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A population density description of large populations of neurons has gen-
erated considerable interest recently. The evolution in time of the pop-
ulation density is determined by a partial differential equation (PDE).
Most of the algorithms proposed to solve this PDE have used �nite dif-
ference schemes. Here, I use the method of characteristics to reduce the
PDE to a set of ordinary differential equations, which are easy to solve.
The method is applied to leaky-integrate-and-�re neurons and produces
an algorithm that is ef�cient and yields a stable and manifestly nonneg-
ative density. Contrary to algorithms based directly on �nite difference
schemes, this algorithm is insensitive to large density gradients, which
may occur during evolution of the density.

1 Introduction

In the past decade, knowledge on brain function and organization has in-
creased dramatically. This is partly due to the application of established
techniques like in vivo electrode recoding of neural activity and partly due
to the emergence of noninvasive brain imaging techniques like PET and
fMRI. In particular, with the latter technique, the identi�cation of large-
scale cortical networks becomes possible. Moreover, with the advent of
a new generation of 3T machines and the development of new analysis
techniques, the time resolution appears to be much better than previously
believed possible. Events that take place at a subsecond timescale can be
located with a spatial precision in the millimeter range.

The advance of experimental techniques calls for a similar increase in so-
phistication of modeling techniques. Thus far, the modeling of higher cog-
nitive functions has relied a great deal on arti�cial neural networks (ANNs).
ANNs, however, are unsuitable for modeling transient phenomena and also
their biological plausibility is not always clear (e.g., Maass, 1997; de Kamps
& van der Velde, 2001). In order to model large-scale cortical networks in
a way that allows confrontation with experimental data, techniques are
required that re�ect the neural substrate of such networks and are mod-
est in their use of computational resources. In physics, similar con�icting
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requirements have led to the emergence of statistical physics. The techniques
of statistical physics can be applied to large-scale cortical networks, as has
been demonstrated in, for instance, population density techniques or the
spike-response model (e.g., Stein, 1965; Johannesma, 1966; Wilbur & Rinzel,
1982; Kuramoto, 1991; Abbott & van Vreeswijk, 1993; Gerstner & van Hem-
men, 1992; Gerstner, 1995). These techniques, which have a long-standing
history in neuroscience, consider the response of a large population of neu-
rons rather than that of individual neurons; thus, networks of populations,
which correspond to millions of neurons, may be simulated with reasonable
ef�ciency.

A novel approach to the application of population density techniques to
model large populations of sparsely connected neurons was introduced by
Knight, Manin, and Sirovich (1996) and subsequently developed by many
others.

In this approach, the dynamics of individual neurons, which are de-
scribed by a state vector Ev, determines the evolution of a density function
½.Ev; t/. As ½.Ev; t/dEv gives the probability that a neuron in the population
is in state Ev, the density function characterizes the behavior of the whole
population. In its simplest form, the state vector is one-dimensional and
can be applied to leaky-integrate-and-�re (LIF) neurons (Omurtag, Knight,
& Sirovich, 2000; Knight, 2000; Nykamp & Tranchina, 2000). An example of
an application to a higher-dimensional system can be found in Casti et al.
(2002), where a two-dimensional model of integrate-and-�re-or-burst (IFB)
neurons is considered. Synaptic dynamics can be included as a multidimen-
sional system, but this system can also be reduced to a one-dimensional
system, which is computationally much more ef�cient (Haskell, Nykamp,
& Tranchina, 2001).

The evolution equation in this approach is a partial differential integral
(PDE) equation, which describes the evolution of ½.Ev; t/ under the in�uence
of neuronal dynamics and a synaptic input. The synaptic input is assumed to
be a spike train, which is distributed according to an inhomogeneous Pois-
son distribution with rate ¾.t/. In a full version of the equation, the synaptic
ef�cacies may be a stochastic variable, which is distributed according to a
given probability function.

From the density ½.Ev; t/ the population’s �ring rate readily follows.
Hence, a solution of the PDE allows the determination of a population’s
�ring rate in response to a time-dependent input. An ef�cient solution of
the PDE therefore allows for an ef�cient simulation of transient phenom-
ena in cortical networks, as was demonstrated convincingly by Nykamp
and Tranchina (2000) in a model of orientation tuning. As analytic solu-
tions are available only for a limited number of cases, such as stationary
input (Sirovich, Omurtag, & Knight, 2000) or a two-compartment model
(Sirovich, 2003), ef�cient numerical solutions are essential in applications
of this technique.

So far, most approaches to solve this PDE numerically have been based on
�nite difference schemes (Omurtag et al., 2000; Nykamp & Tranchina, 2000;
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Casti et al., 2002). A problem with �nite difference schemes is that large-
density gradients may occur naturally during the evolution of the density
over time (e.g., Omurtag et al., 2000; Nykamp & Tranchina, 2000; Casti et al.,
2002). Indeed, as Nykamp and Tranchina (2000) and Casti et al. (2002) show,
considerable effort is required to ensure stability of these schemes. Here I
present an alternative approach, which is not based on �nite difference
schemes. It is based on the observation that in general, it is possible to carry
out a coordinate transformation in v-space that transforms away the effects
of neuronal dynamics. The coordinate transformation can be calculated by
�nding the characteristics of the PDE. For some important cases, like the LIF
neuron but also the IFB neuron (Casti et al., 2002), an analytic expression for
this solution can be found. In the resulting coordinate system, v0-space, the
PDE reduces to a set of ODEs, which are in fact the Master equations of a
Poisson jump process (Gardiner, 1997). The process in v0-space isuniversal in
the sense that it has a form independent of the neuronal model in v-space.
It describes the transfer of probability between points in v0-space. These
master equations can be solved easily by numerical or analytical means.

These ideas are applied to the LIF neurons. It turns out that although
the master equations are readily solvable, their time dependence in v0-space
complicates the solution somewhat. Moreover, the boundary conditions
must be handled with care. This is caused by the fact that the reset and
threshold potentials, which are constant in v-space, are moving in v0-space.
If the numerical problems related to these issues are handled carefully, a
stable algorithm results, which compares well to �nite difference schemes
in terms of ef�ciency. The main virtue of this approach, however, seems
to be its absolute insensitivity to gradient densities. The Herculean efforts
by Casti et al. (2002) to produce a stable �nite difference scheme, able to
handle the large density gradients that occur during the evolution of an IFB
population, show that this is an important issue.

Finally, I will discuss the relation between this approach and some of the
many ideas that arediscussed by Knight (2000), which are somewhat related.

2 The Population Density Equation

For completeness sake, in this section, I will brie�y recapitulate the popula-
tion density formalism. For a derivation of the equations and a discussion
of the ideas behind them, I recommend Omurtag et al. (2000). In general a
point neuron model is described by a set of ODEs,

dEv
dt

D EF.Ev/; (2.1)

which describes the evolution of the neuron’s state variables in the absence
of external input. Examples of point neuron models that are described by
equation 2.1 are the LIF neuron, the IFB neuron (Casti et al., 2002), and the
Hodgkin-Huxley model. In every point neuron model, there is at least a
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membrane potential V. The state vector Ev will sometimes be represented by
the n-tuple .v0; : : : ; vN¡1/. By convention, the �rst component of Ev, v0, will
be v, the rescaled potential,

v D V ¡ Vr

Vµ ¡ Vr
; (2.2)

with V the membrane potential in mV, Vr the reversal potential in mV, and
Vµ the threshold potential in mV. v is restricted to the interval .¡1; 1/. An
important example of a neuron model that is described by equation 2.1 is
the LIF neuron, described by

dv
dt

D ¡° v: (2.3)

Here ° is the inverse of the membrane time constant in s¡1. If v is pushed
across v D 1, the neuron spikes and is reset to a rescaled potential vreset. The
population density equation is given by

@½.Ev; t/
@t

D ¡ @

@ Ev
¢ EJ.Ev; t/: (2.4)

Here ½.Ev; t/ is the population density. From equation 2.4 follows

I

@D
On ¢ EJ D 0; (2.5)

where D is the neuron’s phase space and On is a boundary normal vector.
Outside D, it is natural to choose

½.Ev; t/ D 0; v 6 ² D; (2.6)

so that no inward �ux due to neuronal dynamics is possible. Moreover, it is
appropriate to choose the no-�ux boundary conditions,

On ¢ EJ D 0; (2.7)

everywhere at @D, except at v D 1.
J.Ev; t/ has three components:

EJ D EJstream C EJinput C EJreset: (2.8)

Here EJstream is given by

EJstream.v; t/ D ½.v; t/ EF.Ev/: (2.9)
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EJinput is de�ned by

EJinput.Ev; t/ D ¾.t/
Z 1

¡1
Ee0¿ .v0 ¡ w0/½.w0; v1; : : : ; vN¡1/ dw0; (2.10)

where Ee0 is the unit vector in the v direction and v0, w0 the zeroth component
of vectors Ev and Ew, respectively. Here, the case is considered where the
population described by ½ receives external input from an input population
with rate ¾.t/. If the probability that an input spike causes a membrane
depolarization of magnitude h is given by p.h/, then ¿ .v ¡ w/ is given by

¿.v ¡ w/ D H.v ¡ w/ C
Z 1

v¡w
p.h/ dh: (2.11)

Here H.x/ is the Heaviside step function:

H.x/ D
(

x < 0 H.x/ D 0

x ¸ 0 H.x/ D 1
: (2.12)

In this article, I will consider only a gaussian distribution of membrane
depolarizations of magnitude p.h/

p.h/ D
1

p
2¼®

e
¡.h¡Nh/2

2®2 (2.13)

or the nonstochastic limit ® ! 0, in which case

p.h/ D ±.h ¡ Nh/; (2.14)

where ±.x/ is the Dirac distribution. I will refer to . Nh; ®/ as the input param-
eters.

The �ux at the threshold potential corresponds to the fraction of neurons
that �re per unit time, that is, the �ring rate of the population, which is
given by

r.t/ D
Z

dv1 : : : dvN¡1Ee0 ¢ EF.1; v1; : : : ; vN¡1/½.1; v1; : : : ; vN¡1/

C ¾.t/
Z

dv1 : : : dvN¡1

Z 1

¡1
Ee0¿ .1 ¡ v0/½.v0; v1; : : : ; vN¡1/ dv0: (2.15)

Neurons that have spiked will be reset to membrane potential v0r
. Therefore,

the third current component EJreset is given by

EJreset.Ev; t/ D Ee0r.t/H.v ¡ v0r /: (2.16)
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The action of the divergence operator @
@Ev on the Heaviside function yields

a delta function source at the return point v0r . This component ensures
probability conservation. Probability density, which has left the system at
the threshold potential, will be reintroduced at the reset potential.

3 Idea for an Algorithm

3.1 Transforming Away Neuronal Dynamics. The idea of transforming
away neuronal dynamics is illustrated most clearly when p.h/ D ±.h ¡ Nh/.
Equation 2.4 then reduces to:

@½.Ev; t/
@t

C @

@ Ev
¢ . EF.Ev/½.Ev; t// D ¡¾.t/[½.Ev/ ¡ ½. Ev Nh/]; (3.1)

with

Ev D .v; v1; : : : ; vN¡1/ (3.2)

Ev Nh D .v ¡ Nh; v1; : : : ; vN¡1/: (3.3)

The characteristics Ev0.t/ are a family of one-parameter curves in Ev-space,
determined by the ODE system (John, 1981),

dEv
dt

D EF.Ev/; (3.4)

and the initial value Ev.0/. For initial conditions Ev.0/, the solution of this
system can be written formally:

Ev0.t/ D Ev.t; Ev.0//: (3.5)

Using equation 3.1, one �nds that on a characteristic line, the total time
derivative of ½ is given by

d½. Ev0; t/
dt

D @½. Ev0; t/
@t

C @½. Ev0; t/

@ Ev0
¢ d Ev0

dt

D ¡½. Ev0; t/
@

@ Ev
¢ EF. Ev0/ ¡ ¾.t/f½. Ev0; t/ ¡ ½. Ev0

Nh; t/g; (3.6)

which after a further transformation,

½ 0. Ev0; t/ D e
R t @ ¢ EF. Ev0 /

@ Ev0 dt0
½. Ev0; t/; (3.7)

reduces to

d½ 0.Ev0; t/
dt

D ¡¾.t/f½ 0. Ev0; t/ ¡ ½ 0. Ev0
Nh; t/g: (3.8)
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Hence, by the solution of the system 3.4 of ODEs, a coordinate transforma-
tion can be found that transforms equation 3.1 into an ODE:

8
<

:
v ! Ev0.t/ D Ev.t; Ev.0//

½.Ev; t/ ! ½ 0.Ev0; t/ D e
R t @ ¢ EF. Ev0/

@ Ev0 dt0
½. Ev0; t/:

(3.9)

An application of this formalism to the LIF neuron is straightforward: in
the LIF model, Ev has a single component, v, ¡1 < v < 1, as do all currents.
For the neuronal dynamics, in this case restricted to leakage, we have

F.v/ D ¡° v; (3.10)

which leads to

Jstream.v; t/ D ¡° v½.v; t/: (3.11)

Here, ° is the inverse of the membrane time constant in s¡1. The input
current simpli�es to

Jinput.v; t/ D ¾.t/
Z 1

¡1
¿ .v ¡ w/½.w/ dw; (3.12)

where ¿ .v ¡ w/ is given by equation 2.11, while the reset current 2.16 now
reads:

Jreset.v; t/ D Jinput.1; t/H.v ¡ vreset/: (3.13)

Using equations 2.6 and 3.11, one �nds

Jstream.1; t/ D 0; (3.14)

or

½.1; t/ D 0: (3.15)

This leads to the following expression for the �ring rate,

r.t/ D ¾.t/
Z 1

¡1
¿ .1 ¡ v/½.v/ dv; (3.16)

which for equation 2.13 reads

r.t/ D
1
2

¾.t/
Z 1

¡1
erf c

Á
1 ¡ v ¡ Nhp

2®

!
½.v/ dv: (3.17)
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And since I considered the limit lim ® ! 0, that is, p.h/ D ±.h ¡ Nh/, this
becomes

r.t/ D ¾.t/
Z 1

1¡Nh
½.v/ dv: (3.18)

Equation 3.1 now reduces to

@½

@t
¡ °

@

@v
.½v/ D ¡¾.t/[½.v; t/ ¡ ½.v ¡ Nh; t/]: (3.19)

It now remains to �nd the coordinate transformation to v0-space. The ODE
that de�nes the characteristics is

dt D ¡ dv
° v

: (3.20)

Solving yields the following coordinate transformation:

v ! v0 D v.0/e¡° t

½.v; t/ ! ½ 0.v0; t/ D e¡° t½.ve¡° t; t/: (3.21)

Indeed, equation 3.19 changes under this transformation equation into

d½ 0.v0; t/
dt

D ¾.t/f½0.v0 ¡ Nhe° t/ ¡ ½.v0/g; (3.22)

which in the absence of input (¾ .t/ D 0) implies a constant density pro�le
in v0-space and in this special case directly translates into the solution in
v-space:

½.v; t/ D e° t½.ve° t; 0/: (3.23)

3.2 The Master Equations. Equation 3.8 and its LIF version, 3.22, are
equations which describe transfer of probability from one point in v0 space to
another. When ° D 0 and Nh D 1=2¡² , with small but arbitrary ² (² D 0 would
violate boundary condition 3.14), for instance, equation 3.1 and boundary
condition 3.13 are completely equivalent to the following set of ODEs:

d½0

dt
D ¾.t/ [½2.t/ ¡ ½0.t/]

d½1

dt
D ¾.t/ [½0.t/ ¡ ½1.t/] (3.24)

d½2

dt
D ¾.t/ [½1.t/ ¡ ½2.t/] :
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Here, ½0 D ½.0; t/, ½1 D ½.1=2 ¡ ²; t/, and ½2 D ½.1 ¡ 2²; t/, respectively.
This equivalence follows from the simple fact that in the absence of neu-
ronal dynamics, only points that correspond to a potential that is an integer
multiple of Nh can have nonzero density, so that in general, a system of rank
[1= Nh] C 1 results, where [x] is the entier of x. Note that all explicit references
to the potential v have disappeared from the system above.

The emergence of these equations, and in general that of equation 3.8,
is hardly surprising. For constant ¾ , they would be the master equations
of a Poisson jump process (Gardiner, 1997), and for time-dependent ¾ .t/
they are the inhomogeneous version of these equations, subject to boundary
condition 3.13. This process also can be interpreted as a “one-sided” random
walk with a transition probability W.n C 1 j n; t/ D ¾ I otherwise, W.n j
m; t/ D 0: Here n, an integer number, is the position reached at time t. In a
coordinate system where neuronal dynamics is absent, the jump process is
all that is left, so one would expect equations of the form 3.8.

In matrix notation, these equations can be given by

d E½
dt

D A ¢ E½ (3.25)

with

A D ¾.t/

0

B@
¡1 0 1

1 ¡1 0
0 1 ¡1

1

CA : (3.26)

This equation system can be solved analytically or numerically by very
simple means. If a numerical algorithm is used, the resulting density is man-
ifestly nonnegative if a suf�ciently small time step is chosen. For p.h/ D
±.h ¡ Nh/, the set of transport equations can be found with the discretization
procedure, described below, with N D [1= Nh] C 1 points. As argued above,
when ° D 0, the resulting set of ODEs is exactly equivalent to equation 3.19.
An analytical treatment for the zero-leak case, in the limit ® ! 0, is given
by Sirovich (2003). For �nite ®, the correspondence between the ODEs and
the original PDE becomes approximate, but by taking N large enough, the
resulting set of ODEs can approximate the original PDE to any required pre-
cision. Here, too, however, the set of ODEs is solvable by simple analytic or
numerical means, which results in a density that is manifestly nonnegative.
This is in stark contrast to the oscillations and negative densities that are ob-
served when naive �nite different schemes are used to solve equation 3.19
for the case where ° > 0 (Nykamp & Tranchina, 2000).

3.3 The Basic Idea. The coordinate transformation 3.21 effectively dis-
sociates the two distinct physical processes that are considered in the pop-
ulation density equation: neuronal dynamics and potential jumps caused
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by synaptic input. Each process is characterized by its own timescale: the
neuronal dynamics is characterized by ° ¡1 for the LIF neuron, whereas the
synaptic input is characterized by the inverse of the input rate, ¾ ¡1.t/. The
latter is considerably shorter for realistic cases, and if a numerical method is
chosen to describe this process, the integration step is typically chosen even
an order of magnitude shorter. This means that during several integration
steps, v0-space, and the input parameters expressed in v0 coordinates, may
be considered to be constant. This implies that over such a period, the simple
system of ODEs, described above, has to be solved. Over a longer period,
1t, but still with 1t ¿ ° ¡1, v0-space does grow, but slowly and linearly. The
idea is now to add extra bins to the representation of the density occasion-
ally. Each time an extra bin is added, the matrix A has to be recalculated,
using new effective input parameters, and the rank of the system increases
by one. It turns out one can do this with reasonable ef�ciency. Before 1t
reaches ° ¡1, one must rebin the solution to the original number of bins,
so as to avoid exponential growth of v0-space. This is the basic idea of the
algorithm that will be presented below.

4 Implementation Issues

4.1 Discretization in v-Space. As leakage will be transformed away, I
will consider only ° D 0 and adapt the discretization scheme from Omurtag
et al. (2000) for Jinput and Jreset. To discretize, �rstonehas to choosea (rescaled)
potential vmin · 0, such that ½.v; t/ ¼ 0, for all t, v · vmin. The idea is that
one can always �nd a vmin such that ½.v; t/ ¼ 0 for v < vmin. For ° > 0, such
a vmin always exists. For ° D 0, such a vmin exists only if Nh > 0. The case
° D 0; Nh · 0 is rather pathological, and I will not consider it here.

If v-space is discretized into N points, one may represent ½.v; t/ by an
array of N bins, where the bin number i is related to potential v by

vi D i1v C vmin; (4.1)

with 1v D .1 ¡ vmin/=.N ¡ 1/. For i D 1; : : : ; N ¡ 1 equation 1.4 corres-
ponds to:

d½i

dt
D ¡ .Ji ¡ Ji¡1/

1v
: (4.2)

Here,

Ji.t/ D J.input/
i .t/ C J.reset/

i .t/; (4.3)

with J.input/
i .t/ ´ Jinput.vi; t/ and J.reset/

i .t/ ´ Jreset.vi; t/. For i D 0, we have

d½0

dt
D ¡

1
1v

J0: (4.4)
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Discretizing equation 2.10, using equations 2.11 and 2.13, yields

J.input/
i D ¾.t/6jQij½j; (4.5)

where

Qij D
1
2

erf c

Á
1v

£
i ¡ j ¡ h ¡ 0:5

¤
p

2®

!
´ Q.i ¡ j/; (4.6)

with h ´ Nh=1v. The subtraction of 0:51v serves to make lim®!0 Qij D 1
2 H.i¡

j ¡ h/. In the limit ® ! 0, this leads to transport of probability from one bin
to exactly one bin if N is a multiple of Nh.

Now de�ne r D .vreset ¡ vmin/=1v, the reset bin. For Jreset.v; t/ one �nds,
using equation 3.13,

J.reset/
i .t/ D H.i ¡ r/J.input/

N¡1 .t/; (4.7)

where J.1; t/ D Jinput.1; t/ was used, which is due to equation 3.14 and the
fact that vreset < 1.

Application of equation 4.2 and use of equations 4.5 and 4.7 directly lead
to the following ODE:

d E½
dt

D A ¢ E½: (4.8)

Here, the matrix A is given by

A D A.input/ C A.reset/: (4.9)

The components of A.input/ for i D 0; j D 0; : : : ; N ¡ 1 are given by

A.input/
ij D ¾.t/Q.i ¡ j/; (4.10)

and for i D 1; : : : ; N ¡ 1I j D 0; : : : ; N ¡ 1 by

A.input/
ij D ¾.t/.Q..i ¡ j/ ¡ Q.i ¡ 1 ¡ j//; (4.11)

and those of A.reset/ by

A.reset/
ij D ¾.t/Q.N ¡ 1 ¡ j/±i;r (4.12)
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4.2 Implementation of the Algorithm. To implement the ideas formu-
lated above, the density ½.v; t/ at t D 0 is represented in an array of N bins.
These bins are �xed in v0-space and consequently move in v space as time
progresses. The content of bin i is denoted by C.i/. The following relation
between potential and bin number,

vi D e¡° t.i1v C vmin/; (4.13)

is used instead of equation 4.1, and e° tC.i/ rather than C.i/ represents ½.vi; t/.
This then effectively implements the transformation of equation 3.21, and
the array of bins represents ½ in v0-space rather than v-space. In the absence
of input, the contents of the bin remain constant, and these constant contents
of the array of bins represent the decaying density pro�le of equation 3.23.

As noted above, if the size of the array is kept constant, an interval that
is shrinking in v-space is represented. To prevent this, at least for v > 0, an
extra point is added to the array after a time 1t D 1=° lnf.Norig C 1/=Norigg
with

C.Norig C 1/ D 0; (4.14)

where Norig D N at time t D 0. Boundary condition 3.14 is implemented
by 4.14. One may repeat this process, and as long as t < 1=° , the array size
will grow approximately linearly. At some time t D treset, one must rebin
the density pro�le, so that it �ts in an array of Norig bins again. One may
consider adding bins to the front of the array as well, so as to cover the entire
interval [vmin; 1] at all times, or alternatively, one may accept the shrinkage
of the negative side of the interval from vmin to vmine¡° trebin . For situations
where the population density pro�le extends only to small negative values
in v-space, this is acceptable and leads to a simpler implementation.

If there is input, the contents of the array will change and must be cal-
culated. As long as t < 1=° ln f.N C 1/=Ng ´ tNC1, the input parameters Nh
and ® can be considered constant. Equation 4.8 can then be used directly to
calculate d E½

dt and to evolve ½i.t/ from t D 0 to t D tNC1. It is natural to take
a time step that divides tNC1 into an entire number: h D tNC1=k for some
integer k. Symbolically, one may write:

E½.t C h/ D E½.t/ C h
d E½.t/

dt
: (4.15)

Obviously, such a step may be implemented by a Runge-Kutta method,
which was used here, or by a Euler method, which consists of a literal
implementation of equation 4.15. At time t D tNC1, a bin is added to the
density array, and one has to recalculate matrices A.reset/ and A.input/. These
matrices now will have rank N C 1 instead of N and have to be calculated
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from new values for the input parameters:

(
Nh0 D e° tNC1 Nh
®0 D e° tNC1®:

(4.16)

The entire process now can be repeated until t D trebin.
For rebinning, cubic polynomial interpolation is used. During this inter-

polation, the contents of the reset bin, which typically contains much more
density than the bins around it, is replaced by the average of its neighbors.
After rebinning, an amount of probability is added to the reset bin, which,
together with the probability already present, adds to one.

4.3 Ef�ciency. The algorithm as presented above is essentially the one
presented by Omurtag et al. (2000), with two important differences. First,
there is no leakage term matrix A.leak/ present in this algorithm. Second,
the matrices A.input/ and A.reset/ must be recalculated regularly, whereas for
constant input parameters, they must be calculated only once in Omurtag
et al. (2000). Since the algorithm presented here is equivalent to the one
presented in Omurtag et al. (2000) without leakage, it is at least as fast,
provided that the computing time to calculate the matrices A can be reduced
to a minimum.

One important observation is that the function Qij is dependent only on
the difference i ¡ j, as shown in equation 4.5, and by equation 4.11, this is

also true for A.input/
ij . All rows of A.input/ can therefore be represented in one

single vector EA, whose indices are in the range [¡N C 1; N ¡ 1], where N is
the rank of the matrix A.input/. One can now obtain every row of A.input/ by
using a pointer to the right element of EA.

A second observation is that for constant input parameters, only a limited
number of matrices A.input/ must be calculated. If N slowly increases from
Norig to Nrebin, one must calculate Nrebin ¡ Norig different matrices, but they
will be used over and over again. They can easily be computed before the
evolution of the density starts. If the input parameters are not constant, the
matrices A must be recalculated during evolution, but this would also be
true for the scheme used by Omurtag et al. (2000) and indeed for every other
scheme.

The accuracy of the algorithm is determined by the number of grid points
at the start of the evolution. On average, during evolution, the algorithm
uses more grid points, which does not, however, lead to improved accuracy,
because this is lost once rebinning takes place. This and the rebinning itself
are forms of overhead, do not occur in the original scheme, but do not have
a large impact on the total computing time. I conclude that the algorithm
presented here from a computational point of view is almost identical to
the scheme used by Omurtag et al. (2000) for ° D 0 and because no leakage
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Figure 1: Result of the algorithm for Nh D 0:03, ® D 10¡2. The solid curve gives
the �ring rate as calculated from equation 3.17. It is in excellent agreement
with earlier results from Omurtag et al. (2000, �gure 4) and asymptotes to the
theoretical equilibrium value of 11.82 s¡1. The jagged curve results from a naive
application of equation 4.5.

has to be included, it is at least as ef�cient. Since that scheme is by far
the simplest of all �nite difference schemes (see, e.g., Nykamp & Tranchina,
2000), the algorithm presented here compareswell to these schemes in terms
of ef�ciency.

5 Results

The algorithm was applied to a grid of N D 200 points with input parame-
ters Nh D 0:03; ® D 10¡2. The inverse membrane time constant, ° , was taken
to be 20s¡1. Evolution was carried out over 0.4 s. From the evolving den-
sity pro�le, the �ring rate can be calculated, although some care must be
exercised. The solid curve in Figure 1 follows from equation 3.17, where the
integral was evaluated numerically. Cubic spline interpolation was used to
evaluate ½.v/ between grid points. The equilibrium �ring rate (limt!1 r.t//
can be calculated analytically and is 11.82 s¡1 for the chosen input parame-
ters (Sirovich et al., 2000). The solid curve indeed asymptotes to this value.
Moreover, the result agrees well with an earlier calculation by Omurtag et al.
(2000, Fig. 4).
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It is instructive to use equation 4.5 for i D N ¡ 1 to calculate the �ring
rate,

r.t/ D ¾.t/6jQ.N ¡ 1 ¡ j/½j; (5.1)

which is in line with the method used by Omurtag et al. (2000). The result is
given by the lighter jagged curve in Figure 1, which underestimates the �r-
ing rate systematically and also shows rebinning artifacts. To realize where
this discrepancy comes from, it is necessary to understand that the rate is
determined by only a few density points in the highest bins and that only a
slight misrepresentation of the density pro�le there will result in a serious
deviation in the calculated rate. For instance, at the start of the evolution,
for N D 200; Nh D 0:03; ® D 10¡3, only the density in the six highest bins con-
tributes to discretized rate integral. As the evolution progresses, the cut-off,
which is centered at v D 1 ¡ Nh D 0:97, will move and be somewhere in the
middle of a bin. The result is that part of the density in that bin should have
been added to the rate contribution. For equation 5.1, where Q for small ®

may be considered as a step function, the contribution will be added only
if the cut-off encompasses the whole bin, however. This is a consequence
of the representation of the density in a frame of reference, which is time
dependent (in contrast to Omurtag et al., 2000).

The algorithm is very stable, and the numerical evolution of the differ-
ential equation is absolutely insensitive to the density gradient. The density
pro�le in Figure 2, for instance, was obtained for the same parameters that
were used above, except for ®, which was chosen as ® D 10¡8. This leads
to a very steep density pro�le near v D 0, which the algorithm handled
without a problem.

The only moment where the density gradient may cause problems is at
the time of rebinning. Isolated bins that contain density, such as, for instance,
the reset bin, must be handled separately. They are best removed or replaced
by the average density in their neighborhood. The resulting density pro�le is
usually smooth enough to interpolate, which I have done using cubic poly-
nomial interpolation. The removed density may then be replaced in its bins.

6 Discussion

In this article, I have used the method of characteristics to reduce the pop-
ulation equation to a set of ODEs. This method has previously been used
to write down a formal solution of a population equation (e.g., Gerstner
& van Hemmen, 1992; Gerstner, 2001) and also in an analytical solution of
the two-compartment model (Sirovich, 2003). Here, however, it is used as
a basis for a numerical solution in response to an arbitrary time-dependent
input. In the case of LIF neurons, where a simple analytic expression for the
characteristics of the population density equation can be found, the method
results in a simpleand elegant algorithm to �nd the population density. This
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Figure 2: The equilibrium density pro�le of the density ½ . Here ® D 10¡8 was
used, which effectively means an in�nitely sharp distribution for the input
synapses of the population. This leads to a very steep density pro�le near v D 0,
which is no problem for the algorithm described here.

algorithm relies on very simple and stable numerical techniques, which re-
sult in a population density that is manifestly nonnegative. It is insensitive
to the density gradient and is easy to implement.

Finite difference schemes, on the other hand, are sensitive to density
gradients. Steep density gradients may occur quite naturally during the
evolution of the density, for instance, at the reset potential but also elsewhere
(see Figure 2). As Nykamp and Tranchina (2000) and in particular Casti et al.
(2002) demonstrate, quite sophisticated algorithms are necessary to ensure a
stable solution. The algorithm presented here is at least as ef�cient as any of
the �nite difference schemes in terms of computing time. This is particularly
true for input parameters, which are time-dependent. Both kinds of methods
have in common that they evolve the density in time.

A very direct way to calculate solutions of the population density equa-
tion was proposed by Knight (2000): v-space is discretized, and the popula-
tion density equation reduces to a set of ODEs, much like equation 4.8:

d E½
dt

D Q E½: (6.1)

A solution can be given directly in terms of the eigenvalues of Q. Moreover,
Knight (2000) argues that only a few eigenvalues dominate the solution,
so that a very ef�cient way to solve the population density equation is
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obtained. There is a relation between this method and the method proposed
in this article: in the absence of neuronal dynamics (° D 0, for LIF neurons),
they are equivalent. Indeed the matrix in equation 3.26 is the simplest of all
operators Q. The most important conceptual difference between the method
of Knight (2000) and the one presented in this article is that in the former,
no transformation to v0-space is made, before discretization.

The method proposed by Knight (2000) is certainly the most ef�cient for
a large number of cases, such as, for instance, the jump response (Knight,
Omurtag, & Sirovich, 2000). There are other cases for which a numerical
solution like the one discussed in this article may be more appropriate. One
situation where this might be the case is if the input parameters are time
dependent. Such time dependence might, for instance, come from neural
processes like adaptation. Or part of the population’s input may be consid-
ered as an effective input, due to a large number of afferent neuron popula-
tions. Sometimes such an input is well described by a gaussian white noise
(Amit & Tsodyks, 1991), whose varying mean and variance re�ect transient
changes of a network’s activity. Such a contribution might be effectively
described by a single population with time-dependent input parameters.
For time-dependent input parameters, the diagonalization of Q must be
repeated regularly, and it may be that this becomes too time-consuming in
some cases.

To summarize, time-stepping methods to solve the population density
equation probably have their place. The method presented in this article is
particularly ef�cient for time-dependent input parameters. If such a method
is appropriate, stability becomes an issue. Transformation to v0-space could
be instrumental in obtaining a stable method, as the algorithm developed
in this article shows.
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