the Robot Control System and c) the
3D visualization System.

1) Visual Stereo Tracker: The stereo system is composed of
2 USB cameras fixed on a tripod. The stereo rig is uncalibrated
with respect to the robot base frame and can be manually
moved. In order to avoid a multiple-sampling system, an
extended Kalman filter (EKF) is used to estimate the visual
position (sampling period 1ms), whereas the reference is
updated each 30ms with the real visual data of both cameras.

2) Robot Control System: The robot system comprises of a
StaübliTX90 industrial robot arm (6 DOF), a CS8C control unit
and a Workstation running on GNU/Linux OS with real-time
patch, see Fig. 1. The data communication between the PC and
the control unit is over a local network based on TCP/IP . In
this article, joint positions qd (t) ∈ Rn were used to command
the robot.

3) 3D Visualization System: This module performs
OpenGL based real-time rendering of the workspace in 3D. It
uses Qt and Coin3D as its backbone, see [11]. This system
visualizes the configuration of the robot arm and positions
of the target in real-time. This is achieved by means of
TCP/IP communication. Fig.4 shows a sample screenshot of
this visualization.

B. On-line Orientation Matrix Estimation

As described in Section II, a coarse on-line estimation of the
orientation matrix is computed using the real-time information
generated by the robot.

Object occlusion occurs in Fig.6 (a), where the stereo
system can then be moved to maintain the targets in the field
of view, see Fig.6 (b). The camera motion is detected by the
system and a process for coarse estimation of the orientation
matrix between the stereo system and the robot base frame is
started. The robot performs a small motion and a set of points

2ArUco: http://www.uco.es/investiga/grupos/ava/node/26

are collected, shown in Fig.7 (d). During this stage, the robot
moves in free space, where the integration of environment
constraints (obstacle-, self- and singularities avoidance) play
an important role for safe/stable robot motions. We compare
the actual end-effector position with the recovered end-effector
position that is obtained by using the estimated rotation. Fig.7
(a) and (c) depicts these two positions trajectories. It can be
clearly observed that the error between them is close to zero
after on-line rotation matrix estimation, as illustrated in Fig. 7
(b).

(a) (b)

Fig. 6: Target occlusion
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Fig. 7: Results of the on-line orientation matrix estimation:
(a) and (c) show the 3D position of the end-effector in the
base frame and the recovered position for the end-effector
using the estimated rotation, (b) shows the errors between
them, (d) illustrates an example of some selected points for
the estimation of the orientation matrix.

C. Impedance Control for Environment Constraints

This experiment demonstrates real time tracking for the
robot end-effector according to the moving target carried
by the human. We address the tracking for both translation
and rotation motions, which verifies the effectiveness of the
estimation methods of R for the calibration-free robotic hand-
eye coordination under stereo visual feedback.



To demonstrate stability, we test our system under several
environment constraints using virtual impedance control to
combine visual servoing control with different environment
forces. The experiment demonstrates the results of singularity
avoidance, where the robot does not reach the singular condi-
tion (q3 = 0), even when the user tries to force it. Using the
normal directions of the object surfaces in the environment
that are provided by the Kinect sensor, the robot can avoid
collisions. This experiment also shows table avoidance where
motion of the robot is constrained in the zr − axis by the
height of the table (the end-effector is not allow to go under
the table) but it can still move in the xr and yr axes. Self-
collision handling is also demonstrated in this experiment. The
control law explicitly can plan the robot path dynamically and
avoids potential collisions with workspace obstacles and even
humans safely.

1) Human Avoidance: In this experiment, the robot can
be controlled so that it avoids collision with static entities
(e.g. a workbench) and dynamic entities (e.g. the human
and the moving objects) in its environment. In this task,
the avoidance is done in a reactive way with dynamically
updated collision scenes that can be interfaced with a variety
of sensors. To compute the virtual forces that repel the robot
from surrounding obstacles, we need to compute the minimum
distance of all objects in the environments model to the robot.

For human avoidance, we use a Kinect sensor to detect and
track the human skeleton, which we use to build our human
model, as shown in Fig. 8. While performing the task, we
check every joint in the human model and find the minimum
distance to compute the repulsive force for the robot control.

Fig. 8: Avoid Human: Use kinect to track human and build the
human joints model.

Fig. 9 shows the process of how the robot avoids the
obstacle (human) while continuing to track the target.

A video illustrating all these experimental results can be
found at: http://youtu.be/MG9KIHkCU9k

V. CONCLUSION

In this paper, we proposed an uncalibrated stereo visual
servoing algorithm which was found to be efficient for tracking
a moving target in eye-to-hand configuration. The stereo vision
system is composed of 2 USB cameras fixed on a tripod. We
also proposed an algorithm for the estimating the extrinsic
parameters of the stereo system using the real operation data
of the end-effector. This calibration-free stereo tracking system

Fig. 9: Avoid Human (m): robot movement(red line) and target
movement(blue line), Human position shows in (green circle)

was applied in an impedance control approach to generate a
robot dynamic system with trajectory free of collisions and
singularities. The proposed approach was evaluated on a real
industrial robot (StaeubliTX90). The experiment illustrated the
effectiveness of the uncalibrated visual system and the stability
while handling dynamic environment constraints. The stereo
system can be moved to maintain the targets in the field of view
when the object occlusion occurs. A planned future extension
is to integrate this uncalibrated stereo visual servoing approach
with model based tracking approaches and also to validate the
work in more practical use-cases.
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