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Abstract

In this paper we present a robot control architecture for learning by imitation which
takes inspiration from recent discoveries in action observation/execution experi-
ments with humans and other primates. The architecture implements two basic
processing principles: 1) imitation is primarily directed toward reproducing the
goal/end state of an observed action sequence, and 2) the required capacity to
understand the motor intention of another agent is based on motor simulation.
The control architecture is validated in a robot system imitating in a goal-directed
manner a grasping and placing sequence displayed by a human model. During imi-
tation, skill transfer occurs by learning and representing appropriate goal-directed
sequences of motor primitives. After having established computational links be-
tween the representations of goal and means, further knowledge about the meaning
of objects is transferred (“where to place specific objects”). The robustness of the
goal-directed organization of the controller is tested in the presence of incomplete
visual information and changes in environmental constraints.
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1 Introduction

There has been a growing interest in creating autonomous robots which are
capable of developing motor and cognitive skills through real-time interactions
with their environment. Recent research in movement learning suggest that
trying to imitate an experienced teacher (e.g., a human) is a powerful means
of speeding up the learning process (for reviews see [1,2]). Observing a “good
model” may drastically reduce the state-action space which has to be explored
in order to optimize the movements at hand. This form of social learning in
robots is not restricted to movements. It may be complemented by acquiring
more abstract knowledge such as, for instance, structurally new motor be-
haviors composed of a set of parameterized motor primitives. This requires
that the learning process goes beyond an adaptation of variable parameters
of pre-designed, task-specific representations. Instead, the control architecture
should allow for developmental change to explicitly represent and memorize
newly acquired knowledge.
In this paper we summarize results of an interdisciplinary project which aimed
at exploring new ways of imitation and imitation learning in artefacts based
on recent discoveries in cognitive psychology and neuroscience. The basic idea
was to get new insights into the relevant functional mechanisms underlying
imitation from behavioral and neuronal data. Central questions for robot im-
itation that we have addressed in our work concern “what to imitate” and
how to solve the correspondence problem across dissimilar embodiments and
task constraints [3]. Very often these differences do simply not allow for a
matching on the level of movement trajectory or path. In the goal-directed
theory of imitation proposed by Bekkering and colleagues [4,5] imitative be-
havior can be considered successful whenever the end-state of the witnessed
action is reproduced. The means, on the other hand, may or not coincide
with the observed ones. The emphasis on the goal of the action requires of
course that the imitator understands the demonstrator’s motor intention. The
“matching hypothesis” forwarded by Rizzolatti and colleagues [6] based on
their discovery of the mirror system states that an action is understood if its
observation activates the motor representations controlling the execution of
a similar goal-directed action (“motor simulation”). The proposed controller
implements action understanding and goal-directed imitation as a continuous
process which combines sensory evidence, contextual information, and a goal-
directed mapping of action observation onto action execution. As a theoretical
framework, we base our implementation work on dynamic fields [7,8] previ-
ously used to endow autonomous robots with cognitive capabilities [9–11].
The complete control architecture including vision, cognition and path plan-
ning is validated in variations of a paradigm in which the robot system learns
to imitate a grasping and placing sequence displayed by a human model. The
learning is accompanied by structural changes in the controller representing
knowledge transferred from the human to the robot during imitation.
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In Section 2 we briefly present the experimental setup. A detailed description
of the control architecture follows in Section 3. Specifically, we focus on the
bio-inspired “cognitive module”. We sketch the dynamic field framework and
the learning rule used to implement the cognitive capacities underlying im-
itation. Experimental results and discussion are presented in Sections 4 and
5.

2 Experimental Setup

For the robotics work we adopt a paradigm which has been developed to
further investigate in experiments with humans the idea that actions are rep-
resented with respect to their end state (van Schie and Bekkering, in prepara-
tion). The paradigm contains an object that must be grasped and then placed
at one of two laterally presented targets that differ in height. Importantly, the
grasping and transporting behaviors are constrained by an obstacle in form of
a bridge (see Fig. 1). Depending on the height of the bridge, the lower target
may only be reached by grasping the object with a full grip and transport-
ing it below the bridge. Placing the object at the higher target, on the other
hand, may require combining a precision grip and a hand trajectory above the
bridge.
The robot has to imitate the observed or inferred end state of a grasping and
placing sequence displayed by a human model. The work was conducted on
a robot platform consisting of an industrial 6-degrees-of-freedom robot arm
(KUKA, Germany) on which a four-fingered anthropomorphic robot hand
[12](GRAALTECH, University of Genova, Italy) was mounted. A real-time
vision system provided the information about the scene parameters and the
human hand motion.

3 The Control Architecture

Three interconnected modules (vision, cognition, path planning) define the
robot control architecture (see Fig. 2).

3.1 Vision module

The vision module provides the environmental variables of the task setting
(Cartesian position of bridge, object and goals) by means of a semi-automatic
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calibrated stereo camera system. All outputs are stored in the general config-
uration structure, globally available for the other modules of the controller.
The demonstrator’s hand and the object are identified and tracked in real time
on the basis of a chroma-space blob segmentation in the YUV color space us-
ing a monocular camera view. The hand tracking algorithm is based on a
mutual information optimization approach [13] which maximizes the consis-
tency between an observed image and postures of a hypothetic hand model
(26-degrees-of-freedom). The algorithm has been proven to be robust under
changes in lightning condition, data acquisition noise, and partial occlusion of
the hand. Finally, the grasping behavior (full or precision grip), the hand tra-
jectory (above or below the bridge), and the the placing goal (high or low) are
classified on the basis of a distance measure relative to the respective object.

3.2 Cognitive module

In the cognitive module decisions about the action goal and the means to
achieve that goal are made. Its layered architecture is biologically inspired, as
it represents the basic functionality of neuronal populations in interconnected
brain areas known to be involved in action observation/execution tasks (for
details see [14]). The core part consists of three reciprocally connected lay-
ers, STS, PF and F5, representing the mirror circuit. The fundamental idea
is that within this circuit the matching of action observation and action ex-
ecution takes place on the level of motor primitives that represent complete
goal-directed actions such as, for instance, “grasping an object with a full
grip”([6], see also [1] for an excellent overview in the context of robotics re-
search). Motor primitives do not encode the fine details of the movement and
thus provide a sufficiently abstract level of description for imitation learning
across dissimilar embodiments. Concretely for the bridge paradigm, we distin-
guish two types of grasping primitives (precision grip (PG) and full grip(FG))
and two types of transporting primitives for avoiding the obstacle (below (BT)
or above (AT) the bridge).
The visual description of the observed action is stored in STS. In the mo-
tor layer F5, the representations of the respective primitives become active
both during action observation and action execution, that is, we assume that
congruent mappings have already been learned in previous grasping or trans-
porting trials. The representations in the intermediate layer reflect recent neu-
rophysiological findings in brain area PF that suggest a goal-directed organi-
zation of action means in this area. Using a grasping-placing task, Fogassi and
colleagues [15] described a population of grasping mirror neurons which showed
a selective response in dependence of the final goal of the action to which the
grasping act belongs. For the bridge paradigm, we abstract this finding by
assuming representations of specific combinations of primitives (e.g., PG-AT)
which allow achieving a specific goal. The two possible end states/goals, pa-

4



rameterized by their height relative to the bridge (spatial gap, Fig. 1), are
explicitly encoded in layer PFC. The reciprocal connections between PFC
and PF are learned during the imitation experiments. Beside the direct stim-
ulation by the vision system (placed target), the goal representations in PFC
may be influenced by two additional information sources: i) The task input
represents memorized information about the number, identity (height) and
probability of goals (for details of a computational implementation see [8]). It
reflects the fact that in a known task setting the robot may engage in partial
motor preparation even before the observation of the human model. ii) The
second input represents object cues (e.g. color) which become associated with
the goals during imitation.

3.2.1 The Dynamics of Decision Making and Learning

Each layer of the cognitive module is formalized by a dynamic field [7,8] in
which self-sustained patterns of excitation encode task specific information.
We extend here previous work in which the field framework has been used to
endow autonomous robots with cognitive capacities such as memory, decision
making, and prediction (e.g. [9–11]). The layer dynamics is governed by the
following equation:

τ
δ

δt
u(x, t) =−u(x, t) + h +

∑
i

Si(x, t) + (1)

+f1(u(x, t))
[∫

w(x − x′)f2(u(x′, t))dx′ − winhib

∫
f2(u(x′, t)dx′

]

where τ > 0, h < 0 and winhib > 0 are constants. The non-linear functions
fi(u), i = 1, 2, are of sigmoid shape

fi(u) =
1

1 + exp (−βi(u − θi))
(2)

with threshold θ1 > θ2 and slope parameter β1 = β2. The excitatory connec-
tions, w(x, x′), are modelled as a Gaussian profile. The excitation patterns
evolve under the influence of multiple information sources,

∑
i Si(x, t), repre-

senting summed excitation from connected layers and input from the vision
module. The latter is modelled as gaussian functions of adequate intensity.
For the present work, we exploit some characteristic features of the field dy-
namics. First, the interplay of recurrent inhibition and excitation stabilizes
non-uniform activation profiles and at the same time creates a competition
between alternatives (e.g., type of grasping). Second, there is a threshold,
uTH , for triggering a self-sustained pattern. Weak external inputs (e.g., task
input) may only bring the activation close to threshold. This “preshaping”,
however, may drastically alter the time course of the suprathreshold response
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triggered by additional inputs. This, in turn, may affect the decision processes
in connected layers.
Crucial for our approach to learning by imitation is that the control architec-
ture may autonomously evolve during practice by developing new task-relevant
representations. We apply a correlation based learning rule for the synaptic
connections, a(x, y), between any two neurons x and y in any two model layers
that is compatible with the field format[16]:

τs
δ

δt
a(x, y, t) = −a(x, y, t) + η f(ū1(x))f(ū2(y)) (3)

where η > 0 and ū1, ū2 denote the equilibrium solutions of the relaxation phase
in layer 1 and layer 2, respectively. Note that a transient phase of the dynamics
could have been chosen as well without changing the results of the present
study. Important for establishing a goal-directed organization of the control
architecture is that an internally generated reinforcement signal representing
a successful path planning toward the desired goal posture (see below) defines
the time window for the learning. For simplicity, we have chosen a function
which takes on the value 1 during the learning period and 0 otherwise. As a
result, the metric for the learning appears to be defined by the similarity in
the end state of the action[17].

3.3 Path planning

For generating overt behavior, the abstract motor primitives represented in
layer F5 have to be translated into the right kinematics. We employ a global
planning method in posture space which is inspired by the wave expansion
network approach[18]. In the network, the locally interconnected nodes rep-
resent stored postures, that is, n-dimensional arrays of joint angels Θi =
(θi1, . . . , θin)T , i = 1, . . . , N , where N represents the number of network nodes
covering the workspace W . Each node Θi is connected with its k nearest
neighbors Θj, j = 1, . . . , k defined by the euclidian metric ‖Θi − Θj‖2. The
connection weights wij are assumed to decrease exponentially with distance.
Starting with an external activation of a set of goal postures PG, activation
spreads in each time step to inactive nodes by summing the excitation from
the active neighbors (there is no interaction between already activated units).
When the wavefront reaches the node corresponding to the initial posture, the
activation dynamics is stopped. The sequence of postures defining a suitable
path from the initial state to the goal state is then found by back propaga-
tion in time along the maximum excited nodes. Inverse kinematics is used to
define three distinct sets of goal postures PGi , i = 1, 2, 3, associated with the
Cartesian location of the object to be grasped, X1, and location of the two
placing targets, X2 and X3, respectively.

6



Moreover, additional information from the vision and the cognitive module of
the control architecture is integrated before starting the wavefront operations.
Posture nodes which are impossible due to the obstacles are inhibited. The
forbidden set PO of all inhibited nodes is found by explicitly testing for spatial
overlap in Cartesian space between the to-be-assumed posture and the bridge
obstacle, OB ⊂ R3, using forward maps (f(Θj) �⊂ OB, j = 1, . . . , N). More-
over, the ensemble of nodes which can become part of the wavefront is further
constrained by the motor primitives in F5. For instance, we use again forward
maps to check whether a particular node Θj represents “all links of the robot
arm in a high position” as required by a trajectory above the bridge. This
preselection of a set of compatible postures, PF5, restrict the global planning
process to the subset PF5 ∩ PO = ∅.
The integration of prior information together with the inherent parallelism
of the wavefront operations makes a real-time path planning for artefacts
with higher degrees of freedom possible. Finally, the path for the full grasp-
ing and placing behavior is described by the temporal sequence {Θj, j ∈
(ti · · · tg · · · tp)}, where Θti represents the initial posture and Θtg , Θtp the pos-
tures at the time of grasping and placing, respectively.

4 Experimental Results

A set of imitation experiments within the bridge paradigm has been performed
which differ in the amount of visual information available to the robot and
in task constraints. The aim was 1) to exemplify what kind of knowledge
may be transferred from the human to the robot by autonomously developing
new representations, and 2) to illustrate the advantages of a goal-directed
organization of the control architecture in terms of robustness.

4.1 Copying the means

In the first set of experiment, a complete visual description of the teacher’s
actions in terms of the grasping and transporting behavior exists and the
vision system identifies the placing goal. Although the robot has the knowledge
how to grasp, transport and place objects in its motor repertoire, it does
not know how to combine under the constraints of the bridge paradigm the
specific motor primitives to achieve the same end state. One strategy could be
trying to copy the primitives displayed by the human demonstrator. The visual
description of the observed motions in layer STS resonates via the matching
mechanism in the mirror circuit with the congruent motor representations of
the robot. If the covert path planning toward the desired goal-posture turns
out to be successful, the observed action sequence becomes associated with the
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goal representation in layer PFC by the learning procedure described above.
Fig. 3 illustrates the result of this learning by imitation in an example in
which the robot copies the demonstrated precision grip and the trajectory
above the bridge to place the object at the higher goal. In the various layers of
the neural field model, the task specific information is encoded by non-uniform
activity profiles representing a steady state of the dynamics.

4.2 Discerning motor intention

The second set of experiments has been designed to reflect a major chal-
lenge for all robotics systems cooperating in cluttered environments with other
agents. Due to occluding surfaces, for instance, only partial visual informa-
tion about the action displayed by the partner may be available and the ob-
serving robot has to infer the action goal. The proposed control architecture
implements the idea that a goal-directed motor simulation together with the
integration of prior task knowledge underlies the capacity of discerning motor
intention. Consistent with this view, it has been recently reported that mirror
neurons may fire under appropriate experimental conditions (e.g., with addi-
tional contextual cues) even if the goal of the motor act is hidden from view
[6]. In the concrete example shown in Fig. 4, only the demonstrator’s grasping
of the object with a full grip is observable. However since the robot is familiar
with the task, links between goal representations and associated goal-directed
sequences have been established in previous trials. In addition, the constant
task input results in a pre-activation below threshold, uTH , of all task-relevant
representations. As a result of the robot’s “expectation” about possible goals
and means, the evolving activation in STS encoding the observed FG-grip is
sufficient to trigger first the sequence FG-BT and subsequently the represen-
tation of the associated lower goal (Panel B in Fig. 4). As shown in Panel
C, the robot shows its action understanding by combining a full grip and a
trajectory below the bridge to reproduce the inferred end state.

4.3 Goal directed imitation

The third set of experiments illustrates that the learned link from the mirror
circuit to the goal representation is crucial. The bar of the bridge is removed for
the human but not for the robot (Panel A in Fig. 5). Because of this change
in the environmental constraints, the demonstrator now uses a full grip for
placing the object at the higher target. For the robot, a direct matching on
the level of motor primitives would result in a collision with the bridge. As
shown in the snapshot of the field model in Panel B of Fig. 5, the decisions
in layer F5 represent the motor primitives PG and AT previously associated
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with the higher goal (compare Fig. 3). This choice is the result of a primacy
of the goals over the means implemented in the control architecture. The goal
representation is triggered by direct input from the vision system. Through
the learned links to layer PF, it biases the decision processes in the mirror cir-
cuit, thus overriding the direct mappings from the visual motion description
in STS. Technically, we exploit here differences in time course with the goal
representation being processed faster in a known task setting compared to the
representations in STS (for a detailed discussion of the biological context see
[14]).

4.4 Learning object meaning

If an observed action is understood, that is, connections between action goal
and action means have been established, further knowledge associated with
that action may be transferred by imitation. We tested in a variation of the
basic bridge paradigm the autonomous development of representations that
relate object cues to specific goals. Fig. 6 illustrates as a simple example the
effect of a learned association to object color processed by the vision system.
After a series of imitation trials, human and robot share the knowledge about
object meaning: a yellow object has to be placed at the higher goal and a blue
object at the lower goal. As a consequence, a simple presentation of a specific
object (blue or yellow) will automatically trigger the associated goal and the
action means to achieve that goal.

5 Discussion

We have presented a control architecture for imitation and learning by imita-
tion which is strongly inspired by recent insights about the processing princi-
ples underlying these capabilities in humans and other primates. In general,
our approach emphasizes the role of factors in imitation which are usually con-
sidered cognitive such as goal inference or decision making. The experiments
with the robot system illustrate that an organization of imitative behavior
toward reproducing the end-state/goal of an observed action complements
purely motor approaches which focus on a matching on the trajectory or path
level[2,17]. The primacy of the goal over the action means implemented in the
control architecture allows coping with differences in embodiment and task
constraints known as the correspondence problem in robot imitation [3]. Most
importantly, learning to understand the meaning of a particular action en-
ables the robot to reuse the stored information in new contexts and to acquire
more abstract knowledge associated with that action (e.g., object meaning).
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Action understanding is also a prerequisite for more efficient interactions in,
for instance, joint robot-human tasks since predictions about the outcome of
the partner’s action is frequently required.
The idea that the movement production system is essentially involved in action
understanding has been proposed in the context of robotics research before
(for review [2]). For instance, Demiris and Hayes [19] used internal forward
models known from motor control theory to predict the sensory consequences
of observed actions in an imitation task. However, the questions how to cope
with differences in embodiment, task constraints or even motor skills have
not been systematically addressed. In principle, the control architecture pro-
posed here allows for learning to understand an action which is not strictly
in the repertoire of the robot since the metric for the learning is defined by
the end state of the movement[17]. The only condition is that the observed
goal state is known to the robot and may be achieved by using proper means.
Subsequently, the correlation based learning rule (Equation 3) will establish
connections in the mirror circuit between the proper motor primitives and the
visually classified hand motions represented in layer STS[14].
In the present imitation paradigm, the goal-directed sequence is still relatively
simple as it combines only two motor primitives. In a joint effort with our ex-
perimental colleagues we are currently testing the learning of more complex
sequences composed of a richer set of existing movement primitives (e.g., a
sequence composed of two grasping and placing behaviors). Conceptually, the
implementation work does not require any changes in the overall control ar-
chitecture. However, some modifications in the field dynamics (Equation 2)
and the learning dynamics (Equation 3) have to be introduced. First, to pre-
vent from a competition between motor primitives belonging to the same
category (e.g., grasping) but to different parts of the sequence, the represen-
tations should be transient in nature. A straightforward solution is to add a
“forgetting dynamics” which results in a destabilization of the self-sustained
activation profiles[10]. Second, to allow for an explicit representation of the
temporal order of primitives in layer PF a predictive Hebbian learning rule
[16] should be use.
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[4] H. Bekkering, A. Wohlschläger, M. Gattis, Imitation of gestures in children
is goal-directed, The Quartely Journal of Experimental Psychology, Vol. 53A
(2000) 153-164.
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Fig. 1. Bridge Paradigm.
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Fig. 2. Robot control architecture.
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Fig. 3. Copying the means. Panel A: The teacher shows a complete grasping-placing
sequence, here precision grip (PG) followed by a transport above the bridge (AT).
Panel B: Cognitive module. The peaks of activation in layer F5 represent the means
(motor primitives) selected by the robot to reproduce the same goal. Panel C: The
robot reproduces the observed end-state using the same means.
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Fig. 4. Inference task. Panel A: Only the grasping behavior is observable. Panel B:
The stable state in layer PFC of the field model represents the inferred goal (here
lower goal). Panel C: To reproduce the inferred end state the robot combines a
full grip (FG) followed by a trajectory below (BT) the bridge as represented in the
motor layer F5 in Panel B.
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Fig. 5. Goal directed imitation. Panel A: Conflict in the grasping behavior, i.e. the
teacher uses a full grip for placing the object in the higher goal position. Panel B:
As shown in layer F5 of the field model, the robot decides to use a precision grip to
reproduce the observed end-state.
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Fig. 6. Learned association of object color to specific goals. Panel A: A yellow object
has to be placed at the higher goal. Panel B: A blue object has to be placed at the
lower goal.
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