
Tool-based Development of Light-weight
Fault-tolerant Embedded Systems

Chih-Hong Cheng∗, Christian Buckl†, Alois Knoll∗
∗Unit 6: Robotics and Embedded Systems, Department of Informatics

Technischen Universität München, D-85748 Garching, Germany
†fortiss GmbH, Guerickestr. 25, D-80805 München, Germany

Email: chengch,knoll@in.tum.de, buckl@fortiss.org

Abstract—In this report, we present Gecko, a framework for
the model-based development of embedded systems, focusing on
light-weight fault-tolerance and dependability aspects. Given a
high-level sketch of the system, including models of the hardware,
software, expected faults, and a set of predefined mechanisms,
Gecko can perform a series of refinement processes, including
model annotation and concretization over specified mechanisms,
to generate executable code over dedicated platforms.

To supplement the design flow, several analysis techniques
are embedded or experimented in Gecko as modules, including
(a) generation of dependability models acceptable by verification
engines, (b) worst-case transmission time calculation for networks
demonstrated on the example of CAN bus, and (c) generation of
integrity constraints using program analysis to estimate the effect
of sensor imprecision. Gecko also interfaces standardized ESL
design methodology by generating SystemC fragments (currently
loosely timed TLM 2.0 models) to support detailed analysis.

I. INTRODUCTION

In this report, we present Gecko, a framework for model-
driven development of embedded (distributed) systems, fo-
cusing on fault-tolerance and dependability aspects. The goal
of Gecko is to introduce fault-tolerance aspects into existing
design flows of embedded systems with minimal overhead.

The predecessor of Gecko is called FTOS, which was
developed as a text-based modeling tool for the support of
designing fault-tolerant systems. Technical details about FTOS
can be found in [8]. Since then, we have extended and
reimplemented the tool with the following goals:
• Closing the visibility gap between models and imple-

mentations. As FTOS works over dedicated models of
computation, a single-step transformation from model
sketches to executable code is non-intuitive. By intro-
ducing intermediate models (functional and architectural)
and several analysis techniques, we acquire stronger
guarantees over the resulting artifact1. Furthermore, it
enables a generalized usage for any application specific
models to be introduced in the Gecko development flow.

• Giving more control to the user with ease of use. The
tool should allow users to inspect intermediate results
and to perform modifications on-the-fly. The latter case
can be useful, in case an automatic global optimization
of system aspects would require a search in a huge state

1We are aware of theoretical frameworks of composition and refinement
process of systems, whilst it is not our current focus.

space, while developers can find a nearly optimal solution
based on their experience.

The resulting tool has been developed as a plug-in under
the Eclipse Modeling Framework (EMF) [1], [3], which is
now called Gecko. It automates the implementation of extra-
functional aspects with a focus on fault-tolerance, integrates
formal verification, but also enables developers to manually
optimize the system.

II. ARCHITECTURE OF GECKO

We introduce the design flow and components currently
included in Gecko using figure 1.

A. Functional Concretization

In the first step, a given application-specific model in
high-level descriptions is concretized into an abstract actor
model that is based on concepts similar to actor-oriented
languages, and contains explicit timing information based on
specifications included in the original models or information
added by the user within this step. In fig. 1, the application-
specific model consists of four partial models, namely HW,
SW, Fault, FT (for fault tolerance). During the concretization,
only SW and FT are involved, where we mainly generate
required actors, ports, and token transfers (similar to connec-
tors in Ptolemy [10], differences mentioned later) concretizing
user specified fault-tolerance mechanisms. Fig. 2 illustrates
an example from model sketches (upper part) to functional
models (lower part). For the timing specification, we use the
information contained in the SW model, which is based on
the concept of logical execution time [13], [14].

The actor model concretizer in Gecko translates fault-
tolerance mechanisms into according actors represented by a
tree structure, whose elements can reference other elements
of the model. To generate executable code for actors in later
stages, for each platform only a generalized tree interpreter is
required. This greatly reduces the possibility of programming
errors when introducing new platforms, as no parameterized
skeletons for each actor and each platform are required2.

RTAS 2010 - Work-in-Progress

57

Actor Model
Concretizer

SW FTHW Fault

Abstract
Actor Models

Abstract
Actor Models

Actor WCET
Annotation

Dependability
Model Gen.

Model Checking

Bus WCET
Annotation

Simple Platform Analyzer

HWHW

Platform
Template
Library

Network
Configuration

Combined
System Model

Combined
System Model

Fault

Network
Configuration

Fault

Network
Configuration

Pass
Fail

Pass
Fail

Partially integrated/
implemented

GECKO: An integrated
environment for light-
weight self-healing
systems

Integrity
Constraint
Generator

Function

Integrity
Constraints

Implementation

Fig. 1. An overview for the flow of model transformations, code generation,
and analysis scheme in Gecko.

B. Function-Architectural Mapping under Local Scale

After the first transformation, different application-specific
models are mapped to unified abstract actor models, allowing
us to follow the same transformation scheme to generate
computational (software) models. These models concretize
the implementation of the communication between software
components and the timing without concrete parameters. These
parameters are derived in the next phases, when the concrete
hardware is considered. These steps are performed by the
simple platform analyzer as depicted in fig. 1.

The above process can be challenging concerning design
space exploration with multi-objective function optimization.
Therefore, we constrain ourselves, and assume that a major
part of the functionalities are mapped to architectures by user-
guided information, as it is currently specified in the FTOS
software and hardware model. Our goal is to perform a local-
scale design space exploration concerning extra-functional
properties, i.e., we consider how to integrate newly generated
actors (for dependability, fault-tolerance) and newly introduced
token transfers, such that the specified design constraints are
still satisfied. Currently Gecko generates the mapping based
on a small set of user-predefined parameters, and the analysis
is done separately after the concretized model is generated.
The resulting artifact is a combined model including network

2For instance, when concretizing actors in UPPAAL verification models,
all &, <, > tokens are replaced by &, <, >. This can be easily
achieved by a partial modification of the tree interpreter.

INPUT2

INPUT3

INPUT1

TASK2

TASK3

TASK1

OUTPUT2

OUTPUT3

OUTPUT1

Vote

0ms0ms

0ms0ms

0ms0ms

10ms10ms

10ms10ms

10ms10ms

Measure Result

Input1 Task1 Simple
Vote

Decide Output1

Idle State

Normal State

Measure

R1 Result

Drive

Timing properties

TT

Input2 Task1 Simple
Vote

Decide Output3

Normal State

Measure

R2
Result

Drive

TT

Input3 Task1 Simple
Vote Decide Output3

Normal State

Measure
R3

Result

Drive

TT

TT

TT

TT

TT

TT

TT

TT

TT

TT

TT

TT

TT

Fig. 2. An example for concretizing FTOS models to functional models
with timing annotations (some details omitted). TT stands for token transfer,
which will later be refined during function-architecture mappings.

configurations (e.g., message groupings and priorities in the
CAN bus).

The timing behavior in Gecko is based on (1) the required
time for executing actor blocks (WCET) plus (2) the required
time for token transfers (WCTT), which is grouped into
messages in the architecture model. We follow two different
approaches: a hard real-time approach based on temporarily
disabling the system interrupts (not applicable for all applica-
tions) to assure the claimed WCET of actor blocks or a less
stricter approach based on simulation to acquire confidence
about the system behavior.

1) With respect to timing behavior of the network, currently
only CAN buses are supported with analysis techniques.
We implemented the CAN bus WCTT analyzer using the
classical real-time scheduling theory [9], [15] based on
resource contention. Nevertheless, the analysis technique
does not scale to industrial examples, as in this idealized
case, the CAN controller must have enough TxObjects
to accommodate all the outgoing message streams. Our
implementation template deploys the system based on
this assumption, and raises alarms if it is violated. The
mentioned problem is mainly an issue for models-of-
computation with aperiodic behavior.

2) With respect to execution time of our automatically
generated actors, to have stronger confidence for pre-
dictable timing, files containing the WCET of these
actors (with parameterized form) can be read into Gecko
as supplementary files.

C. Generation of Dependability Models

Regarding dependability, currently we are interested in
whether a system with equipped fault-tolerant mechanisms is
sufficient to resist faults defined in the fault-hypothesis. To
achieve this goal, Gecko generates the dependability model
from a combination of functional models, fault models, and
network/hardware configuration files; the result is created in

RTAS 2010 - Work-in-Progress

58

formats acceptable by the verification engine UPPAAL [7].
Fig. 1 indicates required components for the generation of the
dependability model:

1) The network and hardware configurations generated on
the architectural level provide a sufficient abstraction
on how faults are actuated. For instance, when a fault
with type MessageLoss is considered, token transfers
grouped in one single message can be lost simultane-
ously, which should be faithfully modeled.

2) The abstract actor model can be naturally translated
into automata as input for formal verification engines.
Gecko supports this translation and uses logical time
/ action causalities to avoid excessive use of variables
in the verification model. Both actor actions and token
transfers are represented by edges3.

3) The fault model is used to annotate non-deterministic
edges on the original model. As we try to eliminate the
extensive use of clock variables, the sporadic behavior
for the occurrence of faults requires appropriate abstrac-
tions to be tailored into the functional model.

Limitation: Currently, Gecko only generates partial stubs of the
whole model. Specifications, as well as user defined functions
must be annotated manually to the UPPAAL model, such that
meaningful analysis results can be derived.

D. Deriving Integrity Constraints
With the above framework, we plan to investigate new

techniques and algorithms and construct them on top of Gecko.
In this section, we give an example how the tool can benefit
from integration of these techniques.

In the fault-tolerance community, integrity constraints are
conditions that hold in normal operation, but may fail to hold
in the event of a fault [12]. As sensors may have imprecisions,
deriving integrity constraints to distinguish between effects
caused by imprecisions or errors is crucial to prevent false
alarms. Here a simplified scenario in fig. 3 is given to motivate
the discussion and indicate our current progress.

In fig. 3, three identical sensor units s1, s2, and s3
with imprecision ranging between [−0.5, 0.5] perform read-
ings from the environment, and pass their readings to the
corresponding functional unit z = (x+y)/2. Results from each
functional unit are transformed to the voter to detect erroneous
results, and a copy of the previous result directly from port z is
stored in the memory for next stage processing (similar to the
integral part of the PID control). It can be observed that due to
accumulative sensor imprecision, values on ports A (similarly
B and C) can deviate from the actual value with a maximum
ranging over [((−0.5+0)

2 +
(−0.5+ (−0.5+0)

2)

2 + . . .), ((0.5+0)
2 +

(0.5+
(0.5+0)

2)

2 + . . .)] = [−Σ∞i=2
1
2i ,Σ

∞
i=2

1
2i] = [−0.5, 0.5].

Therefore, when |α−β| > 1 occurs, where α, β ∈ {A,B,C},
we are certain that either α or β contains a erroneous sensor
reading which leads to the result (or faulty in our definition)4;

3An edge update takes zero time; time consumption is explicitly added,
which is similar to discrete-event simulation in Ptolemy or SystemC [2].

4Here a single fault-occurrence assumption is applied, meaning that at most
one sensor can generate erroneous readings at any instance.

VOTER

A

B

C

z = (x+y)/2

Mem

x

y

s1
z

z = (x+y)/2

Mem

x

y

s2
z

z = (x+y)/2

Mem

x

y

s3
z

[-0.5, 0.5]

[-0.5, 0.5]

[-0.5, 0.5]

Fig. 3. An example where integrity constraints are considered over the voter
component.

C code

SSA
Generator

Equivalent
SSA form

Analyzer

Report

Error
Estimation

define void @calculate(i32* nocapture %X,
i32* nocapture %Y, i32* nocapture %Z) nounwind {

entry:
%0 = load i32* %X, align 4 ; <i32> [#uses=1]
%1 = load i32* %Y, align 4 ; <i32> [#uses=1]
%2 = add i32 %1, %0 ; <i32> [#uses=1]
%3 = sdiv i32 %2, 2 ; <i32> [#uses=1]
store i32 %3, i32* %Z, align 4
ret void

}

void calculate (int *X, int *Y, int *Z) {
*Z = (*X + *Y)/2;

}

X= [-0.5, 0.5], Y= previous(Z), Z= new value

Fig. 4. Process flow for the generation of integrity constraints.

the integrity constraint can be designed based on the above
information. The absence of such a criteria (no bounded inter-
val available), indicates design errors. Following this example,
in Gecko the process flow of generating integrity constraints
(algorithm omitted) is sketched in fig. 4:

1) (Preprocessing) By adapting techniques in compiler
technologies, the equivalent static single assignment
(SSA) form using LLVM [5] can be generated, which
enables efficient manipulations in the next stage.

2) (Analysis) The analyzer module gives each register vari-
able (in fig. 4, %0, %1, %2, %3, %X, %Y, %Z) two values
(value, imprecision), and update these values based on
the following two types:
• Atomic machine instructions (in fig. 4, load,
store, add, sdiv). Consider in fig. 4 with the
instruction %2 = add i32 %1, %0 ;. Given %0
with imprecision [−0.5, 0.5], %1 with imprecision
[−0.25, 0.25], %2 would have imprecision ranging
over [−0.75, 0.75].

• Global iterations (e.g., a sensor reads one new
value from the environment, load memory, which
is recorded separately in the information ”Error
Estimation” in fig. 4). Note that as fixed points may
never be reached, the number of iterations can be
set explicitly.

RTAS 2010 - Work-in-Progress

59

Console for CAN bus WCET

Option selection windows in Gecko

Gecko pop-up options in Eclipse IDE

Functional model concretization (xmi format)
Architectural model annotation with WCTT reports (xmi format)
Dependability verification (for UPPAAL 4.0 xml format)
Experimental code generation
SystemC TLM 2.0 model fragment generation (loosely timed)

Functional model concretization (xmi format)

Functional model concretization (xmi format)

Fig. 5. Screenshots when designing systems using Gecko.

Limitation: The integrity constraint generator module cur-
rently operates over functions under affine transformations;
for conditional operations, a decision by taking both edges
is approximated. The analysis works with sensor imprecision
modeled using both intervals and Gaussian distribution, which
is also closed under linear transformations.

III. EVALUATION AND EXTENSION

The above functionalities of Gecko have been implemented
(preliminary version and demo available at [4]) under the
Eclipse platform, and fig. 5 shows some screenshots when
designing with Gecko. Stepwise refinement operations can
be performed to generate models or executable code. A
complete demonstration using the tool over Luminary Micro
LM3S8962 evaluation boards is also available, where a model
containing distributed voting using the CAN bus is designed
and deployed. To support detailed analysis, Gecko also enables
designers to generate SystemC modules from Gecko models;
currently only loosely-timed modeling methodology (using
b_transport() primitives) is available.

To provoke free extension and usage, the package will be
released as an Eclipse add-on under GPL 2.0. For extensions,
introducing new mechanisms requires users to design a param-
eterized skeleton using EMF, which can be easily adapted by
referencing existing mechanisms; introducing new platforms
requires users to implement links from abstract instructions
(e.g., Send(), Wait()) to concretized mechanisms.

IV. BRIEF OVERVIEW ON RELATED WORK

In general, different tools focus on different aspects in
the overall design flow. For instance, Metropolis [6] focuses
on the joint modeling of applications and architectures, and
Ptolemy focuses on the unified semantics for the execution of

heterogeneous models of computation. Our focus, compared to
others, is different: we expect to offer simplified (light-weight)
means to achieve dependability and fault-tolerance under a
unified design platform or to experiment novel techniques.

V. CONCLUDING REMARKS

Our contributions are summarized as follows:
• We presented a framework for embedded systems to

equip with fault-tolerance with reduced design efforts.
We bind actor-oriented methodologies and fault-tolerant
patterns [11] using tree-structures, and perform local-
scale design space exploration (for communication), and
tree translation (for actors) in the refinement process.

• Analysis techniques are introduced (dependability model
generation, simple timing analysis), or experimented (in-
tegrity constraint analysis) in Gecko.

• The tool enables interfacing and integration with other
tooling by sharing a common platform (Eclipse IDE) and
by translating Gecko models into SystemC models.

The introduction of model-driven development (MDD) is
to facilitate the design process by providing an abstraction
of the system behavior, where complexities of the system
construction can be reduced. The Gecko tool, which is based
on MDD and focuses on fault-tolerance and dependability
aspects, will continue to be improved and extended.

REFERENCES

[1] Eclipse Modeling Framework. http://www.eclipse.org/modeling/emf/.
[2] Open SystemC Initiative (OSCI). http://www.systemc.org/.
[3] openArchitectureWare Project. http://www.openarchitectureware.org/.
[4] Temporarily folder for the Gecko Project. http://www6.in.tum.de/

∼chengch/Gecko/ .
[5] The LLVM Compiler Infrastructure Project. http://llvm.org/.
[6] F. Balarin, Y. Watanabe, H. Hsieh, L. Lavagno, C. Passerone, and

A. Sangiovanni-Vincentelli. Metropolis: An integrated electronic system
design environment. Computer, pages 45–52, 2003.

[7] G. Behrmann, A. David, and K. G. Larsen. A tutorial on UPPAAL. In
M. Bernardo and F. Corradini, editors, Formal Methods for the Design
of Real-Time Systems: 4th International School on Formal Methods
for the Design of Computer, Communication, and Software Systems
(SFM-RT’04), number 3185 in LNCS, pages 200–236. Springer–Verlag,
September 2004.

[8] C. Buckl. Model-Based Development of Fault-Tolerant Real-Time
Systems. PhD thesis, Technische Universität München, Oct 2008.

[9] R. Davis, A. Burns, R. Bril, and J. Lukkien. Controller Area Network
(CAN) schedulability analysis: Refuted, revisited and revised. Real-Time
Systems, 35(3):239–272, 2007.

[10] J. Eker, J. Janneck, E. Lee, J. Liu, X. Liu, J. Ludvig, S. Neuendorffer,
S. Sachs, and Y. Xiong. Taming heterogeneity - the Ptolemy approach.
Proceedings of the IEEE, 91(1):127–144, 2003.

[11] R. Hanmer. Patterns for Fault Tolerant Software. Wiley Software
Patterns Series, 2007.

[12] I. Hayes. Dynamically Detecting Faults via Integrity Constraints. In
M. Butler, C. B. Jones, A. Romanovsky, and E. Troubitsyna, editors,
Methods, Models and Tools for Fault Tolerance, volume 5454 of Lecture
Notes in Computer Science, pages 85–103. Springer, 2009.

[13] T. Henzinger, B. Horowitz, and C. Kirsch. Giotto: A time-triggered lan-
guage for embedded programming. Proceedings of the IEEE, 91(1):84–
99, 2003.

[14] A. Kshemkalyani and M. Singhal. Distributed Computing: Principles,
Algorithms, and Systems. Cambridge University Press New York, NY,
USA, 2008.

[15] K. Tindell, A. Burns, and A. Wellings. Calculating controller area
network (CAN) message response times. Control Engineering Practice,
3(8):1163–1169, 1995.

RTAS 2010 - Work-in-Progress

60

	cover
	msg
	TPC
	toc
	RTAS-2010-WiP
	830_Camera_ready_manuscript
	801_Camera_ready_manuscript
	821_Camera_ready_manuscript
	807_Camera_ready_manuscript
	803_Camera_ready_manuscript
	804_Camera_ready_manuscript
	823_Camera_ready_manuscript
	810_Camera_ready_manuscript
	815_Camera_ready_manuscript
	825_Camera_ready_manuscript
	818_Camera_ready_manuscript
	806_Camera_ready_manuscript
	814_Camera_ready_manuscript
	827_Camera_ready_manuscript
	817_Camera_ready_manuscript
	829_Camera_ready_manuscript
	809_Camera_ready_manuscript
	802_Camera_ready_manuscript

	notes

