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Abstract

This paper deals with the issue of achieving comfort in buildings with minimal energy consumption. Specifically a reinforcement

learning controller is developed and simulated using the Matlab/Simulink environment. The reinforcement learning signal used is a

function of the thermal comfort of the building occupants, the indoor air quality and the energy consumption. This controller is then

compared with a traditional on/off controller, as well as a Fuzzy-PD controller. The results show that, even after a couple of simulated

years of training, the reinforcement learning controller has equivalent or better performance when compared to the other controllers.

r 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Although under investigation for decades, comfort
remains an open issue. The international standards are
re-evaluated to include the new adaptive comfort standard,
while the applicability of the PMV index [1] in naturally
ventilated buildings is under scrutiny. At the same time the
effort for energy conservation that begun in the 1970s,
along with the CO2 emission reduction requirements
renders the use of energy management systems in buildings
imperative. During the last decades the applications of
automatic control have profited from the use of artificial
intelligence—neural networks, fuzzy logic and more
recently reinforcement learning. The technique of reinfor-
cement learning is of particular interest. In contrast to
other techniques of adaptive control, a reinforcement
learning agent does not know what the correct answer is,
instead it receives only an indication of the ‘‘correctness’’ of
its response.
e front matter r 2006 Elsevier Ltd. All rights reserved.
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The objective of this work is to design an adaptive
controller that will take into account user preferences, in
order to achieve energy conservation and user comfort.
User comfort entails three distinct goals, thermal comfort,
indoor air quality and adequate illuminance.
Although visual comfort is usually considered a sig-

nificant part of user comfort, it was decided that it was
beyond the scope of this paper. This is mainly due to the
fact that including visual comfort would require additional
states and actions which will increase the complexity of the
controller and the training time. Additionally because of
the small interdependence between the parameters that
affect visual and thermal comfort, it is estimated that the
former can be accommodated with the use of an
independent, dedicated controller. This controller would
also be able to take into consideration the local phenomena
like glare that affect visual comfort, which is difficult to
take into account in a more general space controller.
In order to assess user comfort the controller should be

capable of using any of the comfort measures like the
PMV, or the Adaptive Comfort Standard [15–19]. This is
achieved by incorporating the comfort measure into a
penalty signal that the controller is trying to minimize.
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Nomenclature

a action
e eligibility trace
J cost function
R return
s state
Tin indoor air temperature
Tout outdoor air temperature
V state value
w1 weight of thermal comfort penalty in reinforce-

ment

w2 weight of energy penalty in reinforcement
signal

w3 weight of indoor air quality penalty in reinfor-
cement

W weight vector
a learning rate
d TD error
l eligibility trace decay parameter
g discount parameter
m forgetting factor
f feature vector
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Additionally, the controller developed is also able to use
direct feedback from the user. The latter was modelled as
an intermittent discomfort signal since we assumed that
people will report only when they feel discomfort.

In order to put as few restrictions to the application of
the controller as possible, we assume that an accurate
model of the environment is not available. The only
information that is available to the controllers is simple
sensor measurements like indoor temperature, humidity
and a user response to the current environmental condi-
tions inside the building.

2. State of the art on artificial intelligence on building indoor

environment and energy management

There are three main areas of activity in building
controller development, namely neural networks, fuzzy
systems, predictive control and their combinations [2–5].
Many of the proposed controllers incorporate provisions
for occupant thermal comfort and almost all seek to
maximize the building’s energy efficiency, either directly or
indirectly. In [6] a controller consisting of two separate
fuzzy systems was designed, with significant energy
conservation when compared to a simple on/off controller.
The first part determines the comfort zone based on current
conditions and a user dependent model, while the second
one provides the control. Fuzzy on/off and fuzzy-PID
controllers were tested in [7] for the temperature control of
an environmental chamber. Both controllers performed
better than their non fuzzy counterparts. A fuzzy controller
was also chosen by Dounis and Manolakis [8] for thermal
comfort regulation. The controller uses the PMV index and
the ambient temperature in order to control heating,
cooling and natural ventilation (by means of a window).
In [9] the authors developed and tested a family of fuzzy
controllers, namely a fuzzy PID, a fuzzy PD and an
adaptive fuzzy PD. The controllers were used to regulate
thermal and visual comfort as well as air quality inside a
building. The inputs used, were the PMV index, the CO2

concentration and the illuminance level.
On the other hand Ben-Nakhi and Mahmoud [10]

developed and evaluated a family of six neural networks.
They were used to determine the time of the end of
thermostat setback in an office building so that by the
arrival of the employees the conditions inside were back to
normal. The neurobat project developed by Morel et al.
[11] uses neural networks for predictive control. In this
project neural networks predict outdoor conditions which
are then fed to another neural network that forecasts the
building behavior.
Neural-fuzzy systems have also been studied. In [12]

Egilegor et al. tested a fuzzy-PI controller with and without
neural adaptation. The system was used to control heating
and cooling within the PMV comfort zone. Although
compared to an On/Off controller, the fuzzy-PI performed
better, neural adaptation did not offer significant improve-
ment. Karatasou et al. [13] studied feed forward neural
networks for modelling energy use and predicting hourly
load profiles. Yamada et al. [14] developed a controller that
uses neural networks, fuzzy systems and predictive control.
This controller is used to improve energy saving in air
conditioning systems. Specifically it predicts outdoor
conditions (air temperature and solar radiation) as well
as the number of occupants. These predictions are
subsequently used to estimate building performance (air
temperature, wall temperature and heat load) in order to
determine the heat sources’ optimal start/stop times,
optimal night purge time during summer and minimum
outdoor air intake. In addition to that the controller aims
at maintaining indoor conditions within a comfort zone,
which is determined by the PMV index [15–19].
It is noteworthy that even when the controller design

aimed solely at achieving thermal comfort, the results also
showed reduced energy consumption. Almost all the
controllers used the PMV index as thermal comfort
measure.

3. Reinforcement learning

In this section the main terms used in reinforcement
learning are discussed. These terms are actions, states,
policy, reward function, value function, return, discount-
ing, episodic and continual tasks, backup and the Markov
property [20].
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Actions refer to the decision that the agent will be called
to make and can be as low-level as the voltage applied to a
motor unit or as high-level as where the agent should focus
its attention on. State on the other hand refers to the
available information that is pertinent to the agent’s
decision making. State can be comprised of any kind of
information ranging from sensor signals to symbolic
characteristics of the environment.

Policy defines the way a reinforcement learning agent
behaves. It provides a mapping between the situations the
agent can find itself in (states) and the action it should take.
Policies can be deterministic by specifying which action
should be taken under each state or stochastic when for
example instead of a specific action, probabilities of
choosing several actions are given. Judging from the above,
the reinforcement learning problem becomes the problem
of determining the optimal policy, the policy that will
collect the maximum reward in the long run.

The reward function describes the expected reward of
being in a certain state or choosing a certain action while
being in a specific state. The reward function can be said to
be ‘‘short-sighted’’ as it looks only one step ahead. In
contrast to the reward function, the value function defines
the total amount of reward that the agent should expect to
receive in the long-term by being in a specific state or by
choosing an action while being in a specific state.

Value functions are very important in determining the
optimal policy. Specifically when an exact model of the
environment is available the agent can determine which
action will result in the best successor state. The best
successor state is defined as that with the largest value.
Alternatively in problems were a precise model of the
environment is not available, the state-action value is used
instead since it provides the means to selecting the actions.

A return is the actual reward received by an agent while
following a certain policy. The return may refer to the total
reward received or to the reward received after a small
amount of time. The return can be used to update the value
function because it is in fact an estimate of the value
function taken from interaction with the environment. In
many situations the reinforcement learning problem may
continue indefinitely and the return may reach infinity.

In order to overcome this problem and ensure the
boundedness of the return, discounting is used. Discounting
assigns greater weight to immediate rewards and less to
very distant ones. The discounted return can be written as:

Rt ¼ rt þ grtþ1 þ � � � þ gkrtþk. (1)

The g parameter is known as the discount factor and
takes values in the [0 1] interval. The smaller the value the
less we care about long-term rewards.

All reinforcement learning problems can be divided into
two categories: episodic and continual. Episodic problems
are problems that have one or more terminal states. When
the agent reaches one of these states the episode finishes
and the state is reset to its initial setting. An example of an
episodic problem is a game of chess, where each episode
refers to a single game and the terminal states refer to
board positions where either player has won or the game is
tied. Continual problems, on the contrary, never terminate
but continue indefinitely. An example of a continual
problem is a process control problem. Backups refer to
the way value function updating occurs. Specifically it
refers to which values are used for updating the current
value function. For example when using a one-step backup,
the agent looks only one step ahead, that is it uses the value
function of only the next state (or state action) to update
the value of the current state (or state-action).

The Markov property is an important property regarding
the state signal, since the applicability and performance of
many reinforcement learning algorithms depends on it. In
order for a state signal to have the Markov property, the
environment dynamics must depend only on the current
state and chosen action, thus enabling us to predict the
next state and its expected reward only using currently
available information and not the entire history up to the
current situation. Even when a state signal does not have
the Markov property, it is desirable that it represents a
good approximation of a Markov signal, because in a
different case the reinforcement learning system’s perfor-
mance will be poor. A reinforcement learning task that
satisfies the Markov property is called a Markov Decision
Process (MDP).

3.1. Reinforced learning methods

There are three major categories of reinforcement
learning methods, each with its application scope, advan-
tages and disadvantages. These are Dynamic Programming
(DP) methods, Monte-Carlo (MC) methods and Temporal
Difference (TD) methods. In this application Temporal
Difference (TD) learning methods are selected as they
combine the advantages of MC and DP methods. TD
learning methods do not require a model of the environ-
ment and are able to learn from interaction with the
environment on a step by step basis. In order to make an
update of the state value function, TD methods only
require the observed reward and an estimate of the value of
the next state. TD methods, under certain assumptions,
have been proven to converge to an optimal policy and it is
also true that in several applications they have been found
to converge faster than MC methods [20]. Also TD
algorithms are possible to be used in order to perform
multi-step backup. This is expected to increase the speed of
the algorithm since from a single experience, several states
visited in the past, will be updated. In order to achieve
multi-step backups online, eligibility traces are used.
Eligibility traces can be seen from two viewpoints, the
forward and the backward [20]. The forward view is more
theoretically oriented and it states that eligibility traces
represent how far ahead and which states should we look in
order to determine the current best action. The backward
view is oriented towards implementation and it states that
eligibility traces represent a memory of which state
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(or state-action) values are ‘‘eligible’’ for updating due to
the currently received reward. One method to implement
eligibility traces is the complex backups. Complex backups
refer to backups that average in any way two or more n-
step backups. In order to facilitate implementation of these
complex backups the TD(l) algorithm was developed. The
l constant is a parameter that defines the weighting of each
backup. The return used is defined by

Rl
t ¼ ð1� lÞ

X1
n¼1

ln�1Rn
t . (2)

In order to implement the TD(l) algorithm we need to
keep track of the eligibility trace of each state eðsÞ, in
addition to its value. Care should be taken though to the
way the eligibility traces are updated, because now the
actions should also be taken into account. The following
schema is proposed:

etðsÞ ¼

glet�1 sð Þ sast;

glet�1 sð Þ s ¼ st a ¼ at;

0 s ¼ st aaat:

8><
>: (3)

Using the Temporal Difference learning method (TD (l)
algorithm) we get the following update rule for the state
value V and the weight vector W:

V tþ1ðstÞ ¼ VtðstÞ þ adetþ1ðstÞ,

W tþ1 ¼W t þ aðrt þ gfT
ðxtþ1ÞW t � fT

ðxtÞW tÞetþ1, ð4Þ

where etþ1 ¼ glet þ f xð Þ.
The least-squares problem as presented in Eq. (3) has the

following objective function:

J ¼
X1
i¼1

AW �
X1
i¼1

b

�����
�����
2

. (5)

The parameters A; b are defined as

A ¼ etðf
T
ðxtÞ � gfT

ðxtþ1ÞÞ,

b ¼ etrt. ð6Þ

Getting the least-squares estimate of W requires a
computation that involves the whole sequence of states,
actions and rewards and has both computational and
memory demands. In several applications of control
adaptive filtering and system identification the recursive
least-squares algorithm (RLS) is used instead. The RLS
algorithm updates the weight vector every time a training
sample is available. The weight update rule as adapted for
TD(l) reinforcement learning by Xu et al. [22] is given by
the following equations:

Ktþ1 ¼
Ptet

ðmþ fT
ðxtÞ � gfT

ðxtþ1ÞPtetÞ
, (7)

W tþ1 ¼W t þ Ktþ1ðrt � ðf
T
ðxtÞ � gfT

ðxtþ1ÞÞW tÞ, (8)
Ptþ1 ¼
1

m
fPt � Ptet½1þ ðf

T
ðxtÞ

� gfT
ðxtþ1ÞÞPtet�

�1ðfT
ðxtÞ � gfT

ðxtþ1ÞÞPtg, ð9Þ

where P0 ¼ dI.
There are four tunable parameters in the RLS algorithm

d;m; g and l for the eligibility trace update. The d parameter
is used for the initialization of the P matrix and it has been
shown that it can influence the convergence speed of the
algorithm. The m parameter is known from adaptive
filtering as the forgetting factor and for the standard
RLS-TD(l) should be equal to one. The g and l parameters
are the same as those used in the TD(l). It should be noted
that no learning rate parameter is essential.

4. The linear reinforcement learning controller (LRLC)

The use of conventional fuzzy controllers although simple
and computationally undemanding presents a serious problem
regarding the fuzzy rule base generation. Usually the rule base
is designed using expert knowledge and trial-and-error
techniques which are time consuming and do not provide an
update scheme when the environment changes. Reinforcement
learning controllers on the other hand choose actions based on
a reward function or look-up table. This reward is based on the
controller’s previous experience [20,21].
The controller was developed using linear function

approximation of the state-action value function. The
feature vector is constructed using radial basis functions
(RBFs). RBFs were preferred to other ways of feature
coding, because they provide continuous valued features
using a simple and intuitive functional form. For example it
is easy to determine the parameters of any number of RBFs
that will evenly cover a given range. Besides that, there exist
algorithms that can adjust the RBF parameters using super-
vised training. This feature can lead to better approximation
but it was not used in this work because the resulting
nonlinearities could lead to convergence problems. In some
cases it has been found that RBFs with adaptive centres may
leave parts of the space under-represented.
The LRLC approximates the state-action value function as

the product of a weight vector and a feature vector. The
controller decides on the appropriate action by constructing
the feature vector for every possible action under the current
state. Then it multiplies all these vectors with the weight
vector and chooses the action with the largest expected value.
It is therefore obvious that the controller performance
depends on the accuracy of the weight vector. The weight
vector is constructed at first randomly and consequently it is
updated every time a new reward is received.

4.1. The architecture of the RLLC

Since the value matrix contains all possible combinations
of states and actions, a large number of inputs and outputs
and/or a fine partitioning of the input space will result in a
very large value matrix. On the other hand if the
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partitioning of the input space is very coarse the controller
will be unable to identify different conditions, thus
behaving inadequately. Therefore special care should be
given during the controller design phase so that redundant
partitioning is avoided.

The controller is designed to use any number of inputs.
During testing two environments were provided, one that
uses the indoor and outdoor air temperatures as well as the
relative humidity and CO2 concentrations as inputs and
another that does not use relative humidity. These input
variables were chosen since they are usually readily
available (with a possible exception of the CO2 concentra-
tion) and do provide the controller with sufficient
information about its environment.

The control variables are three. The first refers to the
operating status of the heat pump and has seven possible
settings, off and high, medium and low for heating and
cooling, respectively. The second is the air ventilation
subsystem that can operate in three different modes, off,
low and high. Finally the third is window control that can
take one of the four following states: closed, slightly open,
open, wide open. The resulting 84 possible actions are
generated by the combinations of the above variables.

The use of a heat pump model for both heating and
cooling was preferred because of several advantages it offers
without restricting the controller’s applicability. Even if a
building has separate heating and cooling systems they can be
adequately simulated by the heat pump model since the
simultaneous operation of both systems would be inefficient
and therefore avoided by the controller anyway. The use of
one variable for both cooling and heating leads to fewer
possible actions that the LRLC needs to try and learn.
Further reduction of the possible actions can be achieved by
restricting window usage during the operation of the air
conditioning system. This reduction could lead to as few as 30
actions at the expense of further complicating the controller
design. Nevertheless, in the long term, the controller should
learn what the best course of action is without the need of
designer imposed restrictions. The use of conventional
heating bodies instead of a heat pump can be treated
similarly although some modifications are essential. The
control variable will have only five states: off, heating, cool
low, cool medium and cool high. Although the reward
assignment spreads over a number of time steps, the response
delay of such a heating system can be quite large resulting in
poor behaviour. To overcome this problem we can add one
more state referring to the current state of the heating bodies.
This additional state will allow the controller to ‘‘forecast’’
the effect of turning on or off the heating.

5. Reinforcement signal design

In order for reinforcement learning to take place, a
proper reinforcement signal is necessary. For the problem
at hand the reinforcement signal should be a function of
the energy consumption and the user satisfaction level.
User satisfaction is further divided into thermal comfort
and satisfaction with the indoor air quality. The reinforce-
ment signal is modelled as a variable that can take any
value in the interval [�1 0]. This variable is in effect a
penalty that is higher (closer to �1) during high energy
consumption and/or user discomfort. An estimate of
current energy consumption can be obtained from the
operational characteristics of the heating and cooling
devices and their current operating settings. Estimating
user satisfaction on the other hand is quite difficult using
available measurements. Although we can have a user
response signal, this signal may not be used directly since it
is irregular and therefore does not convey information
regarding user satisfaction levels at every time step.
To overcome this problem an Adaptive Occupant

Satisfaction Simulator (AOSS) is developed.
The AOSS associates current environmental conditions

inside and outside the building with user satisfaction level,
so that for any given set of conditions AOSS’ output will be
1 for user dissatisfaction and 0 for user satisfaction. Every
time a signal from the user simulator is available, the AOSS
is updated to incorporate the new information. In real
building applications this information could be stored in a
Building Energy Management System database, so that
when the user enters his or her office the environmental
control will be suited to his or her preferences. For the
modelling of the indoor air quality a sigmoid of the CO2

concentration is used that gives close to 0 values when the
CO2 concentration is less than 780 ppm and values close to
1 when the CO2 rises above 950 ppm. The final reinforce-
ment signal is given by the following equation:

r:s: ¼ � w1 thermal_comfort_penaltyð Þ

� w2 energy_penaltyð Þ�

� w3 indoor_air_quality_penaltyð Þ ð10Þ

thermal_comfort_penalty ¼

Pk
t¼0AOSS signal

k
, (11)

energy_penalty ¼

Pk
t¼0energy consumption

max energy consumption
, (12)

indoor_air_quality_penalty

¼
Xk

t¼0

1

1þ exp �0:06 CO2 concentration�870ð Þ½ �

,
k.

ð13Þ

The wi variables are constants that represent the
importance of each element, namely user satisfaction and
energy conservation. Each constitute of the penalty is
averaged over the time period between controller re-
evaluation so that the final reinforcement signal will be
representative of the whole period.
In Eq. (11) the AOSS signal is used as measure of user

dissatisfaction. The AOSS signal, as it has already been
described, originates from the direct feedback of the building
occupants. Of course using the AOSS is not always possible,
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Table 2

Training parameters of an one-year LRLC simulation

w1: 0.80 l: 0.5
w2: 0.05 g: 0.9
w3: 0.25 m: 1

Table 3
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especially when a large number of people share the same
space. In such situations the use of the Fanger or the
Adaptive Comfort Standard (ACS) model are preferable
[15–19]. In order for the Fanger model to be used, the AOSS
signal needs to be replaced with a value depicting discomfort,
namely the PPD. Since the PPD takes values in the interval
[0,1] 0 corresponds to all user feeling comfortable and 1 all
users being in discomfort, it is more suitable for direct use
than the PMV index. Equivalently if the ACS model is in use,
the AOSS signal should be replaced by a measure of the
distance of current indoor temperature to the comfortable
one or by a binary feature showing if current indoor
temperature is inside the comfort zone or not.

Regardless of the comfort measure used, the controller
will try to optimize by reducing the PPD or minimizing the
time that the ACS is showing environmental conditions
outside the comfort zone.

6. Results

6.1. Controller testing

In order to evaluate the performance of the controller a
suitable testing environment is required. This environment
Table 1

The CO2 concentration statistics for the On/Off and the Fuzzy PD

controller

On/Off Fuzzy PD

Building A and B Building A Building B

Min 485 489 400

Mean 823 787 658

Max 1099 1098 935
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Fig. 1. Heat pump response of the LRLC during its first year of simulated tr

utilizes only three inputs (Tin, Tout and [CO2]) and is applied in a building wit
should incorporate a model of the building and one of the
user responses. The building was simulated using the SIBIL
application [23]. Since user input is essential for the operation
and evaluation of the controllers an add-in, called herein user
simulator, is developed. This user simulator models user
response based on current PMV conditions inside the
building and the following tunable parameters:
�
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Preference—Depending on climatic conditions and
cultural background a user may prefer colder or warmer
conditions, namely higher or lower PMV values.

�
 Sensitivity—This parameter describes how far the PMV

index can drift from the optimal value before the user
senses discomfort.
7 8 9 10 11 12

onth)

ng. The response is averaged over an one hour period. This controller

o insulation.

inforcement learning parameters used for training a LRLC over a

iod of 4 years

1st year 2nd year 3rd year 4th year

0.80 0.80 0.80 0.80

0.01 0.01 0.01 0.01

0.20 0.20 0.20 0.27

0.50 0.50 0.50 0.50

0.95 0.95 0.95 0.90

1.00 1.00 1.00 1.00

0.075 0.025 0.000 0.000
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. 2. 1st year of LRLC training. The controller utilizes four inputs (Tin, T

presponse is averaged over a period of 2 h.

ble 4

ulation results of the LRLC over a period of 4 years

1st year 2nd year 3rd year 4th year

erage PPD (%) 12.1 12.4 12.8 12.0

nual energy

sumption (MWh)

9.39 7.13 5.83 4.85

n [CO2] (ppm) 385 385 389 394

an [CO2] (ppm) 464 462 450 539

x [CO2] (ppm) 1658 860 860 1697
current controller knowledge. If there is a need, the
controller can be reset in order to start learning from
There is also a facility to save user preferences along with

scratch. User response is modelled as a two state signal.
One state denotes that the user feels discomfort, while the
other provides no real information since it may denote that
the current conditions are satisfactory or that although the
opposite is valid the user did not report it. Two buildings
are modelled in the Sibil application. Building A has
an area of 15m2, one window (1m2) and the walls are
made from 21 cm of concrete and a 2.5 cm insulating
layer of foamed polystyrene. Building B has an area of
14m2 and one window (2m2) facing in a different direction.
The walls are made of 21 cm of concrete but without
insulation.
6
 (month)

8 10 12

6
 (month)

8 10 12

out, month and [CO2]) and is applied in an insulated building. The heat
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Fig. 3. Second year of LRLC training. The controller utilizes four inputs (Tin, Tout, month and [CO2]) and is applied in an insulated building. The heat

pumpresponse is averaged over a period of 2 h.
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For comparison purposes all controllers are based on the
PMV model and the average PPD index is used as a
measure of thermal comfort.

6.2. Reference controllers

Two reference controllers are used. The first is an On/Off
controller that uses the PMV index. This controller only
operates the heating and cooling. Specifically it turns on
the appropriate device when the PMV index moves outside
the [�0.8 0.8] region and turns it off when the PMV moves
inside the [�0.5 0.5] region. The ventilator unit is always on
in the low setting to prevent large increase in CO2

concentration levels. Since this controller operates based
on the real PMV value it is expected that it will achieve low
average PPD. In a real building application we should
expect that the PMV index is only estimated or even that
the controller will operate based on temperature. In any
case it is doubtful that we can expect less energy
consumption or smaller average PPD.
The second controller is a fuzzy-PD controller that is

described in detail in [9]. This controller operates besides
heating and cooling, the window and the ventilator.
The annual energy consumption of the On/Off controller

in building A is about 4.77MWh and for building B is
8.65MWh. The corresponding consumptions for the fuzzy-
PD controller are 3.28 and 5.83MWh, respectively. During
this year the On/Off controller achieved an annual average
PPD of 13.4% and 16.7% while the fuzzy controller had
16.5% and 24.5% for the first and second building,
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respectively. The maximum, minimum and mean CO2

concentrations are summarized in Table 1.

6.3. LRLC testing

6.3.1. Test configurations

The LRLC is tested using three different controller
configurations:
A.
 Four inputs (Tin, Tout, RH, [CO2]).

B.
 Four inputs (Tin, Tout, Time, [CO2]).

C.
 Three inputs (Tin, Tout, [CO2]).
For each of these configurations two different feature
vectors were tested. The first feature vector consists of the
values of all the state vectors, augmented by the action
vector. The components of the action vector represent
heating, cooling, ventilation and window opening as values
in the [0,1] range. The second feature vector comes from
multiplying the first vector with the action vector. The
smaller feature vector used was of size 34 and the largest of
size 232.
The controller is tested for varying periods of time,
radial basis functions (RBFs) and parameter values �; g; l.
After testing, the eligibility trace decay parameter was
chosen to be 0.5. This value is consistent with what we
expected, that is the actions taken up to 30 or 40min ago
should influence the current reward. The discount factors g
used are between 0.8 and 0.95 since higher values are not
recommended from the bibliography and smaller values
(0.3–0.6) exhibited inefficient behaviour. The inadequate
behaviour for low discount factors can be attributed to the
fact that the controller probably found ways to increase
immediate rewards, while simultaneously losing access to
better long-term rewards. It is possible that even by using
small discount factors the controller will eventually
converge to a good policy.
The forgetting factor m was chosen to be one at all cases

since even a small change (0.99) caused bad behaviour by
the controller. In general large feature vectors exhibited
better performance as it was expected. Using feature
vectors that combined states and actions resulted in
increased performance since these feature vectors where
able to capture some of the nonlinear relationships between
states and/or actions.

6.3.2. LRLC performance

The LRLC controller exhibits adequate training speeds.
It is noteworthy that even during the first year the
controller is able to quickly develop a policy that although
is far from optimal, it contains only few clearly wrong
actions. Applying an LRLC of the C configuration in
building B we took the response depicted in Fig. 1. This
figure shows the controller’s heat pump response with the
exploratory actions eliminated. It is apparent that the
controller quickly found that a good action during winter is
to turn on heating and cooling during summer. It should be
noted that the e parameter was only 2% and that the
exploratory actions where not completely random but
chosen as one setting higher or lower than the calculated
optimal. The annual energy consumption was 6.95MWh
and the average PPD 31.5%. The high PPD is due to the
fact that the controller begins with no knowledge of its
environment and therefore makes a lot of mistakes
especially in the beginning. This is evident from the fact
that the average PPD of the last 6 months is only 25.5%
while the average PPD of the first 3 months is more than
60%. The rest of the training parameters are summarized
in Table 2.
The evolution of training is described in the following

paragraph where the results from four single-year simula-
tions are discussed. The controller tested corresponds to
configuration B and is simulated using the building A
definition. The parameters used during these simulations
are cited in Table 3. The results are summarized in Table 4.
The results show that the annual average PPD does not

change significantly with time but the energy consumption
is reduced significantly from year to year by about 25%
each time. At the same time the CO2 concentrations vary
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within acceptable ranges after the first year, despite the fact
that the CO2 weight on the reinforcement signal is very
small. It is noteworthy that even during the second year the
CO2 concentration is above 800 ppm for less than an hour
in a whole year. During the fourth and last year we
increased the energy weight on the reinforcement signal
and decreased the discounting factor. This had as an effect
a decrease in the annual energy consumption and an
increase of the CO2 concentrations. The latter can be
attributed to the fact that the CO2 concentrations are
reversely analogous to the energy consumption. In order to
conserve energy, the agent needs to reduce heat losses,
reduces air exchanges with the outdoor environment and as
a result the CO2 concentrations increase. Fig. 2 shows the
controller heat pump response for the first year and the
corresponding PMV. Although a pattern is visible, there is
a large number of random actions where the controller
continuously switches from heating to cooling regardless of
the season. This is due to the fact that the controller has no
experience yet and because the e value is 7.5% which means
that the controller takes random actions quite frequently.
Fig. 3 shows the response of the controller during the
second year of simulation. Now the e value is smaller
(2.5%) and the controller choices are based mostly on
experience. Correspondingly the variations of the PMV
index are smaller. Fig. 4 corresponds to the third year
simulated. This time the controller uses the greedy
algorithm. It is obvious that it has learned not to use
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cooling during the winter months and although it
occasionally chooses to turn heating during summer the
performance is greatly improved. The three figures
described above provide only a very rough view of the
controller’s response. In order to better visualize the
controller’s true response, Fig. 5 shows the variations of
indoor and outdoor temperature and the PMV for a period
of three days in winter and Fig. 6 for a corresponding
period during summer. The data used are from the third
year of simulation. During the winter three day period the
controller kept the indoor temperature at a mean value of
23.1 1C. The width of variation for the same period was
1.5 1C for the indoor temperature and 6.1 1C for the
outdoor. The worst PMV value is �0.47 and the average is
�0.31. Equivalently for the summer period the controller
kept the temperature 26.5 1C with a variation width of
1.6 1C, while the outdoor temperature had a variation
width of 9.1 1C. The worst PMV value is 0.91 with a mean
of 0.73. The variations in indoor temperature during
noontime occur due to the fact that the controller switches
the cooling between low, medium and high in order to keep
the temperature from rising while at the same time
maintaining low energy consumption. It should be noted
that despite the fact that during the last year the greedy
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algorithm is used, the controller still learns and improves
its performance by updating its value function.
7. Conclusions

After training a LRLC for a simulated period of 4 years,
we achieved the results summarized in Table 5 which also
provides the corresponding results of the On/Off and
Fuzzy-PD controllers. It is evident from this table that the
LRLC has achieved a performance close to that of the
other two controllers. The larger energy consumption is
attributed to the fact that the controller is still changing its
policy and to the fact that the user comfort carries a larger
weight thus outperforming the other two controllers in that
measure. It should be noted that although the PPD index is
used to assess user comfort, the results would be similar
with any other comfort measure. The energy consumption
depends only on how far the comfort penalty allows the
controller to go without using the heat pump.

It is significant that the LRLC has achieved this
performance while still making errors. Even during the
fourth year the agent may turn heating in summer or
cooling during winter. Further training should eliminate
these wrong decisions and result in even better energy
conservation. This is expected since even after a period of 4
simulated years the controller still makes significant
improvements. The errors that still occur are in part
attributable to the exploration and in part to the fact that
due to the nature of the learning algorithm, the controller
needs multiple visits to each state in order to determine its
real value and develop a robust policy. Significant
improvement may also be achieved by using different
feature vectors or by providing the controller with more
information about its environment.

The main benefit from the use of reinforcement learning
in BEMS is that the controller continually learns and
improves on its policy. Specifically it is possible to create
pretrained controllers with a general knowledge of the
building. These controllers will then gradually adapt to
optimize their behaviour with respect to the specific
characteristic of the building/space they are used. Addi-
tionally this controller could adapt to changes of the
building characteristics stemming for example from equip-
ment ageing or replacement, leaks, etc. which can not be
taken into account with other controller designs.

An issue that involves the application of reinforcement
learning controllers in BEMS is that of sufficient explora-
tion. It is true that taking random actions even during a
small fraction of the time is unacceptable in a real building.
Table 5

Comparison of LRLC, On/Off and fuzzy-PD controllers

LRLC On/Off Fuzzy PD

Average PPD (%) 12.1 13.4 16.5

Annual energy consumption (MWh) 4.85 4.77 3.28
Even when the choice is between near-optimal actions we
should expect temporary increases in user dissatisfaction
and an increase in the total energy consumption (2–3% for
� ¼ 0:02). As a result it is necessary to exhaustively train
the controller before installation and allow very little
controlled exploratory actions or no exploration at all.
References

[1] Fanger PO. Thermal comfort analysis and applications in environ-

mental engineering. New York: Mc Graw Hill; 1970.

[2] Dounis AI, Santamouris M, Lefas CC, Manolakis DE. Thermal

Comfort degradation by a visual comfort fuzzy reasoning machine

under natural ventilation. Journal of Applied Energy 1994;48:

115–30.

[3] Dounis AI, Santamouris M, Lefas CC, Argiriou A. Design of a fuzzy

set environment comfort system. Energy and Buildings 1995;22:

81–7.

[4] Bruant M, Dounis AI, Guarracino G, Michel P, Santamouris M.

Indoor air quality control by a fuzzy reasoning machine in naturally

ventilated buildings. Journal of Applied Energy 1996;53.

[5] Clarke JA, Cockroft J, Conner S, Hand JW, Kelly NJ, Moore R,

et al. Simulation-assisted control in building energy management

systems. Energy and Buildings 2002;34(9):933–40.

[6] Hamdi M, Lachiver G. A fuzzy control system based on the human

sensation of thermal comfort, Fuzzy Systems Proceedings, 1998.

IEEE world congress on computational intelligence. The 1998 IEEE

international conference, vol. 1, 4–9 May 1998, pp. 487–92.

[7] Salgado P, Cunha JB, Couto C. A computer-based fuzzy temperature

controller for environmental chambers. Industrial electronics, 1997.

ISIE ‘97. Proceedings of the IEEE international symposium, vol. 3,

7–11 July 1997, pp. 1151–56.

[8] Dounis AI, Manolakis DE. Design of a fuzzy system for living space

thermal-comfort regulation. Applied Energy 2001;69(2):119–44.

[9] Kolokotsa D, Tsiavos D, Stavrakakis GS, Kalaitzakis K, Antonida-

kis E. Advanced fuzzy logic controllers design and evaluation for

buildings’ occupants thermal—visual comfort and indoor air quality

satisfaction. Energy and Buildings 2001;33:531–43.

[10] Ben-Nakhi AE, Mahmoud MA. Energy conservation in buildings

through efficient A/C control using neural networks. Applied Energy

2001;73:5–23.

[11] Morel N, Bauer M, El-Khoury M, Krauss J. Neurobat, a predictive

and adaptive heating control system using artificial neural networks.

International Journal of Solar Energy 2001;21:161–201.

[12] Egilegor B, Uribe JP, Arregi G, Pradilla E, Susperregi L. A fuzzy

control adapted by a neural network to maintain a dwelling within

thermal comfort. Proceedings of Building Simulation 1997;2:87–94.

[13] Karatasou S, Santamouris M, Geros V. Modeling and predicting

building’s energy use with artificial neural networks: methods and

results. Energy and Buildings 2005, in press.

[14] Yamada F, Yonezawa K, Sugarawa S, Nishimura N. Development of

air-conditioning control algorithm for building energy-saving. IEEE

international conference on control applications, Hawai, USA, 1999.

[15] Olesen BW, Parsons KC. Introduction to thermal comfort standards

and to the proposed new version of EN ISO 7730. Energy and

Buildings 2002;34:537–48.

[16] Memarzadeh F, Manning A. Thermal comfort, uniformity, and

ventilation effectiveness in patient rooms: performance assessment

using ventilation indices. ASHRAE transactions, Symposia 2000.

[17] Jones BW. Capabilities and limitations of thermal models for use in

thermal comfort standards. Energy and Buildings 2000;34:653–9.

[18] Humphreys MA, Nicol JF. The validity of ISO-PMV for predicting

comfort votes in every-day thermal environments. Energy and

Buildings 2002;34:667–84.



ARTICLE IN PRESS
K. Dalamagkidis et al. / Building and Environment 42 (2007) 2686–26982698
[19] Nicol JF, Humphreys MA. Adaptive thermal comfort and sustain-

able thermal standards for buildings. Energy and Buildings

2002;34:563–72.

[20] Sutton RS, Barto AG. Reinforcement learning: an introduction.

Cambridge, MA: MIT Press; 1998.

[21] Reynolds SI. Reinforcement learning with exploitation, in School of

Computer Science. Birmingham: The University of Birmingham; 2002.
[22] Xu X, He HG, Hu D. Efficient reinforcement learning using recursive

least-squares methods. Journal of Artificial Research 2002:

259–92.

[23] Eftaxias G, Sutherland G, Santamouris M. A building simulation

toolbox for MATLAB/SIMULINK, Installation guide and user

manual, Group Building Environmental Studies, Department of

Applied Physics, University of Athens; 1999.


	Reinforcement learning for energy conservation �and comfort in buildings
	Introduction
	State of the art on artificial intelligence on building indoor environment and energy management
	Reinforcement learning
	Reinforced learning methods

	The linear reinforcement learning controller (LRLC)
	The architecture of the RLLC

	Reinforcement signal design
	Results
	Controller testing
	Reference controllers
	LRLC testing
	Test configurations
	LRLC performance


	Conclusions
	References


