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Formal Analysis of Drum-Boiler Units to Maximize
the Load-Following Capabilities of Power Plants

Ahmed El-Guindy, Dongkun Han, and Matthias Althoff

Abstract—The load-following capabilities of power plants be-
came increasingly important in recent years as a means of
ensuring a reliable operation of future power systems. In this
work, we propose a generic approach, based on reachability
analysis, to rigorously verify the safety of critical components
that often pose limitations on the flexibility of conventional power
plants to perform fast load changes. The proposed reachability
algorithm makes it possible to compute the bounds of all possible
trajectories for a range of operating conditions while simultane-
ously meeting the practical requirements of a real power plant. As
an example, we consider the verification of the water level inside a
drum unit. In contrast to previous work, our results are based on
measurement data of a realistic configuration of a boiler system
located within a 450 MW combined cycle plant in Germany. We
use an abstract model which considers the modelling errors to
ensure that all dynamic behaviors of the process are replicated
by the abstraction. Through the implementation of our abstract
model, we formally guarantee that the water level inside the drum
always remains within safe limits for load changes equivalent to
40 MW which, as a result, exploits the power plant’s adaptability
and load-following capabilities.

Keywords—Reachability analysis, boiler control, formal analysis,
drum water level, thermal power plant

I. INTRODUCTION

THE ongoing demand for rapid changes in power gener-
ation results from deregulation in the energy sector, the

introduction of competitive markets, and the transition towards
decentralized generation with considerable share of renewable
resources [1]–[3]. Particularly, the load-following capabilities
of conventional power-producing units become increasingly
important as progressively intermittent and variable generators,
such as wind turbines and solar cells, are added to the grid.
This change forces power plants to adapt their power output
regularly to ensure a reliable operation of power systems.

Each Transmission System Operator (TSO) preserves the
frequency in its control area using a centralized control
scheme. It compensates the deviation of the power grid fre-
quency caused by the mismatch between supply and demand
of the active power. The control action includes generation
units (or loads) that respond to Automatic Generation Control
(AGC) signals, in the case of secondary frequency control, or
to manual operator dispatch commands in the event of tertiary
control [4]. In Germany, the generation units subjected to this
control scheme are obliged to provide, without interruption,
active power in both directions (increased/decreased genera-
tion), whose typical limits range between 5MW and 60MW
within a short time-scale of 5min to 15min [5].
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A. Motivation

The drum unit of the boiler system naturally degrades the
load-following capabilities of thermal power plants and limits
their flexibility to meet the stringent requirements imposed by
the corresponding TSO. A reason for this is that the regulation
of the water level inside the drum is a tedious control task due
to the process nonlinearities and non-minimum phase behavior
related to the shrink and swell physical phenomena [6]. If the
water level exceeds the upper limit, the water will be carried
over to the superheater leading to an outage of the boiler.
Surpassing the lower limit will cause overheating of the water
wall tube resulting in serious tube rupture and severe damage.

In this work, we consider the drum unit located within the
450 MW combined cycle power plant (München Süd GuD),
owned by Munich City Utilities1. As reported by the plant op-
erators, the boiler unit trips on multiple occasions as the water
level inside the drum exceeds the safety limits (±300mm). The
outage of the boiler has serious technical and economical con-
sequences: the power plant is subjected to drastic economical
losses, and the TSO loses one of its generating units which can
jeopardize stability in its balancing area. Initial examination
reveals that the problem is concerned with the feedwater
control loop which employs the conventional PID-controller
to regulate the water level inside the drum (see [7, Sec. III]).
This problem is recurrent; emergency shutdowns in thermal
power plants are commonly trigged due to poor regulation of
the water level [8]–[11].

In recent work by the authors [7] and [12], an optimization
of the water level control performance was attained using a
centralized multivariable feedback controller. This controller
outperforms the existing PID-controller in many aspects: it
improves the control performance significantly and yields
much tighter reference value tracking during high-load changes
(≤ 40MW). Due to the fact that the control action is based
on a mathematical model of the real process (observer-based
controller), plant operators have voiced skepticism about the
safety of the new control scheme. Thus, we propose an
algorithm based on reachability analysis in order to verify
the control action in real-time. Our work corresponds to the
growing body of literature that considers the intersection of
formal methods and control theory.

To the best of our knowledge, no work exists in the literature
that formally analyzes the correctness of the low-level con-
trollers prior to the commissioning stage within the high-level
distributed control system (DCS) of the power plant; that
is, to guarantee that the synthesized controller meets the
performance specifications under all eventualities. Instead, in
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other work, the control action is examined within a simulation
environment that does not provide any formal guarantees, i.e.
one cannot certify whether the system specifications will al-
ways remain within safe limits. Numerical simulations provide
satisfying results only when there are no parametric or input
uncertainties. This is, however, not generally the case due to
the unavoidable mismatch between actual physical phenomena
and derived models [13].

In this work we propose a systematic approach, based on
reachability analysis, that formally verifies realistic steam gen-
erator systems employing modern control concepts. A general
literature review about reachability analysis is found in [14]
and [15]. Recently, in addition to numerical simulations and
Lyapunov direct method, reachability algorithms have emerged
as an alternative technique for the analysis of power systems.
In [16] the effects of wind variability are investigated for
the 39-bus New England system. The same authors suggest a
set-theoretic method applied to capture the effect of uncertain
generation on the power flow [17]. Similar studies on the
impact of uncertain energy production on frequency deviation
are reported for a reduced-order model of the U.S. power
system [18]. Transient stability analysis is performed on the
IEEE 30-Bus benchmark power system network in [19].

B. Contributions
In contrast to any previous work on reachability analysis,

we construct an abstract model of the real process taking
the modelling errors into account. The modelling errors are
obtained in a systemic procedure based on measurement data,
and considered as additional uncertain inputs when computing
the reachable set. This procedure ensures that all behaviors of
the system are included within the abstraction.

This is the first work to consider formal analysis of a real
process in the power industry. The reachability algorithm we
propose is computationally feasible and meets the practical
requirements of a real power plant when subjected to the
time constraints of secondary frequency control (5min). Our
algorithm offers the plant operator an opportunity to potentially
avoid an unnecessary shutdown of the facility since reachabil-
ity analysis establishes in advance whether a requested load
dispatch by the TSO will trigger the safe limits of the water
level when considering all eventualities.

II. PROBLEM FORMULATION AND OVERVIEW

The drum-boiler system falls under the class of systems
modelled as a set of nonlinear, ordinary differential equations

ẋ(t) = f(x(t), u(t)),

y(t) = Cx(t),
(1)

where x ∈ Rnx , u ∈ Rnu and y ∈ Rny are the state, input
and output vectors, respectively, and C ∈ Rny×nx is the
output matrix. It is assumed that the system is controllable
and observable. Furthermore, the function f(·) is locally
Lipschitz continuous thus differentiable in x(t) and u(t). This
is a fairly general assumption that holds for many practical
problems. The time dependency is often omitted for simplicity
of notation.

The objective of this paper is to compute the reachable set
of (1) over a user-defined time horizon t ∈ [0, tf ] starting from
a set of consistent initial states R(0) and a set of possible
inputs/disturbances U

Re([0, tf ]) :=

{
x(t) ∈ Rnx

∣∣∣∣x(t) = ∫ t

0

f(x(τ), u(τ))dτ,

x(0) ∈ R(0), u(t) ∈ U , t ∈ [0, tf ]

}
. (2)

The exact reachable set Re([0, tf ]) can only be computed
in special cases [20]. Thus, an over-approximation of the
reachable set R([0, tf ]) ⊇ Re([0, tf ]) is performed as tightly
as possible. Clearly, if the over-approximative reachable set
does not intersect with an unsafe set, then the original system
is also safe.

We propose a generic approach using an abstract model de-
scribed by a polynomial differential inclusion. The concept of
model abstraction is frequently applied in the field of computer
science within the context of model checking and software
verification. An abstraction basically reduces the complexity
associated with a mathematical model, such that the resulting
approximated model preserves certain user-defined properties
of the original system [21]. The polynomial abstraction consid-
ered in this work takes the modelling errors into account, thus
ensuring that all behaviors of the system are confined within
the inclusion

˙̂x(t) ∈ P (x̂(t), u(t))⊕ (L · E). (3)

Here P (·) is a polynomial function, E ⊂ Rny is the set of the
modelling errors, x̂ ∈ Rnx is the vector of the abstract model
state variables, and L ∈ Rnx×ny is a correction feedback
matrix. The abstraction includes set-based addition (Minkowski
sum) and linear transformation, defined as

X ⊕ Y := {x+ y |x ∈ X , y ∈ Y},
M · X := {M · x |M ∈ Rnb×na , x ∈ X}.

(4)

Our approach, illustrated in Fig. 1, consists of four main
steps: (1) modelling from first-principles, (2) polynomial
approximation, (3) abstraction, and (4) computation of the
over-approximative reachable set. In the following sections we
describe the modelling of the drum unit (Sec. III) and the
proposed polynomial abstraction (Sec. IV). We then describe
the basic procedure to compute the reachable set (Sec. V).
The proposed approach can be applied for different systems
in many areas, including power systems, robotics, and au-
tonomous cars, as long as the system is modelled as in (1).

III. PROCESS MODELLING

The simplified diagram of the steam generation process
is shown in Fig. 2. Cold water inside the feedwater tank
is pumped and heated at the economizer stage before go-
ing through the drum inlet. Due to the gravitational force,
feedwater flows through the naturally circulated downcomer
riser loop, where it is converted into steam at the evaporator
stage. Different riser tubes collect the steam and supply it
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Fig. 1. Overview of our generic approach.

back into the drum. In the final stage, the saturated steam is
taken from the drum outlet to the superheater. The system
consists of four components: the drum unit, the regulating
valves, the exhaust heat, and the controller. In this section, we
briefly present the mathematical model of each component.
For further details, with regards to the modelling assumptions
and controller design, we refer the reader to previous work by
the authors [7] and [12].

A. Drum-Boiler Model
We consider the well-developed Åström - Bell model [6].

The vector of the drum state variables xd ∈ Rnd consists
of the pressure Pe [Pascal], the water volume Vwt [m3], the
steam-mass quality αr [%] in the riser tubes, and the steam
bubbles volume Vsd [m3] under the water level. The inputs are
the heat flow rate Q [J/s], the feedwater qf [kg/s], and steam
qs flow rates. The nonlinear drum model is expressed by

Ṗe =
e11Q+ qf (e11hf − e21)− qs(e21 − e11hs)

e11e22 − e12e21
,

V̇wt =
Q+ qfhf − qshs − e22Ṗe

e21
, (5)

α̇r =
Q− αrqdc(hs − hw)− e31Ṗe

e33
,

V̇sd =
1

T
(V◦ − Vsd)− qf

hf − hw
e44(hs − hw)

− e41Ṗe + e43α̇r

e44
,

where the specific enthalpy hf [J/kg], hs, and hw are computed
using quadratic functions based on approximation of the steam
tables. The expressions of the downcomer flow rate qdc, and
the nonlinear variables enm are found in the Appendix.

B. Controller Model
Fig. 3 illustrates the human machine interface (HMI) of the

controller which comprises of a state observer (bottom, left-
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Fig. 2. Simplified description of the steam generation process. Red line
(dotted) indicates hot steam and the blue line (solid) indicates cold water.

side) and a state-feedback controller with an Integral-controller
(top, left-side). The I-controller ensures that the drum pressure
and water level l [mm] track their corresponding reference
signals wp and wl. Hence, the integrated errors h := [η, ψ]T

are treated as artificial state variables
η̇ = wP − Pe,

ψ̇ = wl − l.
(6)

Let q̂f [kg/s], r̂s[%], and r̂f denote the state-feedback con-
troller output (control action) of the feedwater flow rate, the
steam valve, and the feedwater valve opening percentages,
respectively. These signals are generated by the controller to
preserve the water level and pressure at the desired reference
values according to [

q̂f
r̂s

]
= K ·

[
xd
h

]
, (7)

where K ∈ R(nu−1)×(nd+ny) is the state feedback matrix. The
control action of the feedwater flow rate q̂f is compared to the
actual flow rate, and the deviation between both generates the
controller output of the feedwater valve opening percentage r̂f
using a feedback loop employing a PI-controller

r̂f = vpf

(
1 + vif

∫ t

0

(q̂f (τ)− qf (τ))dτ

)
, (8)

where vpf , vif are the proportional and integrator scalar gains
of the PI-controller.

C. Model Extension
The heat flow rate Q is regarded as an additional state and

not treated as an input variable due to the combined-cycle
nature of the process. The heat is directly associated with
the gas turbine exhaust temperature which corresponds to the
electrical power demand PD established by the TSO.

To easily represent the remaining equations, let κ [kg/h]
denote the valve sizing coefficient, r [%] is the valve opening
percentage, ν and τ are the gain and time constant for a
first-order lag element, and the subscripts s, f , and D refer to
steam, feedwater, and current demand, respectively. The heat
flow rate is modeled as

Q̇ =
νDPD −Q

τD
, (9)



4

Absolute pressure

Steam Turbine

valve

Bypass 

valve

Buttefly valve

Over-

the-roof 

valve

Feed-

water

valve

State

variables

Actuating

variables

State Controller

Observer

Fig. 3. Screenshot of the distributed control system (DCS) - Mauell ME-4012 illustrating the human machine interface (HMI) of the drum unit (right) alongside
the observer-based state-feedback controller (left).

and the regulation through a control valve for feedwater and
steam flow rates is

qf = rf
κfρf

√
∆Pe · 1E-5
3600

, ṙf =
νf r̂f − rf

τf
, (10)

qs = rs
13.6κs

√
ρs(Pe · 1E-5)
3600

, ṙs =
νsr̂s − rs

τs
, (11)

where ∆Pe [Pascal] is the pressure drop across the feedwater
valve, and ρ [m3/kg] denotes the density.

Combining the results (5)-(11), one obtains an 11-th order
model with the input signals u = [PD, wp, wl]

T , the state
variables x = [Pe, Vwt, αr, Vsd, η, ψ, Q, r̂f , rf , rs, q̂f ]

T ,
and the output vector y = [Pe, l]

T .

IV. MODEL ABSTRACTION

In this section, we present how to obtain the polynomial
model P (x̂(t), u(t)) of the inclusion (3) using the Taylor
expansion. We then illustrate the technique of linear output
injection to guarantee asymptotic estimates of the state vari-
ables. Finally, we construct the set of modelling errors in an
over-approximative manner so that the proposed abstraction
includes all dynamic responses of the real system. Our ap-
proach is systematic but not formal: currently no formal way
to translate reality into a mathematical representation exists.

A. Polynomial Approximation using Taylor Expansion

The motivation behind the choice of the polynomial ap-
proximation is its ability to represent complex mathematical
expressions by a simplified form that substantially reduces
the computational time required to compute the reachable
set, without sacrificing the model accuracy and its fit to
measurement data. For brevity, the state and input variables
are combined into one vector z := [xT , uT ]T ∈ Rnz . This
allows reformulation of the nonlinear system (1) into

ẋ = P (z) =

nz∑
j=1

∂f(z)

∂zj

∣∣∣∣
z=zl∗

∆zj︸ ︷︷ ︸
=:A∆x+B∆u

+Φ(z),

with ∆x := x− xl∗, ∆u := u− ul∗, ∆z := z − zl∗.

(12)

Here A ∈ Rnx×nx and B ∈ Rnx×nu are the system and
input matrices evaluated at the point zl∗ := [xl∗

T , ul∗
T ]T . The

local Lipschitz continuous function Φ(·) contains all higher
order terms of the Taylor expansion

Φ(z) = f(zl∗) +
1

2!

nz∑
j=1

nz∑
k=1

∂2f(z)

∂zj∂zk

∣∣∣∣
z=zl∗

∆zj∆zk
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+
1

3!

nz∑
j=1

nz∑
k=1

nz∑
l=1

∂3f(z)

∂zj∂zk∂zl

∣∣∣∣
z=zl∗

∆zj∆zk∆zl + . . . .

(13)

B. Linear Output Injection

The vector ẑ := [x̂T , uT ]T and the variable ∆x̂ := x̂− xl∗
are introduced for further derivation. The concept of linear
output injection was first proposed in [22] to construct the
so-called Luenberger observer. The key idea is to use the
discrepancy between the actual measurement value y and the
observer output ŷ, i.e. to use the output error as a correction
term applied to a feedback matrix L that decays the modelling
errors over time. Hence the evolution of ˙̂x is expressed by a
polynomial observer modeled as

˙̂x = ϕ(ẑ, e)

= A∆x̂+B∆u+Φ(ẑ) + LC(∆x−∆x̂)︸ ︷︷ ︸
=:e

. (14)

Constructing a stable observer is not obvious due to the
nonlinear dynamics of the modelling errors ė := ẋ − ˙̂x.
Furthermore, the matrix L is not unique, due to extra degrees
of freedom arising in multivariable systems [23]. We assume
that the matrix L is already chosen and focus on examining the
asymptotic stability of the dynamics of the modelling errors.
It can be seen from (12) and (14) that

ė = (A− LC)(∆x−∆x̂) + [Φ(z)− Φ(ẑ)] . (15)

Theorem [24]. If the feedback correction matrix L is chosen
to hold

Ω <
λmin(Q)

2λmax(P )
, (16)

then (15) yields asymptotic stable estimates for (12). Here Q
and P are the symmetric matrices of the continuous Lyapunov
equation (A−LC)TP +P (A−LC) = −Q, λ(·) returns the
eigenvalues of a matrix, and Ω is the constant of the local
Lipschitz function Φ(·) that satisfies:

||Φ(z)− Φ(ẑ)|| ≤ Ω ||x− x̂||. (17)

The theorem presented above only serves as a means to
check the observer stability. Due to its non-constructive nature,
the theorem cannot be considered as a design approach. The
task of designing the observer matrix L is outside the scope
of this paper. We refer the reader to [25], in which the
design procedure, in addition to the necessary and sufficient
conditions for existence of the matrix L, are described in detail.

C. Constructing the Set of the Modelling Errors

We present a systematic approach to construct the set of
the modelling errors E in an over-approximative manner.
The proposed over-approximation guarantees that all possible
trajectories of the errors e(t), ∀t ∈ [0, tf ] for n simulations
are included within the constructed set. This is achieved by
comparing the output ŷ(t) within a simulation environment

against validation data y(t) with very rich excitation that cov-
ers the entire operational range of the process, thus including
all possible values of the errors resulting from n scenarios.

The set of the modelling errors Ei is obtained by introducing
a closed interval such that

Ei := [−γi, γi] = {a ∈ R | −γi ≤ a ≤ γi} , (18)

with


γi := max

k :1...n

(
δki
)
,

δki := max
t∈[0,tf ]

{
eki (t) ∈ R+

∣∣∣∣ eki (t) = ∣∣yki (t)− ŷki (t)
∣∣} ,

where the max(·) operator is applied elementwise to return
the maximum value, the subscript i and the superscript k
denote the i-th measurable output and the k-th experiment,
respectively, δ is the maximum of the absolute value of the
error in the k-th experiment, while γ is the maximum error
resulting from n simulations.

In (18), there is a tradeoff between the size of n and
the accuracy of the resulting set, which can be measured by
computing the volume of E

vol(E) = 2ny ·
ny∏
i=1

γi. (19)

Clearly, the volume approaches the true value as n goes to
infinity. However, it is not possible to simulate infinitely many
possible scenarios. Thus, we heuristically choose n to hold

vol(E)− vol(E)
vol(E)

≤ ϵ, (20)

where the set E is obtained by setting the number of sim-
ulations to be twice as large as the size of n required to
construct E , such that the value of ϵ becomes small (e.g.
1E-3). The underlying idea behind (20) is that the double
effort to conduct further simulations is not justified because
the percentage of the improvement is negligible. Therefore,
the size of n reliably ensures that

lim
n→∞

vol(E∞) ≈ vol(E). (21)

Here E∞ is the set of modelling errors constructed by
running infinitely many simulations. After introducing a safety
factor ξ, one may choose E := ξ · E . With the construction of
the set of the modelling errors according to (18)-(20), we still
need to compute the reachable set of the abstract model, as
illustrated in the next section.

V. REACHABILITY ANALYSIS

This section describes the basics for the computation of
reachable sets of (1). Our reachability algorithm is based on
abstracting the polynomial observer (14) into linear differential
inclusions for each consecutive time interval τk := [tk−1, tk].
By using the model (14) for reachability analysis, we guarantee
that all dynamic behaviors of the original system (1) are
enclosed by computed reachable sets, since the polynomial
observer takes into account the modelling errors which are
obtained according to the procedure described in Sec. IV-C.
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Since the linearization of (14) causes additional errors, these
errors are determined in an over-approximative manner and
considered as additional uncertain inputs. By recomputing
the linearization for each τk, the over-approximation remains
small and accurate results are acquired. We only consider
constant-size time intervals tk = k · r, where k ∈ N, r ∈ R+

are the time step and the time increment, respectively. An
extension covering variable-size time steps is found in [26].

We introduce the vector v := [x̂T , uT , eT ]T ∈ Rnv , the lin-
earization point v∗k := [x∗k

T , u∗k
T , e∗k

T ]T , and ∆x̂k := x̂− x∗k.
The nonlinear model (14) is abstracted by a first-order Taylor
expansion with the Lagrangian remainder L (see [27])

˙̂x ∈ Âk∆x̂k ⊕ ϕ(v∗k)⊕ B̂k · U ⊕ L · E ⊕ L︸ ︷︷ ︸
=: Û

,
(22)

where Âk and B̂k are the system and input matrices at the time
interval τk, respectively2, and Û ⊂ Rnx is the set of uncertain
inputs.

A. Reachable Set Computation of Linear Systems
The state-space equation of the linear system is described

by the affine dynamics
˙̂x = Âk∆x̂k + ûc, (23)

where ûc as the center of the set Û . For r = tk − tk−1, the
general solution of (23) is well-known to be

x̂(tk) = eÂkr∆x̂k(tk−1)︸ ︷︷ ︸
=:x̂h(tk)

+

∫ r

0

eÂk(r−τ)dτ ûc︸ ︷︷ ︸
=:x̂p(r)

, (24)

where x̂p(r) is the particular solution and x̂h(tk) is the
homogeneous solution, which considers the initial condition
∆x̂k without external inputs.

The basic procedure to compute the reachable set of a linear
system without inputs is illustrated in Fig. 4 and consists of:

1) Compute the homogeneous reachable set H(tk) based
on the initial set H(tk−1).

2) Enclose the set H(tk) and H(tk−1) by a convex hull.
3) Enlarge the convex hull to account for curvature of the

trajectories over the time interval τk.

B. Representation of Reachable Sets
The reachable set computation we present is in princi-

ple applicable for all kinds of set representation, e.g. poly-
topes, zonotopes, ellipsoids and support functions [14]. In this
work, we use zonotopes as set representation. Zonotopes are
centrally-symmetric convex polytopes, and often considered as
the Minkowski sum of a finite set of segments [15], [28]. A
zonotope in a subset RnZ is expressed as

Z =

{
x ∈ RnZ

∣∣∣∣∣x = c+

p∑
i=1

βig
(i), βi ∈ [−1, 1]

}
, (25)

2The linearization of (14) is performed at each time interval τk , whereas
the linearization of (1), as expressed by (12), is performed once to obtain the
polynomial model as proposed by our generic approach in Fig. 1.

Fig. 4. Computation of reachable sets of a linear system without inputs.

where c ∈ RnZ is the center of the zonotope and g(i) ∈ RnZ

denotes the generators of Z . The order of a zonotope is defined
as µ := p

nZ
, where p is the number of generators.

Using zonotopes, the Minkowski sum and linear trans-
formation (4) can be efficiently computed. In addition, the
axis-aligned bounding box, or so-called interval hull of zono-
topes can be efficiently computed which is advantageous for
the computation of the Lagrangian remainder.

C. Over-approximation of Reachable Set
The over-approximation procedure of the reachable set of

the general solution (24) is the same as the procedure in
[15], [28], and [29]. The homogenous reachable set H(tk) is
computed by substituting the initial value ∆x̂k by H(tk−1) in
the homogenous solution x̂h(tk), thus

H(tk) = eÂkr · H(tk−1). (26)

The neglected terms resulting from the Taylor expan-
sion of the exponential matrix eÂkr =

∑σ
i=0

riÂi
k

i! are
over-approximated by the remainder E(r) using an interval
symmetrical matrix, i.e. a matrix with symmetric lower and
upper bound on each element

E(r) := [−W (r),W (r)] , (27)

W (r) := e|Âk|r −
σ∑

i=0

(|Âk|r)i

i!
, (28)

where σ is the number of terms of the Taylor expansion of the
exponential matrix eÂkr. The absolute value |Âk| is defined
element wise such that |Âk|ij := sup{âij |â ∈ Âk}.

The enlargement of the convex hull enclosing H(tk−1) and
H(tk) (see Fig. 4) is performed by computing the interval
matrix F to account for all solutions starting from H(tk−1),
such that

F :=

(
σ⊕

i=2

[(
i

−i
i−1 − i

−1
i−1

)
ri, 0

] Âi
k

i!

)
⊕ E(r). (29)

Assuming the uncertain input set Û is convex and contains
the origin, one can over-approximate the particular solution
x̂p(r) according to (see [15, Ch. 3])

P(r) =

(
σ⊕

i=0

|Âk|i ri+1

(i+ 1)!
· Û

)
⊕
(

E · r · |Û |
)
. (30)
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D. Computing the Set of the Linearization Errors
As described in (22), the linearization errors are obtained

by computing the Lagrangian remainder, expressed as

Lj =

{
1

2
(v − v∗k)

T ∂
2ϕj(ζ(v, v

∗
k))

∂v2
(v − v∗k)∣∣∣∣ζ(v, v∗k) ∈ {v∗k + α(v − v∗k) |α ∈ [0, 1]}

}
, (31)

where j denotes the system dimension of (14). In order
to evaluate the set of the linearization errors Lj within a
time interval τk, one has to consider the possible values of
v ∈ V(τk) resulting from the Cartesian product

V(τk) := R(τk)× U × E , (32)

where R(τk) ⊂ Rnx is the reachable set of the linear differen-
tial inclusion (22) in the time interval τk. In order to determine
the maximum absolute value of Lj for v ∈ V(τk) efficiently,
the following over-approximation is proposed [30, Prop. 1]

|Lj | ⊆ [0, lj ] ,

with lj = λT max
v∈V(τk)

{∣∣∣∣∂2ϕj(ζ(v, v∗k))∂v2

∣∣∣∣}λ,
and λ = |cv − v∗k|+

p∑
i=1

|g(i)v |,

(33)

where cv and g(i)v are the center and generators of the zonotope
V(τk), respectively.

Our previous work has shown that the bounding vector l of
the absolute value of the Lagrangian remainder is minimized
by choosing v∗k = cv as the linearization point [30, Prop. 2],
where cv is the center of the reachable set V(τk). Since the
center cv is not known in advance, it is approximated by a
one-step Euler integration based on the center ĉ of V(tk−1)

v∗k = ĉ+
r

2
ϕ(ĉ) ≈ cv, (34)

where the step size is 0.5r because the center of the reachable
set V(tk−1) for the time interval τk is expected to be reached
after half the interval duration of r = tk − tk−1.

VI. SIMULATION RESULTS

First we present the validation of the polynomial model (12)
against measurement data to show its ability to capture the
dynamic behavior of the real process. The validation data
covers almost the entirety of the gas turbine operational
range, i.e. from 70MW to 120MW in both directions (in-
creased/decreased generation). The data was collected over
a period of one year while the main author worked at the
power plant München Süd. We then illustrate the histogram
distribution of the modelling errors when employing the tech-
nique of linear output injection, and investigate the safety of
the water level against high-load transitions (≤ 40MW) by
computing the over-approximative reachable set of the poly-
nomial observer (14). Finally, we outline the special findings
using reachability analysis. All computations are performed on
a standard computer with an Intel Core i7-4810MQ CPU.

A. Validation of the Polynomial Model
The model is realized in MATLAB R2014b using the Sym-

bolic toolbox, and is approximated by a polynomial function
using the Taylor expansion at PD = 95MW (center of the
gas turbine operational range). The validation procedure is
carried out by simulating the models (1-st, 2-nd and 3-rd order
polynomial functions) and comparing the simulation results to
the experimental data. All simulations are performed using the
ODE45 solver.

As shown in Fig. 5 and Fig. 6, the polynomial models
replicate the dynamic behavior of the real process, and most
importantly, the shrink and swell physical phenomena. The
model inaccuracy is acknowledged and identifiable and is
caused by the nature of the proposed polynomial approxima-
tion, and by the simplification of certain components during
the modelling procedure. Practically speaking, this inaccuracy
can be deemed acceptable and is adequate for further analysis,
i.e. design of the matrix L, model-based control design (see
[7] and [12]), and computation of the reachable set.

B. Validation using Linear Output Injection
The observer (14) is compared to multiple trajectories with a

duration ranging between 2 h and 5 h. The comparison covered
all major possible excitation conditions; that is, either slow
or fast transition with small, medium and high load change.
We only present three conditions: (a) fast transitions with
small load changes equivalent to 10 MW, (b) slow transitions
with medium load changes equivalent to 20 MW, and (c)
fast transitions with high load changes equivalent to 40 MW
(worst-case scenario). Fig. 7 shows the histogram distribution
of the modelling errors ep and el for the aforementioned
scenarios using the 3-rd order polynomial model with linear
output injection. As depicted in Fig. 7, the modelling errors
increase for high load changes.

Fig. 5. Comparison between measurement data (black solid line), 1-st (blue
dashed-dotted line), 2-nd (red dotted line) and 3-rd (brown dashed line) order
polynomial model for perturbations of the gas turbine power.
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TABLE I. INTERVAL OF THE MODELLING ERRORS FOR DIFFERENT
MODELS USING LINEAR OUTPUT INJECTION

Model EP [bar] El [mm]

1-st order [−0.1100, 0.1100] [−21.8374, 21.8374]
2-nd order [−0.0532, 0.0532] [−14.3283, 14.3283]
3-rd order [−0.0512, 0.0512] [−14.1288, 14.1288]

[6] [−0.0380, 0.0380] [−10.6481, 10.6481]

The interval of the modelling errors, which is obtained using
(18) according to the procedure described in Sec. IV-C, is
shown in Table I. It is clear that the 1-st order (linear model)
does not fit the experimental data well. The 4-th and higher
order models, however, are not considered since little improve-
ment is achieved when comparing the error resulting from
both the 2-nd and 3-rd order approximations: the complexity
of using a higher polynomial approximation is not justified
since it only results in a more complicated model which
contradicts our goal of simplifying the complex nonlinear
expressions found in (5) (see the Appendix). Although the
original model (5) [6] has the minimum modelling errors,
we illustrate in the following subsection the computational
benefit of using a polynomial model. All subsequent results are
over-approximated as we fully consider the modelling errors
E from Table I.

C. Load-following Safety Verification
The reachable set is computed over a time-horizon tf with

a time increment r = 1 s using the Continuous Reachability
Analyser (CORA) toolbox [31]. CORA integrates various
vector and matrix set representations and operations as well
as reachability algorithms of various system classes.

Fig. 6. Comparison between measurement data (black solid line), 1-st (blue
dashed-dotted line), 2-nd (red dotted line) and 3-rd (brown dashed line) order
polynomial model for decrease of the gas turbine power from 100MW to
70MW.

When München Süd is subjected to secondary frequency
control, it is notified by the TSO 5min earlier to meet a load
change equivalent to 40MW. The task is to guarantee that
the water level l inside the drum does not surpass ±300mm
during the load transition. If the limits are triggered, the boiler
is tripped as a safety precaution to protect critical components,
e.g., the superheater and the steam-turbine. During this time,
the power plant is no longer operational and is unable to meet
load requirements of the TSO.

The power demand PD has a fixed trajectory for a load
change of 40 MW in both directions (increased/decreased
generation) which is the maximum load transition that can be
requested by the TSO. The input PD follows the maximum al-
lowable load gradient that can be imposed on the plant (8 MW

min ).
We include uncertainty to the initial set of the drum state
variables when computing the reachable set, since initial states

 (a) Distribution of the modelling error for load changes between 80 to 115 MW 

 (b) Distribution of the modelling error for load changes between 70 to 100 MW 

 (c) Distribution of the modelling error for load changes between 67 to 107 MW 

Fig. 7. Histogram distribution of the modelling errors ep and el for different
loading conditions. (a) Rapid transitions for small load-changes, (b) slow
transition for medium load-changes, (c) rapid transitions for high-load changes.



9

are not exactly known due to increasingly varying operating
conditions in current power systems. We define the interval
U := [−1, 1], and assign the center of the initial set as the
steady state solution of (14) denoted by the superscript zero.
Therefore, the initial drum pressure is Pe(0) ∈ P 0

e ⊕ 1E4 ·U ,
the initial volume of water is Vwt(0) ∈ V 0

wt ⊕ 0.5 · U , the
initial steam quality is αr(0) ∈ α0

r ⊕ 0.001 · U , the initial
steam volume under the water level is Vsd(0) ∈ V 0

sd⊕ 0.5 ·U ,
and the initial heat flow rate is Q(0) ∈ Q0 ⊕ 1E5 ·U .

The time-domain bounds of the reachable set of the drum
pressure and water level, and the reachable set projections
of chosen state variables are illustrated in Fig. 8 and Fig. 9,
respectively. The visualization of the 2-D projection is quite

Fig. 8. The time-domain bounds of the reachable set for a load-change
of the gas turbine from 70MW to 110MW. Black lines represents random
simulation results (n = 50), the gray area shows the reachable set.

Fig. 9. Selected projections of the reachable set for a load-change of the gas
turbine from 110MW to 70MW. Black lines represent random simulation
results (n = 25), the gray area shows the reachable set, the white box is the
initial set of state variables R(0).

TABLE II. COMPARISON BETWEEN THE COMPUTATIONAL TIME OF
REACHABILITY ANALYSIS USING DIFFERENT MODELS

Model tf R([0, tf ]) L([0, tf ])

2-nd 5 min 41.41 s 34.06 s
3-rd 5 min 206.37 s 198.53 s
[6] 10 s 3420 s 3078 s

beneficial to the plant operators, since they are interested in
the dynamic behavior of the water level and pressure against
the loading condition of the gas turbine. The water level does
not reach the safety limit, hence the safety of the drum-boiler
unit is formally verified under maximum loading condition
imposed by the TSO.

Fig. 10 illustrates the quality of the over-approximation
resulting from the set of the uncertain modelling errors. The
zonotope order µ and the time increment r are chosen to
reduce the resulting wrapping effect such that the computed
reachable set is tight. It is worth mentioning that there exists
no wrapping-free algorithms in the literature for the class of
nonlinear systems. Our approach systemically constructs an
abstract model strictly based on measurement data from the
power plant, in contrast to any previous work on reachability
analysis requiring more conservative assumptions on the mod-
elling errors. We always have to account for the maximum er-
ror resulting over n simulations, otherwise we cannot formally
guarantee that the specifications of our particular problem are
always met under all eventualities. Finding simple but less
conservative enclosures is being considered for future work.

Table II shows a comparison between the computational
time of reachability analysis using different models. Using the
3-rd order polynomial model, it takes 206.37 s to compute
the reachable set, where the calculation of the Lagrangian
remainder consumes 96% of the time. The computational time

Reachable set considering 

the modelling errors

Reachable set without 

considering the modelling errors

Fig. 10. Comparison between the time-domain bounds of the reachable set
without considering uncertain inputs (dark gray), and considering uncertain
inputs (light gray) for a load-change of the gas turbine from 110MW to
70MW.
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meets practical requirements of the plant as it allows online
verification of the process safety for high-load transitions in
the requested time (t≤ 5min). Using the nonlinear model
presented in Sec. III without a polynomial approximation, it
takes 57.2min to compute the reachable set for a time-horizon
of 10 s. The huge difference in the computational time is
due to the complicated expressions (see the Appendix), which
were simplified with a polynomial function, thus in return
substantially reduces the computational complexity making the
algorithm feasible for practical problems.

D. Discussion of Results

The special findings using reachability analysis can be sum-
marized as follows: we formally guarantee that the controller
meets the performance specifications under all eventualities,
because we have taken the modelling errors into account.
Meeting performance specifications cannot be achieved using
numerical simulations since they do not guarantee any formal
properties. Furthermore, it is not possible to simulate infinitely
many simulations corresponding to infinitely many possible
uncertain input trajectories. Numerical simulations are indeed
simple to implement, however, they are only useful to gain an
initial idea about the system behavior (see Fig. 5 and Fig. 6).

The proposed reachability algorithm can be faster than
sufficiently many numerical simulations. One simulation of
our model takes approximately 0.49 s using the ODE45 solver;
however, the simulation of all corner cases requires 2n simula-
tions (exponential problem), where n is the number of states,
consuming roughly 1012 s of computational time. On the
contrary, using our approach, the computational time necessary
to compute the reachable set is 41.41 s (see Table II).

The significant difference in computational time showcases
the feasibility of our algorithm compared to deterministic
simulations. Our approach meets the practical requirements
of the power plants, when subjected to the time constraints
of secondary frequency control (5min) imposed by the TSO.
Furthermore, the algorithm considers all eventualities and
formally verifies the safety of the boiler in real-time.

VII. CONCLUSION

We present a generic approach to rigorously verify the safety
of the critical process variables in power plants when subjected
by the TSO to high-load changes which, as a result, exploits the
power plant’s flexibility and load-following capabilities. Our
analysis is based on a real boiler system located at a 450MW
combined cycle plant (München Süd) in Munich, Germany.
In order to demonstrate the effectiveness of the proposed
technique, we compute the reachable set for the evolution of
the state variables of the drum with load changes equivalent
to 40MW.

An abstraction to a polynomial differential inclusion based
on measurement data is proposed. It is shown that the
Åström - Bell model [6] can be approximated by a polynomial
function without losing the fit to experimental data. The ab-
straction is systematically performed and returns the modelling
errors, whereby all dynamic behaviors of the original system

are captured by the abstraction. The proposed abstraction sub-
stantially reduces the computational time required to compute
the reachable set in comparison with the original system.

According to our final results, it is computationally feasi-
ble to implement the proposed reachability algorithm while
meeting the practical requirements of a real power plant.
The reachability algorithm can be easily integrated into a
distributed control system (DCS), in parallel to the exist-
ing control structure, and operates automatically without any
interaction from the operator. Because reachability analysis
establishes in advance whether or not a requested load dispatch
by the TSO will trigger the water level safe limit considering
all eventualities, the plant operator can potentially avoid an
unnecessary shutdown of the facility.
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APPENDIX

A. Nomenclature
Drum-Boiler Model Variables
αr Steam-mass quality in the riser tubes [%]

∆Pe Pressure drop across the feedwater valve [Pascal]
l Water level inside the drum [mm]

PD Electrical power demand [MW]

Pe Drum pressure [Pascal]
Q Gas turbine heat flow rate [MW]

qdc Downcomer flow rate [kg/s]
qf Feedwater flow rate [kg/s]
qs Steam flow rate [kg/s]
rf Feedwater valve opening percentage [%]

rs Steam valve opening percentage [%]

Vsd Steam volume under the water level [m3]

Vwt Water volume inside the drum [m3]

Controller Model Variables
q̂f Controller output of the feedwater flow rate [kg/s]
r̂f Controller output of the feedwater valve opening

percentage [%]

r̂s Controller output of the steam valve opening per-
centage [%]

wl Set value of the drum water level [mm]

wp Set value of the drum pressure [Pascal]

Drum-Boiler Thermodynamics Properties
ρs Steam density [m3/kg]
ρw Water density [m3/kg]
hf Feedwater specific enthalpy [J/kg]
hs Steam specific enthalpy [J/kg]
hw Water specific enthalpy [J/kg]
tsat Saturation temperature [◦C]

Drum-Boiler Parameters
β Dimensionless coefficient [−]

Ad Water level surface area [m2]

Adc Downcomer cross-sectional area [m2]

Cp Specific heat capacity [J/kg K]

Kdc Friction coefficient [−]

md Drum mass [kg]
mr Riser mass [kg]
V◦ Volume in hypothetical situation [m3]

Vd Drum volume [m3]

Vdc Downcomer volume [m3]

Vr Riser tubes volume [m3]

T Steam residence time inside the drum [s]

B. Drum-Boiler Nonlinear Variables
The nonlinear variables enm appearing in the Åström - Bell

model (5) are

e11 = ρw − ρs,

e12 =Vwt
∂ρw
∂Pe

+ Vst
∂ρs
∂Pe

,
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e21 = ρwhw − ρshs,

e22 =Vwt

(
hw

∂ρw
∂Pe

+ ρw
∂hw
∂Pe

)
+

Vst

(
hs
∂ρs
∂Pe

+ ρs
∂hs
∂Pe

)
− Vt +mtCp

∂tsat

∂Pe
,

e31 =

(
ρw
∂hw
∂Pe

− αrhc
∂ρw
∂Pe

)
(1− ᾱv)Vr +(

ρs
∂hs
∂Pe

+ (1− αr)hc
∂ρs
∂Pe

)
ᾱvVr +

(ρs + (ρw − ρs)αr))hcVr
∂ᾱv

∂Pe
−

Vr +mrCp
∂tsat

∂Pe
,

e33 = ((1− αr)ρs + αrρw)hcVr
∂ᾱv

∂Pe

e41 =Vsd
∂ρs
∂Pe

+ αr(1 + β)Vr

(
(1− ᾱv)

∂ρw
∂Pe

+

ᾱv
∂ρs
∂Pe

+ (ρs − ρw) +
∂ᾱv

∂Pe

)
+

1

hc

(
ρsVsd

∂hs
∂Pe

−

Vsd − Vwd + ρwVwd
∂hw
∂Pe

+mdCp
∂tsat

∂Pe

)
,

e43 =αr(1 + β)(ρw + ρs)V r
∂ᾱv

∂Pe
,

with:

qdc =

√
19.6ρwAdc(ρw − ρs)ᾱvVr

Kdc
,

hc =hs − hw,

mt =md +mr,

Vt =Vd + Vr + Vdc = Vwt + Vst,

Vwd =Vwt − Vdc − (1− ᾱv)Vr,

ᾱv =
ρw

ρw − ρs

(
ζ − 1

ζ
ln(1 + ζ)

)
,

ζ =αr
(ρw − ρs)

ρs
,

∂ᾱv

∂Pe
=

1

(ρw − ρs)2

(
ρw

∂ρs
∂Pe

− ρs
∂ρw
∂Pe

)
,(

1 +
ρw

ρs(1 + ζ)
− ρs + ρw

ζρs
ln(1 + ζ)

)
,

∂ᾱv

∂αr
=
ρw
ρsζ

(
ln(1 + ζ)

ζ
− 1

1 + ζ

)
.

In addition steam tables are required to evaluate hs, hw, ρs,
ρw, ∂ρs

∂Pe
, ∂ρw

∂Pe
, ∂hs

∂Pe
, tsat, and ∂tsat

∂Pe
at the saturation pressure of

the drum.
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