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Abstract— Due to the nonholonomic constraints of the vehicle
kinematics, parking and maneuvering a car in a narrow
clustered space are among the most challenging driving tasks.
This paper introduces an extended version of Space Exploration
Guided Heuristic Search (SEHS) method, called Orientation-
Aware Space Exploration Guided Heuristic Search (OSEHS), to
solve the path planning problems for parking and maneuvering.
This method considers the orientation of a vehicle in the
space exploration phase to achieve knowledge about driving
directions. Such information is exploited later in the heuristic
search phase to improve the planning efficiency in maneuvering
scenarios. This approach is not bound to the specific domain
knowledge about a parking or maneuvering task, but obtains
the space dimension and orientation information through a
generic exploration procedure. Therefore, it is convenient to
integrate the maneuvering ability into a general SEHS motion
planning framework. Experiments show that the OSEHS ap-
proach produces better results than common random-sampling
methods and general heuristic search methods.

I. INTRODUCTION

Parking a car into a small parking lot and maneuvering
it through a narrow corridor are rather common driving
scenarios in a clustered urban environment. Because of the
nonholonomic constraints as a limited steering radius, the
lateral motion of a vehicle is restricted and the orientation
cannot be changed without a longitudinal movement. An
advanced driver assistance system (ADAS) is extremely
helpful to human drivers in these situations with respect
to safety, efficiency, and convenience. Motion planning for
parking and maneuvering tasks plays an important role in
such ADAS and is an essential milestone to achieve fully
automated driving.

The automobile industry has already brought some pas-
sive assistant functions such as parking distance control or
360◦ top-view to the market to help the driver with the
limited field of view. Recently, more active features have
been developed, which take over the steering or even the
acceleration and braking during a parking maneuver. These
functions are carefully designed for well-defined tasks and
therefore lack the flexibility to solve a general maneuvering
problem. On the one hand, it is hard to identify a specific
maneuvering situation to apply a particular algorithm. On
the other hand, a general motion planning method is inef-
ficient for such specific problems. This paper introduces a
heuristic search approach which extends the generic Space
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Fig. 1. Path planning for maneuvering with Orientation-Aware Space
Exploration Guided Heuristic Search (OSEHS): A path planning problem
is defined with a start pose (red vehicle frame), a goal pose (green vehicle
frame), and prior knowledge of the static environment (grey). The space
exploration returns a circle-path with directed circles (circles with line
segments indicating the orientations), including the possible maneuvering
region (orange circles) and the possible driving directions as forward (cyan
circles) and reverse (violet circles). A maneuvering motion (green line)
is planned by the heuristic search algorithm with the space and direction
information.

Exploration Guided Heuristic Search (SEHS) framework [1]
to deal with general parking and maneuvering problems.

The SEHS method consists of two steps: The first one is
called Space Exploration, which explores the workspace with
circles for a path corridor that consists of overlapping circles,
called Circle-Path. The circle-path provides knowledge about
the topology and dimension of the free-space. In the second
stage, a Heuristic Search algorithm performs a forward
search along the circle-path while adapting the search steps
to the circle size. Thus, the SEHS method convergences
efficiently to a solution with a trade-off between path length
and safety distance. However, as the vehicle orientation
and kinematics are ignored in the exploration phase, the
distance estimation from a circle-path may be sub-optimal
when extra maneuvering effort is required. In this paper, the
space exploration is further developed to consider the vehicle
orientation in addition to the knowledge about driving direc-
tions. As a result, the Orientation-Aware Space Exploration
Guided Heuristic Search (OSEHS) planner can identify the
area where extra maneuvering is required with suggested
driving directions as shown in Fig. 1. By modifying the
cost function or selecting the primitive motions, the heuristic
search algorithm improves the performance of path planning
for parking and general maneuvering tasks.

II. RELATED WORK

During parking or maneuvering, the vehicle dynamics
are less relevant, but the nonholonomic constraint of the
minimum steering radius of a vehicle. In such a scenario, the
driving speed is relatively slow and even steering at standstill
is possible. A system like this is locally controllable [2],
therefore, a path corridor in the configuration space guar-
antees the existence of a valid motion inside this passage.
In case of parking or maneuvering, such a configuration



space passage is usually narrow and hard to obtain in a
clustered environment. A potential-based method may be
trapped in local minima and sampling-based methods are
inefficient to explore through the narrow passage [3]. The
grid-based heuristic search method [4] faces the trade-off
between completeness and efficiency, while a narrow passage
requires a fine resolution to resolve the short maneuvering
motions. Furthermore, a heuristic estimation based on the
grid distance provides little information about the driving
direction during the maneuvering, especially when a vehicle
should move back and forth at the same spot to adjust its
orientation. Several methods are proposed to deal with the
narrow passage problem in workspace [5], [6], [7], [1] with
space decomposition or exploration approaches. However,
the robot orientation and moving direction are not examined
in these methods.

The parking problem can be solved with a behavior-based
method if the system has sufficient prior knowledge about a
well-defined parking scenario. In [8], an iterative method is
proposed to steer a vehicle with sinusoidal functions into a
parking lot. Collision avoidance is implemented based on the
measurement from ultrasonic distance sensors. [9] and [10]
apply a two-step approach, which first plans a collision-
free curve without considering the vehicle kinematic and
then converts this curve to a feasible trajectory. In [11]
and [12], a path for parking is planned with a pre-defined
schema for a specific scenario. In order to provide a unified
method for different parking situations, [13] suggests an
RRT-based algorithm. However, the drawback of random
sampling methods is the uncertainty in path quality and
planning time. [14] transforms the path planning problem to
a local static optimization problem and iteratively constructs
the solution with a heuristic to change driving directions.
Most of these methods are specially designed for parking
scenarios and are difficult to integrate into a general motion
planning framework.

In [15], it is demonstrated that the SEHS method can be
customized for specific traffic scenarios by modifying the
exploration circles and primitive motions. This flexibility
is further exploited in this paper to obtain the orientation
knowledge and the according heuristics for maneuvering. In
Section III, an orientation-aware space exploration procedure
is introduced. Section IV presents several modifications of
the heuristic search to make use of the orientation knowledge.
The whole OSEHS framework is verified in Section V with
three examples and compared with the results from three
reference methods.

III. ORIENTATION-AWARE SPACE EXPLORATION

In SEHS, the space exploration algorithm treats a vehicle
as a holonomic robot without orientation. It can directly
move from the center point of one circle to another. In
case of clustered environments, the circle-based space ex-
ploration will create a circle-path that arbitrarily changes
the moving direction to achieve the shortest path corridor.
Furthermore, the space exploration terminates when a circle
reaches the goal position, regardless of a mismatch between

Algorithm 1: SpaceExploration(cstart,cgoal)

1 Sclosed← /0;
2 Sopen←{cstart};
3 while Sopen 6= /0 do
4 ci← PopTop(Sopen);
5 if f [cgoal]< f [ci] then
6 return success;

7 else if !Exist(ci,Sclosed) then
8 Sopen← Expand(ci)∪Sopen;
9 if Overlap(ci,cgoal) then

10 if f [ci]< g[cgoal] then
11 g[cgoal] = f [ci];
12 parent[cgoal] = ci;

13 Sclosed←{ci}∪Sclosed;

14 return failure;

the final traveling direction and the goal orientation. These
facts increase the discrepancy between the estimated circle-
path distance and the actual motion distance, which re-
quires additional search effort to close the gap. The idea of
orientation-aware space exploration is to consider the robot
orientation as the orientation of the circles with respect to
the exploration direction. In this case, the traveling direction
can be distinguished between forward and reverse.

Algorithm 1 is the algorithm for space exploration in
SEHS [1]. It follows the standard heuristic search procedure
with a closed set Sclosed and an open set Sopen. The heuristic
cost h is the Euclidean distance to the goal cgoal, while the
actual cost g is the distance from the start cstart via the
circle centers. In each iteration, the circle ci with the least
total cost f = g+ h from the open set is chosen. If it does
not exist in the closed set, child circles are expanded on
the selected parent. The child circles are added to the open
set and the parent circle is moved to the closed set. If the
function Overlap(ci,cgoal) found a circle overlapping with
the goal circle, the cost to reach the goal is updated. The
algorithm repeats until the goal cost is smaller than the total
cost of any open set circles. Then, a circle-path is generated
through backtracking. Several subroutines should be modi-
fied to perform the space exploration in an orientation-aware
manner.

The function Expand(ci) calculates the center point and
radius of a child circle, as well as the orientation. As
demonstrated in Fig. 2, the orientation is defined by a vector
connecting the parent and child center points. Regarding
the parent orientation, the angle with a smaller difference
in [−π/2,π/2] is selected for the orientation of the child
circle. The driving direction is determined by the relative
orientation and position between the parent and child circles.
Furthermore, different margins can be applied in the longi-
tudinal and lateral directions of a directed circle to decide
the circle radius in narrow space. As a result, the circle-
path provides more precise space information for the specific



O

Fig. 2. Orientation-aware circle expansion: The arrows indicate the
directions of the circles. The parent circle is in black and expands children
at uniformly interpolated center points. The direction of a child is decided
by the relative position of the center point. Based on the orientation, the
driving direction of a circle is decided as forward (blue) and reverse (red).

driving direction.
The heuristic distance metric should also consider the

orientations (1). ‖~pi−~p j‖ is the Euclidean distance between
the center points ~pi and ~p j. |θi− θ j| is the absolute angle
difference bounded in [0,π/2]. Assuming a vehicle has
a maximum turning curvature of k, the traveling distance
required to change its orientation about |θi− θ j| is greater
or equal to |θi−θ j|/k. Therefore, the maximum of the two
types of distance returns an admissible heuristic estimation.

di, j = max(‖~pi−~p j‖, |θi−θ j|/k) (1)

The function Exist(ci,Sclosed) checks the geometric rela-
tionship between the circles to skip redundant ones during
the exploration. In SEHS, a circle is skipped when its center
locates inside an existing circle, as it can be covered by
the circle and its descendants. The OSEHS determine this
relationship also regarding the orientation. According to the
distance function (1), the equal distance points of a directed
circle form the surface of a cylinder in a three dimensional
space of (x,y,θ), as illustrated in Fig. 3. Thus, if another
circle is centered inside a cylinder regarding a closed set
circle and its radius, it is redundant in the exploration.
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Fig. 3. Geometric relationship between the directed circles. The circle O0
has a radius of r and an orientation of θ0. All the states closer than a
distance r to it lie in the cylinder centered at O0 with a radius r and a
height 2rk. k is the maximum curvature of the vehicle. O1 is redundant
to O0, as its state is inside the cylinder of O0. O2 is not redundant, despite
its center point is inside the circle O0 when projected to the x-y plane.

(a) Space exploration of SEHS method (bird view)

(b) Space exploration of OSEHS method (bird view)

(c) Space exploration of OSEHS method (side view)

Fig. 4. Space exploration of SEHS and OSEHS methods: The brown
circles are the circles evaluated during the space exploration. The directed
circles are illustrated in a three dimensional space with the orientation angle
as the z-axis. The orientation is also indicated with a line from the circle
center.

With the modifications above, the space exploration of
OSEHS creates more circles than the general SEHS, as
shown in Fig. 4. Comparing the top views of the exploration
results in Fig. 4(a) and Fig. 4(b), the SEHS explores a
larger portion of the workspace with less circles, while
the orientation-aware version concentrates on a smaller
neighborhood of the circle-path. This is more obvious in
Fig. 4(c) with the side view of the directed circles in the
three dimensional space. As the distance function penalizes
direction changes of the circles, the result is a compromise
between the Euclidean distance through the circle centers and
the cost of orientation changes along the directed circles.

IV. ORIENTATION-AWARE HEURISTIC SEARCH

The output from the orientation-aware space exploration
is a sequence of directed circles. A preprocess is performed
with the circle-path to decide the possible driving directions
and the maneuvering regions. If the direction vector points
to the next circle, forward driving is preferred, otherwise
reverse driving is suggested. Due to the limited turning
radius, a vehicle cannot always follow the direction of
the circles. When a vehicle travels a distance d with a
curvature k, the orientation change is d×k. Therefore, if the
orientation difference between two adjacent circles is larger
than kmax proportional to the Euclidean distance between the
centers, extra maneuvering in these circles is expected to
follow the circle-path, which means both forward and reverse
driving should be performed. After the preprocess, the circles
are specified with three possible driving directions: Forward,
Reverse and Bidirectional. Different primitive motions and
cost functions are applied for the three situations.

Algorithm 2 is the general search procedure of SEHS,
which is similar to the exploration algorithm and replaces
the circles with vehicle states. The heuristic estimation is
calculated according to the distance along the circle-path.



Algorithm 2: HeuristicSearch({ci},~qstart,~qgoal)

1 Sclosed← /0;
2 Sopen←{~qstart};
3 while Sopen 6= /0 do
4 ~qi← PopTop(Sopen);
5 if f [~qgoal]< f [~qi] then
6 return success;

7 else
8 ci←MapNearest(~qi);
9 if !Exist(~qi,ci,Sclosed) then

10 Sopen← Expand(~qi,ci)∪Sopen;
11 if h[~qi]< Rgoal then
12 GoalExpand(~qi,~qgoal);

13 Sclosed←{~qi}∪Sclosed;

14 return failure;

State expansion Expand(~qi,ci) is done with primitive mo-
tions. Furthermore in each iteration, the chosen state ~qi is
mapped to the nearest circle ci from the circle-path to enable
motion step adaptation and efficiently resolve the similar
states by Exist(~qi,ci,Sclosed) with a circle-based clustering.
A direct goal expansion GoalExpand(~qi,~qgoal) is attempted
when a state is inside a range Rgoal from the goal state to
accelerate the convergence. The orientation-aware heuristic
search benefits from the direction knowledge mainly in the
heuristic distance estimation and state expansion.

In the heuristic estimation, (1) is employed to define the
distance metric. A state is mapped to the closest circle
according to the distance metric. The next circle closer to the
goal along the circle-path has a higher priority in case of a tie.
As in the SEHS algorithm, the distance estimation consists
of two parts. The first part is the distance to the next circle
center. The second part is the remaining distance along the
circle-path. As discussed in Section III, the distance function
always returns a value that is less than or equal to the actual
path distance of a vehicle. This estimation is admissible with
respect to following the circle-path.

Another improvement of the orientation-aware heuristic
search is that different groups of primitive motions are
selected for the different types of circles. In [15], it is
demonstrated that by choosing a suitable set of primitive
motions according to the flow direction of the circle-path, a
boost of the heuristic search is achieved for lane-following
and overtaking maneuvers. In case of parking and maneu-
vering, the direction of forward or reverse driving is a hint
for such decisions. According to the direction type of the
closest circle, different primitive motions or cost factors are
determined. For the circles with forward and reverse driving,
the motions with matching direction are chosen to create
the child states, or the motions in the wrong direction are
punished with a larger cost. In case of circles for bidirectional
driving, the vehicle can perform a cusp motion with less
penalty and the forward and reverse motions are treated

(a) Heuristic search of SEHS method

(b) Heuristic search of OSEHS method

Fig. 5. Heuristic search of SEHS and OSEHS methods: The blue and
magenta lines are the node expanded by the heuristic search for forward
motion and reverse motion respectively.

equally in the cost calculation. Thus, the algorithm favors
the states in the suggested direction, so that maneuvering
behaviors are more likely to be exploited in the pre-identified
maneuvering regions.

Fig. 5 compares the heuristic search procedure in SEHS
and OSEHS with selected primitive motions according to the
driving direction. In general, the orientation-aware heuristic
search takes fewer iterations to reach the goal. The nodes are
denser around certain regions where maneuvering is required.
In contrast, the SEHS method covers much larger areas with
a lot more nodes in total as in Fig. 5(a). The strategy with
different sets of primitive motions is applied in Fig. 5(b).

V. EXPERIMENTS

Three scenarios are verified in the experiments: two park-
ing scenarios and a maneuvering problem. The results of
OSEHS are compared to the outcomes from a sampling-
based RRT method [16], the hybrid A* algorithm [17],
and the general SEHS approach [1]. All the algorithms
are implemented in C++ and executed on a machine with
a 2.9 GHz CPU and 8 GB RAM.

The vehicle is modelled with a 4m× 2m rectangle. The
maximum curvature of a turning motion is 0.2 m−1. Three
curvature values are selected for the left, right, and straight
primitive motions with forward and reverse directions. In
SEHS and OSEHS, the step size is decided by multiplying
the circle radius with a factor and halved when no solution
is found. The resolution of the states is also proportional to
the circle radius. The hybrid A* algorithm takes the same
set of primitive motions with a constant step size and grid
resolution. The RRT method extends the tree with the same
set of atomic control inputs and explores the bias of the
goal states periodically. The performance of RRT is measured
with the mean result of 20 trials.

A. Cross Parking Scenario

In the cross parking scenario, the vehicle’s goal is to park
into a perpendicular parking lot with 20 cm space margin
to both left and right sides. The vehicle needs to perform a
maneuvering to back into the parking space. The solutions
are illustrated in Fig. 6. In Fig. 6(a), the parking maneuver
is divided into three parts according to the types of the
circles: forward driving, maneuvering, and reverse driving, as



(a) Result of OSEHS method (b) Result of SEHS method

(c) Result of Hybrid A* method (d) Result of RRT method

Fig. 6. Cross parking scenario. The progress of the heuristic search methods
are illustrated with blue and magenta lines for the nodes with forward
driving and reverse driving. The results from the multiple trials of RRT
method are in different colors.

TABLE I
RESULTS OF THE CROSS PARKING SCENARIO

Planner Nodes Collision Queries Time in ms

OSEHS 2902 32132 48
SEHS 7777 89060 105
Hybrid A* 12205 80884 220
RRT 2414 101020 244

indicated with the different colors. The result is a trajectory
that follows this three segment strategy.

The results from different planning algorithms are listed
in Table I. The hybrid A* employs a grid of 0.5 m reso-
lution for the distance heuristic and to resolve the states.
The orientation resolution is 0.1 rad. The step size for the
primitive motions is 0.5 m. The OSEHS algorithm shows
the best time performance. The grid heuristic used by hybrid
A* and the circle-path heuristic applied by SEHS do not
contain the vehicle orientation information, therefore they
spend a longer time with more nodes to find a solution as
illustrated in Fig. 6(b) and Fig. 6(c). The RRT method is
close to hybrid A* in planning time, however the motions
planned by RRT vary in the length and the number of cusps
due to the random samples as in Fig. 6(d).

B. Parallel Parking Scenario

In the parallel parking scenario, the vehicle’s goal is to
park into a parallel parking lot with a 40 cm margin to
the front and back. The paths from the four methods are
presented in Fig. 7. In Fig. 7(a), two maneuvering regions
are suggested by the orientation-aware space exploration.
One is in the middle of driving in reverse into the parking
space, and the other is around the end position. However, the
heuristic search found a path without direction change in the
first region for the large free-space. Cusp segments are only
planned in the second area.

Table II compares the results from the four algorithms.

(a) Result of OSEHS method (b) Result of SEHS method

(c) Result of Hybrid A* method (d) Result of RRT method

Fig. 7. Parallel parking scenario. The progress of the heuristic search
methods are illustrated with blue and magenta lines for the nodes with
forward driving and reverse driving. The results from the multiple trials of
RRT method are in different colors.

TABLE II
RESULTS OF THE PARALLEL PARKING SCENARIO

Planner Nodes Collision Queries Time in ms

OSEHS 2083 18241 33
SEHS 5714 58229 90
Hybrid A* 6300 61206 126
RRT 24231 1207970 14507

The parameters are identical to the cross parking scenario.
The OSEHS demonstrates the best time performance in this
scenario. The advantage of the SEHS algorithms against the
hybrid A* is reduced. Unlike the first scenario which requires
a driving direction change in the middle of the maneuver,
this scenario only requires maneuvering at the end of the
path. Therefore, hybrid A* can follow the grid heuristic with
the reverse motions until it reaches the neighborhood of the
final position, where the Reeds-Shepp metric provides a good
heuristic estimation and is even able to directly reach the
goal. However, the grid size and the resolution of the hybrid
A* method is reduced to 0.4 m to achieve the result. The RRT
algorithm only has a 50% success rate, with the number of
nodes limited to 30000. This scenario requires maneuvering
close to the obstacles, which creates a narrow passage in the
configuration space for the RRT. As in Fig. 7(d), the paths
show a less diversity than in Fig. 6(d). The cross parking
scenario is easier for the RRT planner, as the vehicle can
adjust its orientation outside the parking lot.

C. Maneuvering Through Narrow Space and Turn-Around

The maneuvering with turn-around scenario is more dif-
ficult than the example in Fig. 1, as the goal pose has an
orientation opposite to the start configuration. The vehicle
must perform a 180◦ turn during the maneuver. The solutions
are shown in Fig. 8. In Fig. 8(a), the space exploration with
directed circles suggests to drive forward at the beginning,
move in reverse at the end, and to make the turn in the middle
where the free-space is relatively large.

According to the quantitative results in Table III, the
OSEHS has the best time performance. The RRT method is
at the third place, as it is convenient for the vehicle to make
the 180◦ turn in the middle between the two obstacles, where



(a) Result of OSEHS method

(b) Result of SEHS method

(c) Result of Hybrid A* method

(d) Result of RRT method

Fig. 8. Maneuvering with turn-around scenario. The progress of the
heuristic search methods are illustrated with blue and magenta lines for
the nodes with forward driving and reverse driving. The results from the
multiple trials of RRT method are in different colors.

TABLE III
RESULTS OF THE MANEUVERING WITH TURN-AROUND SCENARIO

Planner Nodes Collision Queries Time in ms

OSEHS 2845 43475 63
SEHS 12451 126735 148
Hybrid A* 35235 276401 746
RRT 1987 74821 181

the free-space is largest and receives the hightest number of
random samples. The vehicle can easily turn with random
motions and continues driving to the goal. However, the
paths from RRT in Fig. 8(d) still contain more direction
changes and unnecessary motions than the search methods.
The hybrid A* has the longest planning time in this scenario,
because the heuristic of grid-distance without orientation
points directly to the goal position in spite of the orientation
difference between the start and goal states. Therefore, large
number of nodes need to be evaluated to compensate for
the discrepancy between the heuristic estimation and the
actual cost as in Fig. 8(c). The SEHS method performs
better because it adapts the step size and resolution to the
circle radius, which results in fewer nodes to close the gap
between heuristic estimation and actual motion distance as
in Fig. 8(b).

VI. CONCLUSION AND FUTURE WORK

The Orientation-Aware Space Exploration Guided Heuris-
tic Search investigates not only the free space geometry,
but also evaluates the driving directions to provide better
heuristics for maneuvering through narrow space. The heuris-
tic search takes advantage of such orientation knowledge to

improve the search efficiency by adapting the cost metric and
the primitive motions. The result of the examples shows that
it converges faster than the basic SEHS method and other
state of the art algorithms, especially when the planer does
not know where maneuvering is required.

Another advantage of the OSEHS method is that it shows
constant performance in different maneuvering scenarios. As
a result, the OSEHS algorithm can easily be integrated in
an autonomous driving system without extra effort to decide
when and how to perform the dedicated path planning for the
specific parking or maneuvering problems. As future work,
an evaluation with a highly automated driving platform is
planned.
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