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Abstract— A real-time vehicle motion planning engine is
presented in this paper, with the focus on exploiting the prior
and online traffic knowledge, e.g., predefined roadmap, prior
environment information, behaviour-based motion primitives,
within the space exploration guided heuristic search (SEHS)
framework. The SEHS algorithm plans a kinodynamic vehicle
motion in two steps: a geometric investigation of the free space,
followed by a grid-free heuristic search employing primitive
motions. These two procedures are generic and possible to
take advantage of traffic knowledge. In this paper, the space
exploration is supported by a roadmap and the heuristic search
benefits from the behaviour-based primitives.

Based on this idea, a light weighted motion planning engine is
built, with the purpose to handle the traffic knowledge and the
planning time in real-time motion planning. The experiments
demonstrate that this SEHS motion planning engine is flexible
and scalable for practical traffic scenarios with better results
than the baseline SEHS motion planner regarding the provided
traffic knowledge.

I. INTRODUCTION

In context of autonomous driving, vehicle motion planning
is rather different from common robot motion planning
problems. The generic robotic motion planning concentrates
on exploiting the high dimensional configuration space of
a robot with many degrees of freedom [1], while vehicle
motion planning deals with nonholonomic constraints in a
relatively low dimensional configuration space [2], which
is a combination of a two-dimensional position (x,y) and
orientation θ . Furthermore, most industrial robot tasks are
repetitive in a relatively static environment with few human
interactions. Therefore, the planning can be offline, and have
plenty time to search for a cost-efficient solution. In contrast,
an autonomous vehicle carries out its motion in daily traffic
involving human drivers and passengers. The environment
is dynamic and the interactions happen in runtime, which
require the planner not only to find a solution to reach the
goal, but also to plan a suitable motion according to the traffic
rules and human convenience. And the whole procedure must
be online.

In order to build such an online traffic-knowledge-aware
autonomous motion agent, the motion planner needs to
handle information such as roadmaps, traffic signals, human
preferred driving manners, etc., which are generally called
Traffic Knowledge in this paper. Other than the “hard”
constraints from the physical constraints such as collision
and kinodynamic limitations, some of those requirements
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Fig. 1. Motion planning for navigating through a car park. Start (green
frame), goal (red frame), prior knowledge of static obstacles (grey) and
a roadmap (red) are provided. The initial result from SEHS engine (dark
green line) is adapted (light green line) after detecting an obstacle (yellow).

are rather “soft” as optimization criteria for post-processing.
However, such information may help the planning in the
first place as additional constraints or heuristics for a faster
convergence or a better result. Further discussion and intro-
duction of related works are conducted in Section II.

Space exploration guided heuristic search (SEHS), as
introduced in [3], has two phases. The space exploration part
takes circles to flood through the free space and constructs
a path corridor, called Circle-Path, from the start position
to the goal position. Then, the heuristic search procedure
employs this circle-path as heuristics to propagate states
using primitive motions and searches for a sequence of
motions to reach the goal. With the help of circle-path
as direction and step-size guidances, the heuristic search
achieves excellent performance in a grid-free manner. In
this paper, the SEHS algorithm is taken as the core of the
online motion planning engine, which in addition considers
the traffic knowledge and updates the vehicle motion in real-
time. Details are presented in Section IV and III.

The goal of the SEHS motion planning engine is to
solve the motion planning problem in more realistic traffic
scenarios as demonstrated in Figure 1. The vehicle should
navigate through a car park to a certain location, where
it can automatically park into a free parking slot. As the
environment is semi-structured, a roadmap is predefined. And
the vehicle is required to follow the roadmap while driving
inside the park. The sensing range of the vehicle is limited.
Therefore, the planning engine needs to verify the planned
motion against live detected objects and update the motion
in time when necessary. More examples are demonstrated in
Section V.



II. RELATED WORK

In general context of robotic motion planning, the motion
planning of nonholonomic mobile robot is well studied. The
geodesic of the configuration space, i.e., the shortest path
without considering the collisions, is provided in [4] for
forwards driving, [5] for bidirectional driving and [6] if the
driving curvature is continuous. These results can be used as
the configuration space metric in random sampling methods
such as [7] [8] and their advanced variations. They can also
be regarded as heuristics for the grid-based search methods
like [9]. Besides, the kinodynamic or dynamic model can
be directly exploited by RRT-based methods [10] [11] or
control-based approaches [12] [13]. However, these algo-
rithms concern mainly about the kinematic or kinodynamic
constraints of the robot and the collisions with obstacles. In
practical autonomous driving applications, other aspects have
to be evaluated, such as traffic rules, energy consumption,
human convenience, etc. And the planner must produce the
result online, that a motion either reaches the goal or brings
the vehicle to a safe state if the goal is unreachable.

A solution is decomposing a traffic scenario into a number
of well specified driving tasks, e.g., following, overtaking,
turning, parking. And each driving task can be further
broken down into sub-tasks until some primitive motions or
behaviours are reached. These atomic manoeuvres can be
performed with behaviour-based methods and combined to
achieve a complex mission [14]. The development of ad-
vanced driver assistant systems started just from these small
building blocks, such as adaptive cruise control, lane change
assistant, collision avoidance system, parking assistant, etc.
However, the integration of these sub-functions in a unified
framework usually leads to a hierarchical architecture, which
increases the complexity of the overall system and requires
sophisticated configurations of the components according to
different traffic situations. In [15], different configurations of
the sub-modules are designed for intersection handling and
lane driving. Another approach is to do the planning first
in the common way and then optimize the result according
to the additional requirements. In [16], a roadmap is built
regarding the environment topology and safety distance. The
path is smoothed with a cost function including the deviation
cost from the roadmap. However, the result could be a local
optimum in contrast to one from a method which considers
the roadmap in the planning phase.

In real-time applications, the planner operates with per-
ception and control modules. In the “Sensing, Planning,
Acting” paradigm, the three components run in a sequential
manner with the assumption that each one is fast enough
to produce inputs for the subsequent module. To be “fast
enough” is a big challenge in the implementation for online
motion planning. However, the timing condition for planning
can be relaxed if the system guarantees that the vehicle is
always in a safe state during the planning and even when
the planning result is negative. These aspects are not always
explicitly discussed, but rather regarded as engineering de-
tails [17] [18] [19].

III. TRAFFIC KNOWLEDGE

The traffic knowledge is a general concept proposed in this
paper, which stands for all kinds of information related to
the vehicle motion, e.g., road networks, traffic signs, common
driving behaviours. Two kinds of traffic knowledge are taken
as examples to show the flexibility and extensibility of the
SEHS framework, which is able to take benefit directly
in the planning phase. The space exploration evaluates the
geometric properties of the free space. The roadmap already
contains certain topological knowledge, which can accelerate
the initial exploration. The heuristic search takes primitive
motions for the states propagation. A good choice of the
atomic motions will dramatically improve the search perfor-
mance and produce more human desirable results.

A. Roadmap

The space exploration can be initialized with a roadmap. In
practice, not all the physically free space is allocated for the
vehicle motion. A vehicle is supposed to stay in its lane. And
a lane shift is performed only when necessary. However, this
behaviour is not easy to accomplish by the motion planning
alone. Usually, an extra intelligent entity needs to evaluate
the traffic situation and decide whether it is suitable to swing
out or go back into the lane. In SEHS motion planning, if the
initial exploration is constructed according to a roadmap, it is
more likely to obtain a roadmap oriented motion. Meanwhile,
the planner still has the possibility to explore and search in
the free space to avoid collisions.

Fig. 2. Roadmap based space exploration in a car park scenario: A roadmap
consists of way-points (red dots) and connections (red lines). The circle-path
based on the roadmap (blue circles) compares with the circle-path without
considering the roadmap (yellow circles).

In this paper, the roadmap is defined with a graph of way-
points. The graph vertices are way-points in 2D coordinates.
The graph edges are line segments connecting them. Without
loss of generality, the start and goal positions are assumed
to be inside the space exploration circles of the way-points.
The according way-points are treated as the start and goal
in a shortest path problem to get a roadmap path. Then,
circles are created at these way-points to construct a circle-
path, as the blue circles in Figure 2. If an edge is too long
for the neighbouring circles to overlap, it is interpolated for
intermediate circles. Figure 2 also shows another advantage
of roadmap aided space exploration. The yellow circles are



the result from space exploration without considering the
roadmap, which is suboptimal for the motion planning task.
This indicates the roadmap knowledge can also contributes
to the correctness of the exploration result.

After the roadmap based space exploration, the SEHS
planner carries on to verify the initial circle-path against the
live sensing inputs and updates the circle-path incrementally
if necessary. Examples of the roadmap aided SEHS motion
planning are demonstrated in Section V.

B. Driving Behaviour

A primitive motion is a combination of control inputs that
defines an atomic transaction between vehicle states. In the
SEHS framework, the length of a primitive is calculated re-
garding the circle size. Other parameters such as acceleration
and steering just take a simple metric, which is invariant
throughout the planning. It is possible to adapt this trivial
lattice to different driving behaviours to improve the search
efficiency.
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Fig. 3. Steering behaviour based on SEHS circle positions. α is the angle
for the next circle O1 at the point P. β is the angle for the after next circle
O2 at the point O1. The arrow shows the combined driving direction at P.

Figure 3 shows an example of determining steering be-
haviours based on the relative circle positions. In this case
the next two circles are considered. If the current state is at
the point P, the optimal driving direction to reach the next
circle O1 has an angle α , which varies abruptly when the
next circle changes to O2. Therefore, the angle β between
O1 and O2 is taken as a revision. Assuming the length of PO1
is d and the radius of O1 is r. The desired driving direction
θ at P can be calculated with the Equation 1. The value of
θ is linear between α and β according to the distance d. k is
a constant factor. Thus, the vehicle travels towards the next
circle when it is far away and gradually steers to the after
next circle when it is getting closer.

θ = β +(α −β )
min(d,kr)

kr
, k ≥ 1 . (1)

Thus, every state in SEHS heuristic search obtains a
desired driving direction from the circle-path. By comparing
this direction with its own steering and driving direction,
a driving behaviour is chosen from left, right steering
and straight driving, which have none uniform primitive
motion lattices as Figure 4. In this paper, the behaviour-
based steering lattices are created with the help of normal
distributions. The SEHS planner obtains more states in the

desired direction with a finer resolution. Of course, the
motion lattice can also be modified in the dimension of
acceleration by comparing the current vehicle velocity with
the desired speed.

steering

acceleration

Fig. 4. Behaviour-based steering motion primitives: X-axis is for steering.
Y-axis is for acceleration. The blue dots are straight driving; the green
triangles are left steering; the red rectangles are right steering. The dashed
lines are the according mean values.

More natural primitive motions can be created with a
close study of the human driving behaviours. The SEHS
planner provides information in the space exploration phase
to choose the right primitive in the heuristic search, which
improves the heuristic search efficiency and produces more
human like motion result.

IV. SEHS MOTION PLANNING ENGINE

The SEHS motion planning engine encapsulates the SEHS
framework and provides interfaces to the traffic knowledge.
The space exploration exploits the roadmap knowledge with
the prior environment model. The heuristic search adapts the
motion primitives to the vehicle states and the circle-path
with steering behaviours. These two procedures are managed
by the engine to operate in different modes, such as planning,
replanning and verification.

A. Engine Components

The components of the SEHS motion planning engine is
illustrated in Figure 5. They are divided into three types: the
planning components, which perform the SEHS algorithm;
the knowledge components, which provide information about
the traffic situation, the vehicle model and driving be-
haviours; the management component, which controls the
operation of the engine.

The planning components are the core of the planning
engine. The two steps of the SEHS algorithm can be per-
formed separately for specific tasks. For example, the Space
Exploration can be used to detect environmental changes
which may trigger a replanning. The Heuristic Search can
be employed to verify a planned motion.

The knowledge components are the interfaces to the prior
knowledge and the real-time sensing. The Road Map com-
ponent contains the information of the road network, which
is a database obtained from navigation system or Car-to-
Infrastructure communications. The Behaviour component is
a list of driving behaviours with the according conditions.
The Vehicle Model contains the kinematics or dynamics
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Fig. 5. SEHS motion planning engine components: The knowledge compo-
nents (ellipses) and the planning components (rectangles) are encapsulated
in the engine (dashed box), which has management functionalities.

model of the vehicle with the limits of the control parameters.
The Environment component consists of prior and post
models of the environment and offers the collision check and
distance query services. The prior environment knowledge is
used to initialize the space exploration based on the roadmap,
while the post detections are referred during the incremental
updating of the circle-path. As the prior obstacles are static,
the planned motion verification only need to consider the
post detected objects, which saves a lot effort in collision
check.

The management component takes care of two things: the
timing and the operation mode in order to achieve an anytime
safe motion guarantee with minimum working load. The
idea is that an update is only necessary when the motion is
invalid, e.g., a collision is detected, or the motion is no longer
optimal. The first situation is easy to check by verifying
the planned motion against the real-time environment. The
second one is almost as difficult as replanning. However,
with the help of space exploration, it is easy to answer this
question in certain circumstances. If an optimal motion is
found within a circle-path, this motion is still optimal if the
new circle-path is enclosed in the older one. In addition,
according to the roadmap, if an previous invalid way-point
is valid in the new circle-path, there could be a better solution
according to the roadmap criterion. Thus, the engine is able
to avoid redundant replanning by doing motion and circle-
path verification instead. When a replanning is required, the
SEHS planner can proceed incrementally with the knowledge
gathered in the previous iterations, which is discussed in the
next subsection.

B. Engine Operation

As mentioned above, the engine may have different op-
eration modes: planning, verification and replanning. The
planning procedure is the basic routine of SEHS motion
planning as presented in [3]. When a planning result is avail-
able, the vehicle begins to execute the planned motion. The
motion planning engine starts a verification thread to make
sure the motion is always safe until the goal is reached. If
not, a replanning thread is triggered. The verification thread

runs synchronously with the environment perception, while
the replanning is asynchronous. The states flow diagram is
illustrated in Figure 6.

Planningstart

Verification Replanning

Stop

success

failed valid

invalid

reach goal success

failed

Fig. 6. SEHS motion planning engine states diagram.

In the verification procedure, the circle-path is evaluated
by updating the radius of the circles, which could result in
three situations as follows:

1) A gap is found in the circle-path, the replanning thread
starts with incremental space exploration to fill the gap
and proceeds with the incremental heuristic search.

2) The new radii are no larger than the previous ones,
i.e., the new circle-path is enclosed by the old one.
An incremental heuristic search starts only when a
collision exists in the planned motion.

3) If a change of the circle-path involves a way-point, a
replanning is started all over from the roadmap based
space exploration.

The incremental heuristic search is realized by reusing the
states propagation result from the last planning procedure.
The state tree is updated first by removing the branches from
the states in the past and the states outside the current circle-
path. The costs of the rest states are updated according to the
current space heuristics. The collisions are verified in a lazy
manner, which only happens when the node is investigated
for expansion. Thus, a large amount of time could be saved
during the replanning.

An important issue of the motion planning engine is the
time limit for the replanning. Instead of a fixed time duration
for each planning operation, the SEHS engine intents to give
the planner as much time as possible. This is achieved with
the idea of the safe motion. Through verification, the engine
knows when a collision could occur. The planned motion is
truncated before that point and appended with a safe motion,
which is usually a pull over and brake manoeuvre. Thus,
any internal state from current to the beginning of the safe
manoeuvre can be chosen as the start state for the replanning.
And the whole time duration to the start state is available for
the replanning. A trade-off should be made here between the
time and space for replanning. Because a longer planning



(a) SEHS motion planning without traffic knowledge

(b) Roadmap and behaviour-based primitives aided SEHS motion planning

Fig. 7. Overtaking Scenario: The green and red frames are the start and goal respectively. The moving obstacles are modelled as a long yellow rectangle
when considering its velocity and a safety margin. The roadmap is in red. The circle-path and state propagation are in blue. The result motion is in green.

time means a closer start state to the obstacle, which results
in less space for replanning, and vice versa.

V. MOTION PLANNING SCENARIOS

Two scenarios are evaluated with the SEHS motion plan-
ning engine. The first example is a revisit of the overtaking
scenario in [3], which demonstrates the traffic knowledge
aided SEHS motion planning. The second case is a naviga-
tion scenario through a car park as introduced in Section I.
In this scenario, the sensing range of the vehicle is limited to
show the real-time collision avoidance and replanning capa-
bility of the motion planning engine. The implementation is
in C/C++ and executed on a PC with an Intel R© CoreTM i7-
870 2.93GHz processor and 8GB RAM.

A. Overtaking

As illustrated in Figure 7, the road has two lanes with the
same driving direction. A slow vehicle is driving in front of a
fast vehicle on the right lane. The fast vehicle should overtake
the slow vehicle to reach the goal position. The slow vehicle
is modelled as a long yellow rectangle obstacle regarding
the speed and a certain safety margin. The speed of the fast
vehicle is 20ms−1 and the steering speed is 0.2m−1 s−1,
which is the change rate of the trajectory curvature.

A general human driving behaviour in this case is first
performing a lane shift to the left, bypassing the slow vehicle,
and then switching back to the right lane. The baseline SEHS
planner explores the whole free space and uses uniform
distributed motion primitives in the search. Figure 7(a) shows
that it drives the vehicle in the middle of the road, where
is optimal regarding the distance to obstacles. In contrast
the roadmap aided SEHS engine planner with behaviour-
based primitives stays mostly inside a lane, and make lanes
switches only at the begin and end of the overtaking ma-
noeuvre in Figure 7(b), which compliances better to human
behaviour and traffic rules.

Table I compares the performance of four variations of
SEHS planners: the baseline version, the behaviour aided
version, the roadmap aided version and the both traffic
knowledge version. The time costs for space exploration
and heuristic search are listed. The memory requirement is
evaluated by the number of nodes in the heuristic search.
The values are the averages of 20 simulations with random
sampled start and goal positions in the defined regions.

TABLE I
EVALUATION OF TRAFFIC KNOWLEDGE AIDED SEHS MOTION PLANNING

Method SE Time (ms) HS Time (ms) Nodes

Baseline SEHS 3 22 620
Behaviour SEHS 3 16 495
Roadmap SEHS 1 76 2204

Behaviour + Roadmap 1 31 1151

Comparing the baseline SEHS and the driving behaviour
aided SEHS, the behaviour-based motion primitives reduced
the number of search nodes, which results in a shorter
search time. The roadmap aided SEHS takes less time in
space exploration, because the initial circle-path is obtained
from the roadmap. However, it takes more effort in heuristic
search to generate a roadmap oriented motion. Combing the
roadmap and driving behaviour knowledge, the number of
heuristic search nodes is reduced to a half for this scenario.

B. Car Park

In the car park scenario, a semi-structured park environ-
ment is provided as the prior knowledge, which contains the
static obstacles (grey) and a roadmap (red). An additional ob-
ject (yellow), which is not prior known, blocks the roadmap.
The vehicle drives with a maximum speed of 3ms−1 and has
a sensing range of 12m, i.e., it can only detect the object
within a maximum distance of 12m. Therefore, the motion
planning engine should be able to replan the motion in time
to avoid the collision and still reach the goal.

The result is illustrated in Figure 8. The initial planning
takes 1ms in space exploration, which is mainly based on the
roadmap. Then, a motion is planned close to the roadmap,
which is the dark green line on the right. The whole initial
planning procedure takes under 200ms.

When the vehicle carries out the planned motion, the ver-
ification thread is running. Each verification takes just 1ms,
as it only verifies the circle-path and checks collision along
the trajectory regarding the post detected objects. As soon
as the obstacle is detected, the trajectory becomes invalid
and a collision is predicted in 5.44s according to the vehicle
motion. The trajectory is truncated and an intermediate point
is chosen as the start state for replanning. In this case, the
replanning has a time margin of 200ms. The rest trajectory



Fig. 8. Motion planning for a vehicle navigation through a car park with
prior known static obstacles (grey) and a post detectable objects (yellow). A
roadmap (red) is provided to aid the space exploration (light blue circles).
The sensing range of the vehicle is limited. The SEHS engine plans a
path (dark green line) from start (green frame) to goal (red frame), and
updates the motion (light yellow circles and light green line) when the
obstacle is detected.

is modified for a decelerate to stop manoeuvre before the
collision. While the vehicle keeps driving along the truncated
trajectory, the planner carries out the incremental SEHS
motion planning. The incremental space exploration takes
2ms. The whole replanning duration stays in 100ms range.
A new path is found as the light green line left around the
obstacle.

In this case, we see that the SEHS motion planning engine
can online adapt the vehicle motion to environment changes.
No periodic replanning takes place here, but with the help of
a fast verification thread, the replanning happens only when
necessary. Furthermore, a backup plan is always ready to
bring the vehicle to a safe state even when the replanning
fails.

VI. CONCLUSION AND FUTURE WORK

The basic SEHS motion planning framework is extended
to exploit traffic knowledge in the planning phase. The
roadmap orients the vehicle motion to the road network.
The driving behaviour based motion primitives improve the
efficiency of the vehicle states propagation. Thus, the traffic
knowledge aided SEHS motion planner can produce better
vehicle motions regarding the traffic scenarios. And a motion
planning engine is developed to integrate all the components
and take care of the real-time execution. It provides interfaces
between traffic information sources and the motion planner:
the navigation system updates the roadmap; the sensing
module models the present environment; flexible motion
primitives are chosen based on the vehicle state and human
driving behaviours.

This paper focuses on the general structure and procedure
aspects of traffic knowledge aided motion planning. There
are still many detail work to do. For example, the motion of
the obstacles could be considered to model tracked moving
objects. The roadmap can contain more information such as
speed limit, traffic priority, lane driving direction, etc. More
advanced motion primitives can be designed according to
the study of the behaviour of human drivers. Furthermore,

there are still other traffic knowledge available such as
traffic light signals, information exchange through Car-to-
Car communication and so on. The two generic stages of
SEHS motion planning provide the possibility to integrate
these knowledge into different phases of the intelligence of
autonomous driving.
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