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1 Introduction

Modeling how humans control and coordinate their locomotion in daily life, such as walk-
ing and grasping, is an important research topic with promising application perspectives in
medical and rehabilitation engineering, humanoid robotics, and other biological-inspired
systems.

In recent years, the concept of central pattern generator (CPG), which has the ability
to generate self-sustained rhythmic motor patterns even in the absence of supraspinal
inputs and sensory afferent feedbacks [1, 2], has drawn much attention from engineers by
showing novel application perspectives in neuroprostheses and humanoid robots.

Although for a thorough understanding of the CPG network there is still a long way to go,
much work has been done in the last decades, ranging from deciphering the anatomical
structure [3, 4] and computational modeling study [1, 5] to implementation of prototypes
for engineering applications [6, 7].

In this paper, we outline the relevant topics of neural control for locomotion (Sec. 2),
focusing on the functional significance of the CPG network in this context (Sec. 3). By
employing a computational modeling approach (Sec. 4), we develop a simulation model
(Sec. 5) and outline possible comparison strategies with human data (Sec. 6), aiming to
gain further insights of spinal neural circuit models and evaluate their potentials in future
neuroprosthetic and humanoid robotics applications.

2 Function and structure of motor control systems

The human neural control system for posture and movement is a complex, nonlinear sys-
tem with a hierarchical structure (Fig. 1). At the top level, the volitional command is
transmitted via the corticospinal tract, which directly connects the motor cortex to the
spinal cord with cross over parts in the brainstem. The sensorimotor cortex is responsible
for the strategic decision making, such as trajectory planning and grasp mode selection
in dexterous grasping, as well as the high level sensory integration of visual and audio
feedback. The cerebellum plays an important role in the precise coordination in time and
space of locomotion. It is the processing center of the proprioceptive information (e.g.
hip joint position) conveyed by the spinocerebellar tract [8, 9].



Figure 1: Block diagram of motor control system

The spinal cord forms the intermediate level and serves as coordinator and bridging ele-
ment between the high level intelligence, the endeffectors and proprioceptors at the lower
end of the system.

Opposing the traditional view, which believes that the neural reflexes only take up very
primitive functions in a passive way, accumulating scientific evidences have proved that
a significant level of control is mediated in the spinal cord and finally led to the concept
of CPG.

Motoneurons in the ventral root of the spinal cord comprise the final common pathway
of the neural commands. They interface with the musculoskeletal system via the neuro-
muscular junctions. The neuromuscular transformation, that is, how neural command is
translated into muscle force, presents another modeling challenge to researchers. This
process involves complex interactions between motoneurons and muscle fibers in the mo-
tor units, and the forward dynamics of the musculoskeletal system which converts the
muscle force into movements of the locomotion apparatus. Unlike many common seen
actuators in robots, biological muscles will actively adapt their stiffness with respect to



the muscle length measured by the muscle spindles and the force sensed by the golgi
tendon organ.

A salient feature of the biological locomotor control system is the prevalence of bidi-
rectional interaction at all levels. The CPG spinal circuit is by no means just an obedient
servant who passively executes the commands sent by the motor cortex. Conversely, it ac-
tively shapes the supraspinal signal to integrate it into the context of ongoing locomotion.
The biological evidence of this feature and its implication on robotic design is discussed
in [10].

3 CPG network

3.1 Functional structure of the CPG network

The term CPG refers to a functional network consisting of a set of spinal neurons, which
could generate rhythmic activation patterns resembling those observed in actual locomo-
tion even in the absence of supraspinal controls. It is assumed that there is at least one
such CPG for each limb. But opinions diverge as whether these CPGs are localized or
distributed along the spinal cord of mammalian and primates including human [11]. The
existence of such spinal reflex circuits are unequivocally proved in cats through the fictive
locomotion observed in decerebrated unanesthetized preparations. Up till now a similar
functional neural network in humans can only be demonstrated in an indirect way. How-
ever, sufficiently plenty of evidences have been obtained since recent years to make a
convincing hypothesis of a spinal CPG network in human [12–14].

Deciphering the structure of the CPG network is traditionally carried out with help of
electrophysiological analysis of the target species, and more recently with genetic meth-
ods [3]. In our work we take the model presented in [1, 5], which, despite its simple
scheme, is able to intuitively outline the underlying neural structure of some properties
observed in the fictive locomotion of cat. The involved neurons and their interconnection
are depicted in Fig. 2.

Based on the half-center concept, the rhythmic pattern of the CPG network is generated
by two populations of tightly coupled pace-maker neurons (RG-E and RG-F populations).
The reciprocal inhibition mediated by the interneurons IN RG-E and IN RG-F between the
two half-centers is responsible for the synchronized alternating transition between flexion
and extension phases. In addition to the rhythm generation network, a pattern formation
network consisting of the populations PF-E and PF-F, which are similar to those in the
RG network but with a weaker bursting property, is incorporated here to allow a separate
control of amplitude and timing of flexor and extensor motoneuron activities. This is
independent of the frequency and phase of the locomotor oscillations set by the rhythm
generation network. The output of the pattern formation network drives the collateral
motoneuron pools to produce the motor activation patterns. The Renshaw cells, which
are a set of interneurons providing recurrent inhibition to the motoneuron, form a local
negative feedback loop to protect the muscle from over excitation, known as Renshaw
inhibition.

Although the CPG network is able to produce rhythmic output independently, sensory
inputs play an important role in sculpting the motor activation patterns. Observations in



Figure 2: Structure of CPG network and the embedded reflex pathways [5, 15, 16]

healthy subjects and individuals with spinal cord injury (SCI) showed that load receptor
inputs and hip joint afferents essentially contribute to the activation patterns of leg muscles
during human locomotion [12, 16]. For a thorough review about the sensorimotor inter-
action in locomotion, see [15]. Some of the well understood reflex pathways are shown



in Fig. 2 to illustrate how the CPG and reflex circuits interact with each other to modulate
the motoneuron activation pattern. The group I extensor afferents (Ia muscle spindles,
Ib golgi tendon organ) contribute to the body-weight support during stance and control
the stance-swing-transition by providing positive feedback loops in different levels of the
network. These signals not only run through a disynaptic pathway via the interneuron
IN-Iab-E, they are also fed to the CPG via the interneurons IN RG-E(F) and IN PF-E(F)
for further processing. With this two level architecture of the CPG network, the group I
extensor afferents can either control the proportion of extension phase via the PF network
without changing the timing of the following cycles, or reset the locomotor rhythm by
affecting the RG network, depending on the amplitude of stimulation. As suggested by
the model in [5], the effect of Ia afferents on the RG network is weaker than their effect
on the PF network. The flexor group I afferents have an analogue effect on the flexion
phase, but the flexor group II is assumed to be excitatory to the extensor parts and hence
forms a competing sensory signal to the flexor group I afferents. This could explain the
spontaneous reversing reflex action of these afferents [5].

4 Mathematical models of single neurons

4.1 Model of pace-maker neurons

The Hodgkin-Huxley (HH) formalism enables a biophysically accurate mathematical de-
scription of single neurons. The general form of the single neuron model is given as
follows:

Cm · dVm

dt
=

nIon∑
i

IIon,i +

nSyn∑
i

ISyn,i +

nExt∑
i

Iext,i (1)

whereCm = 1µF/cm2 is the membrane capacity, andVm the membrane potential.

Each external driveIExt,i can be a constant current or a simple function like sine or
ramp. The synaptic inputISyn is the linear combination of all the event-triggered cur-
rents delivered by the connectednSyn source neurons. The non-N-Methyl-D-Aspartic
Acid (NMDA) glutamatergic synaptic current can be described as

ISyn,i = gSyn,i · wi · exp

(−t− tls,i
τSyn,i

)
· (Vm − ESyn,i) (2)

wheregSyn,i = 0.05mS/cm2 is the maximum conductance of synapses,wi the connec-
tion weight,tls,i is the last spike time of theith neuron andτSyn,i = 5ms the time constant
of the synaptic current.ESyn,i, which is−10V for excitatory synapses and−40V for
inhibitory synapses, is the reversal potential of synapses. For details of other more com-
plicated models such as the alpha function form and the dual exponential form, see [2].

The characteristic behavior of a neuron is largely determined by the particular combina-
tion of ionic conductancesIIon,i found in its cell membrane and the interaction between
them. When the basic Hodgkin-Huxley model is equipped with additional ion currents,
which are linear superposition to the three ion channels of the classical model (sodium:
INa, potassium:IK , leakage:IL), a much broader repertoire of behavior, such as the
bursting property of pace-maker neurons in the CPG network, can be obtained. While
the intrinsic mechanisms defining the rhythmogenic properties of CPG neurons remain



unknown, there is indirect evidence for the role of persistent sodium currentINaP in
rhythmogenesis [17, 18]. Together with the sodium, potassium, and leakage current in the
original HH model, the ionic current in the pace-maker neuron consists of the following
parts:

IIon,Bursting = INa + IK + IL + INaP (3)

INa = gNa,max ·m3
Na · hNa · (Vm − ENa) (4)

IK = gK,max · n4
K · (Vm − EK) (5)

IL = gL(Vm − EL) (6)

INaP = gNaP,max ·mNaP · hNaP · (Vm − ENa) (7)

where the constantsEx (ENa = 55mV ; EK = −85mV ; EL = −55mV ) are the reversal
potentials of the ion currents, andgx (gNa = 120mS/cm2; gK = 48mS/cm2; gNaP =
13mS/cm2; gL = 3mS/cm2) the maximum ionic conductances. The dynamics of the
activation variablesmNa, nK , mNaP and inactivation variableshNa, hNaP all share a sim-
ilar form derived from the original Hodgkin-Huxley formalism. Here the simplification is
done by considering the fact that the activation variablemNaP occurs on a much slower
time scale than that ofmNa, so that the dynamics of (in-)activation variables represented
generally by x is simplified to

dx

dt
=

x∞(V )− x

τx(V )
, x ∈ {mNa, hNa, nK , mNaP , hNaP} (8)

x∞(V ) =
1

1 + exp

(
Vm − θx

σx

) (9)

τx(V ) =
τx

exp

(
Vm − λx

αx

)
+ exp

(
−Vm − λx

βx

) (10)

wherex∞(V ) is the end value of the (in-)activation variables andτx(V ) are the voltage
dependent time constants. The other termsαx, βx, λx, σx, τx, θx are constants selected
to produce time curves of the ionic conductances similar to experimental observations,
see [19].

In this model, the fast sodium currentINa with its small time constant is in charge of
the stiff rising edge of action potential, while the delayed-rectified potassium currentIK

brings the membrane voltage back to the resting status shortly after the firing. The leak-
age currentIL, with gL being a constant, is a static current accounting for the effect of
other unspecified ion types. The maximum conductance of the persistent sodium channel
gNaP,max set its weight on the total neuron behavior. If it remains under a certain threshold
value, bursting and beating properties can no longer be obtained. The activation variable
mNaP works in a similar way to that of the fast sodium current. They are both responsible
for the triggering of the action potential and the onset of the bursting activities. On the
other hand, the inactivationhNaP with its very large time constantτhNaP

(V ) is in charge
of the termination of the bursting pattern and thus determines the bursting period. By
altering the leakage reversal potentialEL, typically from -64mV to about -50mV, the neu-
ron undergoes a transition from the quiescent state, through burster, to the beater status.
Therefore, bursting is actually a gradual transitional state lying between these two ends
and we can adjust the bursting ratio of the neuron by alteringEL. For a detailed discussion
of the properties and interaction of the individual ionic currents, see [20].



4.2 Compartmental model of motoneurons

With help of experimental studies using ion channel blockers and neurotransmitters, com-
plex firing patterns have been found in the vertebrate motoneurons. The bistable firing,
which results from the interplay between several kinds ofCa2+ dependent currents, en-
ables the motoneurons to convert short-lasting synaptic inputs into long-lasting motor
output. Here we accept and use the model presented in [19].

The ion currents in soma include

IIon,Moto,Soma = INa + IK + IL + ICaN + IK(Ca) (11)

ICaN = gCaN,max ·m2
CaN · hCaN · (Vm − ECa) (12)

IK(Ca) = gK(Ca),max ·mK(Ca) · (Vm − EK) (13)

gK(Ca),max =
Ca

Ca + Kd

(14)

dCa

dt
= f(−α · ICa − kCa · Ca) (15)

and the dendrite is modeled with

IIon,Moto,Dend = ICaN + IK(Ca) + ICaL (16)

ICaL = gCaL,max ·mCaL · (Vm − ECa) (17)

This two-compartment model was developed to reproduce some of the biophysical mech-
anisms underlying theCa2+-dependent regenerative responses observed in turtle spinal
motoneurons under the injection of ion blockers. The constantsgL (0.51mS/cm2), gCaL

(0.33mS/cm2), gCaN (14mS/cm2 in soma,0.3mS/cm2 in dendrite) andgK(Ca),max

(1.1mS/cm2 in soma,5mS/cm2 in dendrite) are the newly added ion conductances of
the L-like calcium conductanceICaL, N-like calcium conductanceICaN , and the calcium-
dependent potassium currentIK(Ca). Some of the parameters in Sec. 4.1 are changed
correspondingly:EL = −65mV , gK = 100mS/cm2, gL = 0.51mS/cm2. The activation
and inactivation variablesmCaN , hCaN , mCaL follow the dynamics in accordance with
the general form given in (8) to (10). The high threshold, inactivating currentICaN allows
calcium influx during action potentials and generatesCa2+-based spikes in response to
depolarizing current steps. The calcium-dependent potassium currentIK(Ca) contributes
to the slow after-hyperpolarization (AHP) following a spike. Its activationmK(Ca) is
determined by the intracellular calcium concentration with (14), whereKd = 0.2µM de-
fines the half saturation level of this conductance. The intracellular calcium concentration
Ca follows the dynamics in (15), wheref = 0.01 describes the proportion of freeCa2+,
α = 0.0009mol · µm/C converts the calcium currentICa into Ca2+ concentration and
kCa = 2ms−1 represents theCa2+ removal rates.

4.3 Simplified model of spiking neurons

In order to overcome the prohibitive computational effort in large population simulations,
the Hodgkin-Huxley type neural models can be reduced to a two-dimensional system of
ordinary differential equations by using bifurcation methodologies. Izhikevich presented



a model which is mathematically elegant and yet retains some of the salient features of
the biological realistic firing patterns in the form:

dv

dt
= 0.04v2 + 5v + 140− u + I (18)

du

dt
= a(bv − u) (19)

with a resetting paradigm of

if v ≥ 30mV, then

{
v = c
u = u + d

(20)

v andu are dimensionless variables representing the membrane potential and the mem-
brane recovery rate originating from the activation of potassium current and inactivation
of the sodium current in the Hodgkin-Huxley model. By varying the parametersa, b, c and
d, a rich repertoire of firing patterns can be obtained with this model. The normal spiking
state of interneurons corresponds toa = 0.02; b = 0.2; c = −65; d = 2; I = 0. For a
detailed discussion on parametrization and the resulting firing behaviors, refer to [21].

5 Simulative evaluation

5.1 Modeling strategy for large-scale network simulation

The Hodgkin-Huxley model has the advantage of being able to replicate rich firing pat-
terns as observed in the biological world and having a structure that can be directly derived
from their biological counterparts, while the simplified model for spiking neurons is su-
perior in terms of computational efficiency. To combine the strength of both approaches,
we employ a hybrid model in our simulation. Since interneurons are only responsible for
signal transmission, we use the Izhikevich model to describe them, so that a larger popu-
lation with randomly distributed parameters and connection weights can be implemented.
As to the pace-maker neurons and motoneurons, the HH model is utilized to produce a
more biological realistic firing pattern.

5.2 Simulation results

We focus on the interaction of coupled pace-maker neurons in the CPG network and the
resulting rhythmogenic properties of this topology. The low-level reflex circuits shown in
Fig. 2 are not included at this stage. The model is implemented in software package NEU-
RON [22]. Differential equations of the HH-style pace-maker neurons and motoneurons
are solved using thecnexpmethod provided by NEURON. Other interneurons modeled
with the simplified model for spiking neurons are solved with thederivimplicit method
due to their nonlinear property.

The pace-maker neurons and motoneurons are modeled as concentrated elements to rep-
resent the corresponding neuron populations. Interneurons within the CPG network have
a population of ten neurons. Heterogeneity is introduced by adding randomly distributed
parameters for synaptic connection weights and delays. Simulation parameters are based
on [1, 19, 21, 23] and adjusted to produce reasonable results.



Figure 3: Modeling the effects of group Ia extensor afferent stimulation (see Fig. 2 for the different
neuron types)

A short pulse with duration of 10ms is delivered to either side of the rhythm generation
network to avoid the resonant state of the network resulting from a symmetrical initial
state. The whole network is able to synchronize automatically without external inputs
and finally settle down to the bursting frequency set by the rhythm generation neurons
RG-E and RG-F. The alternating firing pattern of the flexor and extensor motoneurons



can represent the synergic movements of the corresponding muscles during stance and
swing phase. The simulation result corresponds to a step cycle period of about 1.1s, see
the output of pace-maker neurons in rhythm generation network (RG-E, RG-F) at top of
Fig. 3.

To study how the rhythm generation network and the pattern formation network contribute
to the sculpting of the output activation patterns under group Ia afferent inputs, we apply
stimulations to different levels of the CPG with different timings. At the instants indicated
by the arrows in Fig. 3, an afferent stimulus with a duration of 500ms is applied to the
CPG. The hollow arrow indicates a stimulus to the PF-level via the interneuron PF-Ia-E,
while solid arrows represent a strong stimulus influencing both the RG and PF levels. The
output of the network in the extensor and flexor motoneurons MN-E and MN-F are shown
in Fig. 3, aligned to the intrinsic rhythmic pattern set by the RG network. In Case 1, the Ia
afferent causes a premature flexion without changing the timing of the following cycles.
Conversely, a strong extensor Ia afferent can reset the locomotion rhythm by affecting the
rhythm generation network via the sensory neuron RG-Ia-E. Notice the reversed phase
in Case 2 after the external stimulation. On the other hand, Ia afferent can induce a
prolongation of the extension phase, when the extensor motoneuron is activated (Case 3).
This simulates the scenario that the transition from stance to swing phase can be delayed
in prolonged steady load conditions. By this, the Ia afferent pathway and the CPG network
actively contribute to the body-weight support during gait.

5.3 Discussion

This computational model of CPG network consisting of biological realistic neurons is
able to generate coordinated rhythmic neural activation patterns through intrinsic mecha-
nisms, and sculpts the outputs under the modulation of sensory information. We consider
this model as a basis for subsequent modeling studies of reflex pathways and correlations
between muscle activation patterns and locomotion movements.

A further development of this model is confronted with manifold challenges. The compu-
tational capacities of current simulation tools would soon reach their limit if network level
behavior is under investigation (the current simulation needs about 30 min. to simulate
10 sec. of network behavior). Since this model is sensitive to subtle parameter changes
and possess a high dimensional space of strong interrelated parameters, without analytical
methods for the analysis of complex spiking neuron networks, application of optimization
algorithms in parameter tuning would be a difficult issue.

6 Work in progress: modeling and evaluation of CPG structures

Future application perspectives of our model include: (1) as neural controller and loco-
motion pattern generator for bipedal-walking of humanoid robots; (2) as internal model
for analysis of afferent and efferent modulations on human locomotion patterns; (3) based
on the preceding item, as human-computer-interface in neuroprosthetic applications. One
of the milestones on the way to the successful implementation of our model is the under-
standing of the synergetic interactions between the individual parts in the motor control
system (Sec. 2). Or in other words, the linkage between motoneuron firing patterns and
muscle contraction in rhythmic behaviors.



6.1 Software solutions

For the fulfillment of our research goal, we propose a simulation paradigm for closed-
loop systems of locomotor control (Fig. 4). With respect to the simulation of biologi-
cal realistic spiking neurons and their networks (see [24] for a comprehensive review),
which serves as controller and coordinator in the whole system, software specialized for
this application (e.g. NEURON) outperforms the general purpose simulation programs.
They provide tailor-made numerical integration methods and prefabricated functions and
classes describing various neural mechanisms and entities. SIMM is a commercially
available software package for simulation and visualization of musculoskeletal models.
MMS (Musculoskeletal Modeling in Simulink) [25] can translate the models developed
in SIMM into Simulink blocks. The transformation from neural activation signal to mus-
cle forces can be done by Virtual Muscle [26]. For visualization and analysis of neural
spike trains and muscle EMG signals serves the Gait-CAD toolbox [27]. Human data
can be incorporated into the closed loop system for parameter training and evaluation of
simulation results. A related data set is discussed in the next section.

Figure 4: Possible simulation strategy for closed-loop systems of locomotor control

6.2 Human data

Data of human walking has been recorded from a 25-year-old female subject who walks
on a treadmill with a speed of 1.1 m/s in the locomotion lab at the Orthopädische Univer-
sitätsklinik Heidelberg. Kinematic data which includes the joint angles of foot, knee, hip,
pelvis, trunk, shoulder, and elbow in the sagittal, transversal and frontal planes is recorded
with a commercially available 3D motion analysis system developed by Motion Analysis
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Figure 5: Examples of gait data: joint angles of the left and right knee in the sagittal plane,
electromyographic signal of the left and right m. rectus femoris, and detected gait events for the
left and right heel strike (top down)

Corp., USA with a sampling rate of 60 Hz. The hardware platform is described in [28].
In parallel to the kinematic data, EMG signals from the following muscles of both legs
are recorded with a sampling rate of 960 Hz: m. gastrocnemius, m. tibialis anterior, m.
biceps femoris, m. rectus femoris.

The following data preprocessing procedures are carried out:
• Gait events like heel strike (LHS, RHS) and toe off (LTO, RTO) at left and right side

are detected.
• Joint angles are resampled at 960 Hz and low-pass filtered using a 1st order Infinite

Input Response (IIR) filter witha = 0.9.
• Electromyographic signals are band-pass filtered using a 5th order Butterworth filter



with edge frequencies of 10 Hz and 350 Hz. The signals are further rectified and
low-pass filtered by a 1st order IIR filter witha = 0.95.

Some selected results are presented in Fig. 5.

This human walking data provides information about gait events and triggering signals,
which can be used to tune the parameters of the CPG network for the generation of more
realistic muscle activation patterns. Furthermore, systematic analysis of differences be-
tween the recorded and the estimated muscle activations can be carried out using the
methods from [29]. We also plan to obtain data of different walking speeds from the
same subject and use them to analyze the influence of walking speed and temporal speed
gradient on muscle activation patterns.

7 Conclusion

In this paper we gave an overview about the research done to identify the neurological
structures which are responsible for the generation of rhythmic activation patterns for lo-
comotion. Then the structure and components of these central pattern generators were
elucidated and a simulation model, which has been implemented using NEURON, was
introduced. This model will be used for further evaluations of human EMG data and
locomotion, based on which it will be adapted for further uses in research for neuropros-
theses and in the field of humanoid robotics.
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