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ABSTRACT
Timing is an important concern when designing an em-
bedded system. While lots of researches on hard real-
time systems focus on design-time analysis, monitoring the
corresponding runtime behaviors are seldom investigated.
In this paper, we investigate the conformity problem
for runtime inputs of a hard real-time system. We
adopt the widely used arrival curve model which captures
the worst/best-cases event arrivals in the time interval
domain and propose an algorithm to on-the-fly evaluate the
conformity of the system input w.r.t. given arrival curves.
The developed algorithm is lightweight in terms of both
computation and memory overheads, which is particularly
suitable for resource-constrained embedded systems. We
also provide proofs and an Fpga implementation to
demonstrate the effectiveness of our approach.

Categories and Subject Descriptors
C.3 [SPECIAL-PURPOSE AND APPLICATION-
BASED SYSTEMS]: Real-time and embedded systems;
B.8.0 [Hardware]: Performance and Reliability—General

General Terms
Algorithms, Design, Performance

Keywords
Real-Time Calculus, Leaky Bucket, Greedy Shaper

1. INTRODUCTION
Guaranteeing timing properties is an important aspect

for building embedded systems. In particular for the class
of real-time embedded systems, meeting timing constraints,
e.g., worst-case response time and end-to-end latencies, is
a major design concern. Researchers on hard real-time
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timing analysis in the literature [1, 5, 6, 12] often focus on
design-time analysis, trying to compute worst-case bounds
on timing properties at an early phase of the system design.
The validity of the design-time analysis and the safeness of
the derived bounds rely on the assumption that the system
input follows certain specifications. In order to not harm
the safeness of the analysis results, the runtime inputs of
the system (or components) need to be conformed to the
specifications used by the design-time analysis.

The conformity verification, however, is non-trivial. On
the one hand, the verification has to cover the worst cases
in order to be in consistence with the offline analysis. On
the other hand, the verification and a possibly preceeding
regulation mechanism have to be lightweight due to the
stringent timing and resource budgets of the system.
Therefore, directly applying the commonly used techniques
which usually rely on expensive numerical computation may
not be suitable for the runtime monitoring.

In this paper, we investigate the runtime conformity
problem. Targeting hard real-time embedded systems, we
try to provide on-the-fly verification for the worst-case
conformity of system inputs. We adopt the widely used
arrival-curve model which captures the worst/best-cased
system inputs in the time interval domain and propose an
algorithm to evaluate the conformity of input traffic with
respect to given arrival curves. In case too many events are
detected, our algorithm regulates the traffic such that the
traffic complies again with the curve specifications assumed
at design time. In case too few events are detected, no
generic solution can be offered, but the applications can be
notified.

Based on the results in [9] that an arrival curve can be
conservatively approximated by a set of staircase functions
each of which can be modeled by a leaky bucket, we
use a dual-bucket mechanism to monitor each staircase
function during runtime, one for conformity verification
and one for traffic regulation. By tracking the fill level
of buckets, the computationally expensive (de-)convolutions
used by the design-time analysis are eliminated. Our
approach is thus lightweight in terms of both computational
overhead and memory footprint, particularly suitable for
embedded systems with limited resources. We also provide
formal proofs and an Fpga prototype for our algorithm to
demonstrate the effectiveness of our approach.

The rest of this paper is organized as follows: Section 2
reviews related work in the literature. Section 3 presents
the system models and analyzes the problem. Section 4
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presents our algorithm and the proofs. Experimental results
are presented in Section 5 and Section 6 concludes the paper.

2. RELATED WORK
The analysis of traffic regulators is not new. In the

domain of classical networking flow control, the studies of
lossless greedy regulators by means of network calculus can
be found in [2, 11]. Such traffic regulators are usually
modeled as leaky-bucket shapers. To model lossy systems,
traffic clippers [4, 3] are introduced to regulate network
packets. Unlike shapers that delay network packets, a
traffic clipper actively discards non-conformed packets. The
modeling of leaky-bucket greedy shapers in the context of
real-time calculus (Rtc) [12] is presented in [13]. The latest
work on this direction [7] uses a greedy shaper to optimally
reduce the peak temperature of a real-time system. All
aforementioned work is offline analysis. Whether such
analysis can be applied for online monitoring is not clear.

In [9], a methodology for coupling timed automata-
based [1] and Rtc-based models are proposed, which enables
hybrid analysis of a system containing both state-based
(timed automata) and state-less (Rtc) components. The
basic idea underlying the proposed methodology is to use a
set of leaky-bucket event generators as an interface between
the state-based and stateless abstractions, such that models
can be interchanged between these two abstractions. This
technique is applied in [8] to predict tighter worst-case
bounds for the arrivals of future workload. Taking the idea
in [9, 8] to the level of runtime, this paper investigates
traffic conformance, trying to develop lightweight routines
for on-the-fly traffic verification and regulation. We also
prototyped an Fpga implementation of our approach on an
ALTERA Cyclone III development board.

3. MODELS AND PROBLEM

Event Arrival Curves.
Event streams in a system can be described using a

cumulative function R(s, t), defined as the number of events
seen in the time interval [s, t). While any R always describes
one concrete trace, a 2-tuple α(∆) = [αu(∆), αl(∆)] of
upper and lower arrival curves [10] provides an abstract
event stream model that characterizes a whole class of (non-
deterministic) event streams. αu(∆) and αl(∆) provide an
upper and a lower bound on the number of events seen on
an event stream in any time interval of length ∆:

αl(t− s) ≤ R(t)−R(s) ≤ αu(t− s), ∀ 0 ≤ s ≤ t, (1)

with αl(∆) = αu(∆) = 0 for ∆ ≤ 0.
The concept of arrival curves unifies many other common

timing models of event streams. For example, a periodic
event stream can be modeled by a set of step functions where
αu(∆) = b∆

p
c + 1 and αl(∆) = b∆

p
c. For a sporadic event

stream with minimal inter arrival distance p and maximal
inter arrival distance p′, the upper and lower arrival curve
is αu(∆) = b∆

p
c + 1, αl(∆) = b∆

p′ c, respectively. A widely
used model to specify an arrival curve is the PJD model by
which an arrival curve is characterized with a period p, jitter
j, and minimal inter arrival distance d. The upper arrival
curve is thus αu(∆) = min{d∆+j

p
e, d∆

d
e}. For details, please

refer to [12].
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Figure 1: An example for an arrival curve as the
combination of staircase functions.

Complex Arrival Patterns.
In this work, we deal with discrete numbers of event

arrivals and their arrival patterns. In principle any (discrete)
complex arrival pattern can be bounded by a set of upper
and lower staircase functions, as long as the system under
consideration is monotone and time-invariant [9]. The
monotone property means that a higher number of input
events seen in an interval yields a higher number of output
events in intervals of equal or larger sizes. The time-
invariant property means that the system behavior depends
on the system states only. No matter when this state is
reached, the possible set of the reactions of the systems
is always the same, independently upon the concrete time
when the actual state is reached.

An upper arrival curve thereby can be conservatively
approximated as the minimum on the set of staircase
functions of the form αi(∆) = Nu

i + b ∆
δui
c:

∀∆ ∈ R≥0 : αu(∆) ≤ min
i∈n

(αui (∆)). (2)

An example for such approximation is depicted in Fig. 1,
where αu is given as the minimum of three staircase
functions αu1 = 1 + b ∆

0.5
c, αu2 = 3 + b∆

2
c, and αu3 = 5 + b∆

4
c.

Analogously, a set of staircase functions and maximum of
which, i.e., αl(∆) ≥ maxj∈m(0, αlj(∆)), can be employed for

approximating a lower curve, where αlj(∆) = −N l
j + b∆

δlj
c.

Problem Statement.
Given a trace R, checking its conformity w.r.t to an arrival

curve is theoretically not a problem. One can simply inspect
the trace by the definition in Eqn. (1). In the case that
∃ s, t, 0 ≤ s < t, R(t)− R(s) > αu(t− s) or R(t)− R(s) <
αl(t − s), a violation occurs. Alternatively, one can apply
the min-plus de-convolution:

sup
u≥0

{
R(t+ u)−R(u)

}
def
= R(t)�R(t) > αu(t) (3)

according to [10],
Once a violation is detected, the traffic can be regulated

to re-conform again to the specified arrival curves, e.g., by
imposing a certain delay for the over-bursty input events. A
usual way is to use a greedy shaper σ such that1

(R�R)⊗ σ ≤ αu (4)

The shaper σ can be simply the convex hull of αu.
One might notice that above approaches require numerical

computation for the min-plus (de-)convolution, which
demands intensive computing power as well as large

1min-plus convolution: f ⊗ g def
= inf0≤s<t

{
f(t− s) + g(s)

}
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Figure 2: The flow of the approach.

memory footprint. Directly applying these approaches
for online monitoring is thus prohibited, in particular for
the class of embedded systems with stringent resource
constraints. Therefore, lightweight alternatives are needed
to conduct efficient conformance verification as well as
violation recovery. In the next section, we will present an
approach that solves this problem in a particular way.

4. OUR APPROACH
The idea of our approach is based on the knowledge

that an arrival curve can be conservatively approximated
by a set of staircase functions [9], each of which can be
modeled by a leaky-bucket kind event generator. Rather
than generating events, we use the leaky bucket mechanism
for online monitoring. In this context, the bucket capacity
corresponds to the maximally tolerable number of bursty
events and the leak rate models the period of the staircase
function. The fill level of the bucket is used as an indicator
for the remaining capacity of the tolerable burst.

For each staircase function, we employ two leaky buckets,
namely V-bucket for input conformity verification and
R-bucket for input regulation. The fill level of V-bucket
indicates how many bursty incoming events can still be
tolerated while the fill level of R-bucket shows how many
bursty events are allowed to release. By simply tracking the
fill levels of the buckets, the computationally expensive min-
plus (de-)convolution normally used by the offline analysis
can be eliminated for the online monitoring, resulting in a
lightweight software or hardware implementation.

The flow of our approach is shown in Fig. 2. Upon each
event arrival, the conformity of the event is tested. If the
arrival of this event conforms to the specification, this event
will be immediately released. If not, certain regulation is
applied to enforce the conformity. For the current version of
our algorithm, we delay the release time of non-conformed
events. Discarding events due to deadline violation or
buffer overflow can be easily adapted based on the proposed
scheme. We will discuss their solutions in Section 4.3. Note
that we only present the algorithm and proofs for the upper
bound αu. The conformity verification of the lower bound
works in a similar manner.

4.1 Algorithm
Assume an arrival curve is approximated by n staircase

functions Si, i ∈ n. Each Si is defined by a leaky
bucket with two parameters, namely bucket capacity Nu

i

and period δui . During runtime, the status of a bucket
is tracked by two variables, namely the fill level BFL and
a timer CLK. The timer CLK records the time passed
within a period δui . Thus our algorithm maintains a 4-tuple
<BFLvi , CLK

v
i , BFL

r
i , CLK

r
i> during runtime, BFLvi , CLK

v
i

for V-bucket and BFLri , CLK
r
i for R-bucket. The algorithm

is invoked when a signal comes. A signal can be triggered by
the arrival of an event or the timeout of a timer. Initially,

Algorithm 1 On-the-fly traffic verification and regulation
for an n-staircase arrival curve.
Input: signal s . tuple <BFLvi , CLK

v
i , BFL

r
i , CLK

r
i> and

event queue q are global variables
1: for i← 1 to n do . timeout
2: if s = CLKv

i timeout then
3: BFLvi ← min(BFLvi + 1, Nu

i )
4: reset timer(CLKv

i )
5: end if
6: if s = CLKr

i timeout then
7: BFLri ← min(BFLri + 1, Nu

i )
8: reset timer(CLKr

i )
9: end if

10: end for
11: if s = event arrival then . event arrival
12: for i← 1 to n do
13: if BFLvi = Nu

i then
14: reset timer(CLKv

i )
15: end if
16: BFLvi ← BFLvi − 1
17: end for
18: q.enqueue()
19: end if
20: if mini∈n(BFLvi ) < 0 then . nonconformity
21: report violation()
22: end if
23: while q.length()>0 ∧min

i∈n
(BFLri )>0 do . regulation

24: q.dequeue()
25: for i← 1 to n do
26: if BFLri = Nu

i then
27: reset timer(CLKr

i )
28: end if
29: BFLri ← BFLri − 1
30: end for
31: end while

BFLvi = BFLri = Nu
i and CLKv

i = CLKr
i = δui .

The pseudo code of the algorithm is shown in Algo. 1.
BFLvi of V-bucket indicates the number of bursty events that
can still be tolerated at current time. Its value is decreased
by 1 when an event arrives (Line 16) and increased by 1
when CLKv

i is timeout (Lines 2–5). BFLvi has a limit of Nu
i

(Line 3). Based on the algorithm, BFLvi can be computed
as a function of the trace R:

BFLvi (t) = min(Nu
i + b t

δui
c −R(t), Nu

i ) (5)

For any time interval (s, t], BFLvi can be computed as:

BFL
v
i (t) = min

(
BFL

v
i (s) + b

t− s
δui
c − (R(t)− R(s)), N

u
i

)
(6)

Since BFLvi records the remaining capacity of the bucket,
conformity violation occurs when BFLvi < 0, ∃i ∈ n
(Lines 20–22). In other words, a nonconformity occurs when
the number of events arrived in the interval ∆ is larger than
Nu
i + b ∆

δui
c.

The CLKv
i of V-bucket notifies when the budget can be

recharged. It is reset when BFLvi reaches its limit, i.e.,
BFLvi = Nu

i (Lines 13–15). When BFLvi is equal to Nu
i , a

burst of maximal Nu
i events can be tolerated from this time

on. This case can also be considered as a renew point of the
bucket. We will use this property in the later-on proofs.

The R-bucket works similarly. BFLvi controls when and
how many events can be released (Lines 23–31). Only when
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all BFLri > 0, an event can be released. It is decreased by 1
when an event is released (Line 29). Otherwise events will
be postponed until every BFLri turns nonzero. To release
buffered events, we use a first-come first-out scheme.

4.2 Correctness
This section proves the correctness of our algorithm. For

simplicity, we provide the formal proof for the case of n = 1,
i.e., αu(∆) = Nu + b ∆

δu
c. Proofs for n > 1 cases follow a

similar scheme.
To prove the algorithm, we divide the time axis for the

system execution into a set of consecutive time segments. A
time segment is defined as follows.

Def. 1. A time segment F is the time interval for the
value of BFLv changing from Nu back to Nu, i.e., between
two renew points in the trace (Lines 2–5, Algo. 1).

The starting and ending time instants for Fi are denoted
by tSi and tEi , respectively. For the arrival of the nth

event en in the trace, we also designate tn and xn the time
instant and the value of BFLv, respectively. Based on above
definitions, we have following lemmas.

Lemma 1. Within any Fi, i ∈ N , at time t1, i.e., the
first arrived event of this segment, BFLv = Nu− 1. At each
time instant ti of the arrivals of subsequent events within Fi,
BFLv ≤ Nu − 2.

Proof. According to Def. 1, BFLv always starts from Nu

for any Fi. When the first event arrives, BFLv turns to Nu−
1. The arrivals of subsequent events will further decrease
BFLv. Assume at some point of time, BFLv is recharged
back to Nu − 1 due to the timeouts of CLKv (Lines 2–5).
There are only two cases: a) a next timeout of CLKv comes,
BFLv reaches Nu, and the segment ends, or b) an event
arrives, BFLv decreases back to Nu − 2. Therefore, the
lemma holds.

Lemma 2. At time tn for the arrival of event en, if
tm+n − tn ≥ (m− (Nu − 1))δu, ∀m, the trace between
[tn, tm+n] conforms αu.

Proof. Consider an arbitrary interval [s, t]. There are
m + 1 events arrived within this interval and these events
are numbered as n, n+1, . . . , m+n, so that tn−1 ≤ s < tn ≤
tn+1 ≤ . . . ≤ tm+n ≤ t. We get αu(t−s) ≥ αu(tm+n− tn) =

Nu + b tm+n−tn
δu

c ≥ m + 1. Because R(t) = m + n and
R(s) = n−1, we get αu(t−s) ≥ R(t)−R(s). From Eqn. (1),
the lemma holds.

Lemma 3. Let TFi denote the length of segment Fi and
|Fi| the number of events arrived within Fi, TFi ≥ |Fi| · δu.

Proof. Fig. 3(a) illustrates such an example. According
to the algorithm, the timer CLKv is cleared at time instants

tn, tSi , and tEi . With Eqn. (6), we have Nu− 1 +
tEi
−tn
δu

−
(|Fi| − 1) = Nu. Therefore, tEi − tSi ≥ tEi − tn = |Fi| ·
δu.

Theorem 1. Given a trace R and a staircase αu, in the
case that BFLv ≥ 0, Algo. 1 guarantees R conform to αu.

Proof. What we need to prove is for ∀ 0 ≤ s ≤ t, R(t)−
R(s) ≤ αu(t − s). We consider two cases, i.e., s and t are
located within one segment and in two different segments.

N
u

tSi

N
u
− 1

tn

xn+k

tn+k

xn+m

tn+m tn+|Fi|−1

N
u

tEi

TFi

t
. . . . . . . . . . . .

(a) Single-segment case.

Nu

tSi

Nu
− 1

tn

xn+k

tn+k

Nu
− p

tn+m

Nu

tEi

Nu

tSj

Nu
− 1

tn+r

xn+s

tn+s

Nu

tEj

TFi
TFj

t
. . . . . . . . . . . . . . .

(b) Multiple-segment case.

Figure 3: Graphical illustration of the proof.

First we consider the special case of Nu = 1. In this case,
each segment allows only one event to guarantee BFLv ≥ 0,
i.e., there is only one event in each segment. Without loss
of generality, let s and t the arrival time of event en and
em which arrive at segment Fn and Fm, respectively. Form
Lem. 3, we have tEn−tn = δu and tSm−tEn = (m−1−n)δu.
Thus tm − tn = (tm − tSm) + (tSm − tEn) + (tEn − tn) ≥
(m − n)δu = (m − n − (Nu − 1))δu. Based on Lem. 2, the
theorem holds for Nu = 1.

In the following, we provide the proof for Nu ≥ 2.
• Single-segment case:
For any given segment Fi, assume en is the first event

arrived in Fi, as shown in Fig. 3(a). Obviously, BFLv isNu−
1 at time instant tn. We further assume that events en+k

and en+m (m > k ≥ 0) arrive within Fi at time instants tn+k

and tn+m, the corresponding values of BFLv being xn+k and
xn+m, respectively. According to Eqn. (6), we have

Nu − 1 + b tm+n − tn
δu

c −m = xn+m (7)

Nu − 1 + b tn+k − tn
δu

c − k = xn+k (8)

For k > 0, we know 0 ≤ xn+m, xn+k ≤ Nu − 2 (Lem. 1).
Therefore, we have

tm+n − tn+k = (tm+n − tn)− (tn+k − tn)

= b tm+n − tn
δu

cδu + σm+nδ
u

− b tk+n − tn
δu

cδu − σk+nδ
u

= (m+ xn+m − k − xn+k)δu + (σm+n − σk+n)δu

≥ (m− k − (Nu − 2))δu + (σm+n − σk+n)δu

≥ (m− k − (Nu − 1))δu

where2 σm+n =
tm+n−tn

δu
− b tm+n−tn

δu
c.

For k = 0, we have

tm+n − tn = b tm+n − tn
δu

cδu + σm+nδ
u

= (m+ xn+m − (Nu − 1))δu + σm+nδ
u

≥ (m− (Nu − 1))δu + σm+nδ
u

≥ (m− (Nu − 1))δu

Based on Lem. 2, the theorem holds for this case.
• Multiple-segment case:
We consider segments Fi and Fj with j > i. As shown

in Fig. 3(b), event en is the first event in Fi with BFLv =
Nu− 1 and event en+m is the last event in Fj with BFLv =
Nu − p (p ≥ 2). In Fj , event en+r is the first event with

2σk+n, σn+s, and σn+k in the subsequent text follow similar
definition.

433

18.3



BFLv = Nu − 1. Therefore, there are r − m − 1 events
arrived in the interval [tEi , tSj ]. From Lem. 3, we have

tSj − tEi ≥ (r −m− 1)δu (9)

tEi − tn = (m+ 1)δu (10)

Considering events en+s of Fj and en+k of Fi, we have
following equations based on Eqn. (6):

Nu − 1 + b tn+s − tn+r

δu
c − (s− r) = xn+s (11)

Nu − 1 + b tn+k − tn
δu

c − k = xn+k (12)

For k 6= 0, s 6= r, we have 0 ≤ xn+s, xn+k ≤ Nu − 2
(Lem. 1). Together with Eqns. (9)–(12), we get

tn+s − tn+k = (tn+s − tn+r) + (tn+r − tSj ) + (tSj − tEi)

+ (tEi − tn)− (tn+k − tn)

≥ (tn+s − tn+r) + (tSj − tEi) + (tEi − tn)

− (tn+k − tn)

≥ b tn+s − tn+r

δu
cδu + σn+sδ

u + (r −m− 1)δu

+ (m+ 1)δu − (b tn+k − tn
δu

cδu + σn+kδ
u)

= (xn+s − xn+k + s− k)δu + (σn+s − σn+k)δu

≥ (s− k −Nu + 1)δu

For k 6= 0, s = r, from Lem. 3, Eqns. (10), (9), and (12)
as well as Nu ≥ 2, we have

tn+r − tn+k ≥ (tSj − tEi) + (tEi − tn)− (tn+k − tn)

≥ (r − k + 1)δu + (σn+m − σn+k)δu

≥ (r − k − (Nu − 1))δu

For k = 0, we get tn+s − tn+r ≥ (s − r −Nu + 1)δu and
tEi−tn = (m+1)δu from single-segment case and Eqn. (10).
Then we have

tn+s − tn ≥ (tn+s − tn+r) + (tSj − tEi) + (tEi − tn)

≥ (s−Nu + 1)δu

From above cases, the theorem holds.

Corollary 1. At the time instant when BFLv turns
small than 0, a violation to αu occurs.

Proof. As shown in Fig. 3(a), assume BFLv < 0 occurs
when event em+n arrives in Fi, i.e., xn+m ≤ −1. According
to Eqn. (7), tm+n−tn = (m+xn+m−(Nu−1))δu+σm+nδ

u.
Consider the interval [s,t] with s = tn − λ and t = tm+n,
where 0 < λ < (1 − σm+n)δu. Thus, αu(t − s) = Nu +

b tm+n−tn+λ

δu
c = m+ xn+m + 1 ≤ m. Because R(t) = m+ n

and R(s) = n − 1, αu(t − s) < R(t) − R(s). A violation to
αu occurs.

Theorem 2. The resulting trace regulated by Algo. 1
conforms to αu.

Proof. The output traffic is modulated by the R-bucket.
The R-bucket works in the same mechanism as V-bucket. In
addition, variable backlog (Lines 23) guarantees that BFLr

will never go below zero. Therefore, the theorem holds
according to Thm. 1.

4.3 Discussion
The algorithm and proof in the previous section are for the

conformance verification and regulation of the upper bound
of an arrival curve. Similar technique can be used for the
violation detection of the lower bound. The regulation of
input traffic to re-conform to a lower curve is however not
possible in this context. As violation of the lower bound
basically means no sufficient number of events occurs for
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Figure 4: The block diagram of the FPGA testbed.

a certain time interval, a regulation by injecting artificial
events into the system would violate our basic assumption
that we only consider time-invariant systems. Nevertheless,
a warning can be issued to the application, so that the
application itself might be able to react to the violation.

Note that another assumption of our approach is that the
violated events will be stored in a buffer and released at a
later point of time. Too many buffered events may lead to
buffer overflow of our algorithm. Although it is unavailable,
we nevertheless can detect such occurrence by modulating
the event queue q in the algorithm. Another fact is that
delaying the input events may result in deadline violation of
input events. Detecting the deadline violations can also be
included based on the current scheme.

5. EXPERIMENTS
This section demonstrates the effectiveness of our ap-

proach by empirical case studies. We implement our
algorithm both in Matlab and Verilog HDL. The Verilog
HDL code is synthesized in ALTERA Cyclone III Fpga.

We adopt the PJD model (Section 3) for the specification
of event streams. The upper bound αu for such a model can
be represented as the minimum of two staircase functions.
The parameters of the two staircase functions can be
computed as follows [9]:

• Case d = 0 ∨ d ≤ p− j :
Nu = d j

p
e+ 1; N l = −d j

p
e; δu = δl = p

• Case d > 0 ∧ d > p− j :
Nu

1 = 1; δu1 = d; Nu
2 = d j

p
e+ 1;

N l = −d j
p
e; δu2 = δl = p

To generate traces with different patterns, the Rtc/Rts-
toolbox [14] is used. We first generate a worst-case trace
that conforms to the upper bound. Then we inject random
events to artificially create violations. In our experiment,
we employ an arrival curve with period of 100us, jitter of
300us, and delay of 20us.

In order to validate our algorithm, we implement a
discrete-time simulation in Matlab and an Fpga testbed.
The Matlab simulation is implemented using the Rtc/Rts-
toolbox. The testbed is comprised of an event generator IP
and the algorithm IP, as the block diagram shown in Fig. 4.
The event generator IP is used to generate events that
comply with those used in the Matlab simulation. The
algorithm IP itself consists of four modules. As shown in the
figure, the MultiBuckets module contains a reconfigurable
number of bucket pairs, each of which contains a V-bucket
andR-bucket. The EventSyn module synchronizes the FIFO
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(a) Detection and traffic regulation.

(b) Upper bound of the regulated trace.

Figure 5: Results for verification and regulation of
a trace with seven violation points.

and MultiBuckets modules when events arrive. The output
module controls the release of events. The FIFO module is
used to buffer regulated events. The testbed is simulated
using ModelSim. Details of the implementation are given
in Fig. 6 in the appendix.

We compare the theoretical and experimental results in
Fig. 5. The solid line Rorg and dashed line Rreg represent
the original and regulated traces, respectively. The star
dots Pdec and round dots Pbuk indicate the violation events
computed by Eqn. (3) and detection by our algorithm,
respectively. As expected, the two sets of dots match
(Fig. 5(a)). We also compute the upper bound αRreg for the
regulated trace Rreg (by Eqn. (3)) and compare with the
input specification αu. As the results shown in Fig. 5(b),
αRreg is bounded by αu. From Fig. 5, we experimentally
confirm that our algorithm performs correctly.

We also report the resource consumption and latency
for the Verilog HDL implementation. We synthesis the
implementations for 2, 4, and 6 pairs of buckets using
ALTERA Cyclone III EP3C120F780 development kit. The
resource consumption is shown in Tab. 5. As shown in the
table, the used logic elements even for the case of 6-pair
buckets are still under 0.3% of the total resources (in total
119, 088 logic elements in the Fpga board). Furthermore,
the resource usage is linear w.r.t the number of bucket pairs,
which indicates our algorithm can be used to regulate the
runtime traces for complex arrive curves. Note that, in this
implementation, the same FIFO buffer is used for all buckets
as events of the trace belong to the same arrival curve.
Therefore, the size of the FIFO module is independent on the
number of buckets and is decided by the over-burst events
that is intended to tolerate.

Regarding timing overhead, 6 cycles are needed to transfer
an event from the input to the output of our IP in the case
that no regulation is employed. As the working frequency of
the Fpga is set to 50 Mhz, this latency corresponds 120 ns.
This result indicates the timing overhead of our algorithm is
considerably small, which can be integrated into the WCET
of the events without significant side-effects for the timing

# Bucket Logic
Register LUTs

Memory Delay

Pair Elments (Bit) (cycle)

2 134 107 103 64 6
4 245 195 191 64 6
6 353 283 279 64 6

Table 1: Resource and timing overhead for the
FPGA implementation.

performance.

6. CONCLUSION
This paper presents an online algorithm for the traffic

conformity and regulation of hard real-time systems. Our
algorithm can detect input violation and regulate the
violated traffic to comply again with the specifications. We
also present formal proofs, simulation results, and an Fpga
implementation to demonstrate the effectiveness of our
algorithm. The experiment results show that the resource
and timing overheads of our algorithm are lightweight,
particularly suitable for embedded systems with stringent
resource constraints.
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