
AUTOMATED GENERATION OF DSP PROGRAM DEVELOPMENT TOOLS
USING A MACHINE DESCRIPTION FORMALISM+

A. Fauth and A. Knoll

Technische Universität Berlin
Sekr. FR 2-2

D 1000 Berlin 10
Germany

fauth@cs.tu-berlin.de

ABSTRACT

We introduce a retargetable microcode generator for applica-
tion specific digital signal processors (ASDSPs). The primary
goal of our work is to quickly provide system architects with
the set of tools necessary for program development (assem-
blers, instruction set simulators, debuggers and compilers);
in particular when the processor architecture is refined si-
multaneously with the algorithm. After a modification of the
architecture, only the machine description written in our lan-
guage nML must be altered, the tools are then produced auto-
matically. The machine description need not explicitly list
every possible instruction in full length. Instead, a derivation
tree is described. Through the extensive use of inheritance and
sharing of properties, this description can be very compact.
Based on the latter, the recognition of critical data paths and
the analysis of machine inherent parallelism is solely per-
formed by the tool generator.

1 INTRODUCTION

Digital signal processors (DSPs) are specialized microproces-
sors designed for real-time manipulation of digital signals.
Applications for these processors include telecommunica-
tions, control, robotics, encryption and audio/video con-
sumer electronics. Typical calculations performed in digital
signal processing are based upon the computation of vector
or matrix products, convolution of time-series, pattern
recognition and solution of linear equation systems. More-
over, decision making is omnipresent; this gives rise to the
need for microprogrammable architectures with flexible
branch controllers or possibilities to execute operations de-
pending on a condition. Most microprogrammable DSP archi-
tectures also provide for special addressing modes, e.g., based
on modulo-n and bit-reversed address arithmetic.
To achieve the required performance, DSPs feature a higher de-
gree of parallelism than standard microprocessors. They are
usually designed after the Harvard architecture model incorpo-
rating several separate memory banks and buses. This charac-
teristic feature is also visible to the programmer. The build-
ing blocks of the processor all work in parallel and must be
programmed separately, ensuring a conflict-free program be-
havior. Furthermore, DSPs often feature a multi-stage instruc-
tion and data pipeline, which can be a source of conflicts. The
pipelines make most instructions seem to be completed
within one machine cycle.

The optimizations typically performed in a product design
cycle, have proven to be insufficient in the context of DSP
application development because they presuppose a static ar-
chitecture and only transform the algorithm. Not only is there
a need for high throughput in the real-time environments, but
the cost of chip real estate must also be brought down to a
minimum. Another constraint is the limit for processor power
consumption especially in portable systems. It is therefore of
paramount importance that the processors and the programs
be highly optimized. Iterative refinement of hard- and soft-
ware very often leads to somewhat arcane processor struc-
tures.
Currently, when a new processor is developed, the corre-
sponding program development tools are also designed more
or less from scratch. This procedure, however, is very tedious
and error-prone. It does not seem to be adequate in highly
competitive environments.1 The alternative is to provide the
chip with a more sophisticated functionality than needed for
the specific application. While this is obviously more costly
than a lean design, our approach allows for easy adaptation of
the tools and provides for an instant feedback to the devel-
oper.
The demands traditionally imposed on code generation espe-
cially hold for ASDSP code generation in that all processor
features should be fully exploited by the compiler. This
means that the generated code must be correct, of high quality
and efficiently use the resources. By contrast, short turn-
around times are not the main objective. The code generation
task is user-guided to guarantee a high degree of flexibility.
In this paper essentials of the architectural front-end analyz-
ing the architecture description and thus allowing for easy re-
targeting are presented. A more detailed look at aspects of
code generation can be found in [1].

+ Part of this research is supported by the ESPRIT 2260
(“SPRITE”) project of the European Community.

1 The same holds for the usual retargeting process of a high
level language compiler. “Easy” retargetability in that
context often means that it is possible to reuse parts of the
compiler or that not everything has to adapted by hand. It
does not mean that a compiler can be automatically tuned
to a new, (slightly) different machine within a short time.

2 SYSTEM OVERVIEW

The general layout of the system is depicted in figure 1. The
major input to the retargeting process is a description of the
target processor written in nML [2].
The first step in retargeting the compiler is the analysis of
the (modified) machine description. Here, all architectural de-
tails essential for code generation but not explicitly provided
by the user are identified. The working model of the architec-
ture hereby synthesized does not necessarily correspond in a
one-to-one manner to the actual hardware but mimics it
closely enough. Hardware operators and a network of inter-
connections between them are extracted from the machine de-
scription. Target machine dependent code generation modules
are generated, which model available operation chains and re-
source conflicts by providing a set of patterns and combina-
tion possibilities. These modules are linked with machine in-
dependent modules which include reusable optimizations and
parameterized expansion rules. This completes the retarget-
ing process.

machine
description analyzer

machine
dependent
modules

machine
independent

modules

scheduling &
data-routing

address
generation

expansion &
pattern

matching

processor
working
model code

mapping

Figure 1 System Overview

For the simulator/debugger and the assembler, retargeting is
even simpler because all the information necessary is directly
contained in the machine description and most of the analysis
is omitted.
In our environment, all aspects of the behavior of the system
that are important for proper translation must be specified.
This presupposes the precise modeling of word lengths and
numerical effects (overflow and underflow conditions as well
as saturation modes) in the processor specification and in the
description of the application algorithm.
The algorithm is produced by a schematic editor and presented
in a signal flowchart. This flowchart can be translated directly
to a simple single-assignment language thereby preserving
the whole parallelism of the chart. The actual generation of
microcode is based on the Cathedral 2nd framework [3] and
starts with a front-end translating a flowchart into an inter-
mediate data/control flow graph representation. In a second
step, some machine independent tasks are performed
(including memory management, constant folding and condi-
tion optimizations). Operations which are not directly exe-
cutable on the machine are then expanded. For the expansion
task the mechanism provided by [4] is used. Then, a pattern-
matcher is invoked for code selection and local operation
chaining. After matching the graph of the application pro-
gram, the microoperations are scheduled. For the scheduling
task, a list-scheduler, as reported in [5], is incorporated. In
the final stages, symbolic names are mapped to data memory
and basic blocks are mapped to program memory. The desired
output (assembly source or binary image) is generated.

3 MACHINE DESCRIPTIONS

The machine description language nML [2] is intended for de-
scribing arbitrary single instruction stream architectures.

Such architectures feature a single program counter, but can
otherwise consist of an unlimited number of building blocks,
such as AGUs and ALUs. The abstraction level that nML aims
at is the programmer's model of the processor, i.e., the in-
struction set and the memory model. Therefore, most imple-
mentation details of the actual machine are hidden. A single
nML description can be shared among a number of applica-
tions which have a need for a formal description, making nML
a suitable input language for a wide range of system develop-
ment tools. The nML machine model is very simple: A run-
ning machine executes a program consisting of a thread of in-
structions. While executing one instruction, a program
counter (PC) points to the instruction executed next. The ma-
chine has a state stored in memory locations. The sole pur-
pose of a program is to change the contents of these memory
locations. Each instruction is therefore modeled as a transi-
tion function from state to state. Instruction semantics are
given as a sequence of assignments which are similar to tradi-
tionally known register transfers. The program flow may be
changed by writing to the PC location. To specify a machine
using nML, precise knowledge is required about
• all existing storage classes including the register files,
• all data formats directly available on the machine,
• all occurrences of alignment restrictions,
• the exact semantics of instructions including side-effects,
• the complete set of addressing modes,
• the usage of condition codes,
• the possibilities of program flow control and
• internal data-processing structures like pipelines.
Complex architectures may allow hundreds of legal combina-
tions of operations and addressing modes to compose the in-
struction set. If instructions have side-effects, exhaustive de-
scriptions might grow very large. Description size is there-
fore reduced by sharing similarities among a variety of in-
structions. An nML description is a file consisting of an at-
tributed grammar and assorted definitions. For nML grammars,
all nonterminals must have derivations. There must be no cy-
cles. This implies that all strings having no productions con-
sist only of terminals.

op instruction = jump | aluOp | ...

op aluOp (a:aluAction,s1:src,s2:src,d:dst)
 action = { tmp1 = s1; tmp2 = s2;
 a.aluAction; d = tmp3; }
 syntax = format("%s %s,…",a.syntax,…)
 image = format("…

op aluAction = plus | minus | ...
op plus ()
 action = { tmp3 = tmp1 + tmp2; }
 syntax = "add"
 image = "00000"

mode src = reg | ...

mode reg (n:card (3)) = R[n]
 syntax = format ("D%d",n)
 image = format ("%3b",n)

Figure 2 Machine description example

Two derivation possibilities exist:
• or-rules branching into alternatives and
• and-rules merging shared properties.
Basically, nonterminals exist for four purposes (the corre-
sponding keywords are given in parenthesis):
• data representations (type)
• storage classes (mem)
• operations (op)
• addressing modes (mode)
Each terminal string produced by the grammar corresponds to
one member of the instruction set. By deriving all terminal
strings, the complete instruction set can be listed. By itself,
however, such a string contains no useful information. All
semantic aspects are held in attributes. A fixed set of at-
tributes is given for each nonterminal. Attributes have
expressions as their definitions. Expressions are either
arbitrary “C”-like expressions or sequences of statements.
Both kinds may contain references to attributes of parameters
to the and-rule.
Three attributes are predefined:
• action describes the run-time semantics of an operation,
• syntax holds its assembly language syntax and
• image contains the values to set instruction word fields.
nML in its present form is considered as a core language that
can be extended if need be by adding application specific at-
tributes. Figure 2 shows a fragment of an nML description.

4 ARCHITECTURAL ANALYSIS

The goal of the analysis steps is to identify all architectural
details needed for a specific tool but which are not directly
provided by the machine description. For code generation,
the underlying machine (this includes the processor kernel
and dedicated hardware) is described by its execution proper-
ties, i.e., the operations it can execute, and its topology, i.e.,
the possible data routes. As in [6] a microoperation (MO) is
the most primitive entity to model activity on the machine.
Its semantics is represented by a (machine independent)
named quintuple N=(I, O, U, T, F) with
N – the name of the MO
I – the set of input resources to the MO (source operands)
O – the set of output resources to the MO (destination)
U – the set of functional units participating in the execution
T – the number of clock cycles required for execution
F – the instruction word field-code pairs that encode the MO
A microinstruction (MI) is a set of conflict-free microopera-
tions which are started at the beginning of the same machine
cycle. Conflicts can occur with respect to I, O, U and F. The
generation of conflict-free MIs is one of the main tasks to
code generation. The result of the analysis steps is a model
for
• the executable microoperations as named quintuples,
• the hardware operators depicting the processor,
• the netlist interconnecting the operators and
• patterns for conflict-free MOs.
The patterns represent conflict-free MO clusters which can be
executed in one cycle on interconnected components. Hori-
zontal coding of machine instructions introduces further re-
strictions. These are also captured in the patterns by provid-

ing only legal (i.e. encodeable) chains. Combination possi-
bilities of patterns are modeled via operator assignments
which impose additional resource conflicts on the scheduling
task.

4.1 Flattening the Derivation Tree

An enumeration of all described instructions is achieved by
flattening the derivation tree of the machine description. This
process traverses the tree and visits all possible productions
deriving all possible terminal strings. Each produced terminal
string represents a fully expanded instruction2 (FEI). An FEI
defines all actions taking place on the processor during one
instruction cycle; no additional (for code generation relevant)
semantic action can be performed except the listed ones.
To enumerate the complete instruction set, all rules are calcu-
lated. This means that referenced attributes are substituted by
their value. If the definition of an attribute includes a condi-
tion or a switch, condition hoisting is performed producing
all possible instantiations of the current rule. The same is
done with all or-rules.
After flattening, the action-attribute of every FEI is pro-
cessed: First, data dependent expressions are concatenated
into trees. After this, every FEI's action is represented by a
set of expression trees (a forest). Then, two different analysis
procedures are started. The purpose of the first is to extract a
set of hardware operators; the purpose of the second is the
generation of code patterns.

4.2 Mimicking the Datapath

After the expression trees for all FEIs have been constructed,
a model for the topology of the architecture must be found. A
correspondence between operations and operators is built.
Each nML primitive function (like + or <<) that is a node in an
expression tree is associated with a functional block or op-
erator of the processor. Since every operator is assumed to
possibly execute more than one operation, the goal is to
minimize the forest of expression trees by collapsing trees
by introducing merge and split nodes (see figure 3).

.

R

R

R

R

R

R

RR

R

Figure 3 Expression tree collapsing

2 Such a fully expanded instruction may still be parametric
in many bits. It is obviously not desirable to produce all
instances of an instruction that includes a multi-bit literal
yielding operations like add #1,Ri, add #2,Ri, etc.

The number of functional blocks is minimized in this step
yielding more powerful blocks. Two trees can be collapsed if
they both include an identical operation with different
operands or include operations which are similar (like addi-
tion andsubtraction).
The merge nodes represent multiplexers and the split nodes
demultiplexers. Links to the split, merge and operator nodes
are held for every operation because these represent the set of
used functional units. Figure 3 shows an example
The trees can be simplified even further. A set of a split node,
a merge node and operator nodes (this may also be a no-op)
between them can be merged into a macro-operator node if all
operations that have a link to either the split or the merge
node actually have a link to both.
For every operation the sets I, O, and U can now be given.

4.3 Automated Pattern Generation

An important phase of code generation performs operation
selection and chaining with pattern matching [7][8]. This
process finds partial instructions on the machine that
implement the algorithm, but leaves a high degree of freedom
to the scheduler. The necessary patterns are generated from
the FEIs. Problems would occur if the expressions were
directly taken as patterns when the machine has
• a large amount of internal parallelism and/or a large number

of orthogonal addressing modes:
The algorithm must be carefully ordered to make efficient
use of independent functional units. Since each pattern
matched describes a specific combination of all sub-instruc-
tions, further reordering (i.e. scheduling) is precluded.

• operators that can be eluded or bypassed or operations with
side effects:
The patterns cannot be matched directly to the algorithm
because they are overdetermined. Consider a combined
shift-add instruction. By shifting zero bits, a pure add
operation can be performed, while by adding a zero, a pure
shift is done. Since it cannot be assured that shifts and
adds are coupled in the algorithm, the pattern-matcher will
fail to select code.

Therefore, the expression trees will only serve as a base for
the construction of the pattern base. The basic idea is to split
the trees up and form patterns out of the parts. These patterns
can then be matched separately onto the algorithm and put to-
gether in the subsequent scheduling phase. It must be assured
that either all combinations are legal or that restrictions are
modeled by resource conflicts.
A splittable tree is seen as a cluster of (at least two) microop-
erations. These clusters can be divided:
• Orthogonality criterion

For each pair of clusters I = AI ⊕ BI and J = AJ ⊕ BJ it is true
that the two clusters K1 = AI ⊕ BJ and K2 = AJ ⊕ BI exist.
This is typically the case for totally independent parts of
the machine that do not even share fields in the instruction
word (like a bus allowing data transfers in parallel to an
ALU executing various numerical computations).

• Operator pass modes criterion
No-ops A∅ or B∅ exist such that for a cluster I=AI ⊕ BI
there are clusters K1 = A∅ ⊕ BI and K2 = AI ⊕ B∅ . Of
course, the operations AI and BI must be logically indepen-
dent, i.e. data dependencies are not allowed. Such no-ops
exist for various functional units and are commonly called
pass-modes. They can be explicit operational modes of the

unit or identity functions like addition with zero, multipli-
cation by one or a shift by a value of zero.

These conditions guarantee that all instructions may be split
into (at least two) operations and be recombined, possibly at
the expense of efficiency if no-ops have to be inserted.
The generated patterns are dumped in a human-readable format
such that experienced users can manually optimize them or
add patterns which the analysis failed to detect.

5 CONCLUSION

We have shown how a DSP architecture can be described in a
convenient way by using an easy-to-read machine description
language. Tools have been developed which use this descrip-
tion as input and automatically produce the program devel-
opment tools assembler, simulator/debugger and compiler.
The purpose is to drastically simplify the adaptation of devel-
opment tools when the architecture of a processor is changed
during its design phase. The analysis steps performed during
the tool generation ascertain that the code produced by the
generated tools is highly efficient. The toolset we have de-
veloped is in its prototype stage. Our future efforts will con-
centrate on the refinement of the presented techniques
especially for handling side-effects. Other important tasks are
the development of different scheduling techniques, solutions
for graph pattern matching and the design of tools for
displaying design statistics, hardware operator loads and
other useful information.

REFERENCES

[1] A. Fauth, A. Knoll “Automatic Generation of DSP Pro-
gram Development Tools Utilizing a Machine Descrip-
tion Formalism”, Technischer Bericht 1992-31, Tech-
nische Universität Berlin, FB 20, Berlin, 1992

[2] M. Freericks, “The nML Machine Description Formal-
ism”, Technischer Bericht 1991-15, Technische Univer-
sität Berlin, FB 20, Berlin, 1991

[3] D. Lanneer et al., “Open-ended System for High-Level
Synthesis of Flexible Signal Processors”, Proceedings
EDAC 90, 1990

[4] D. Lanneer et al, “An Object-Oriented Framework sup-
porting the full High-Level Synthesis Trajectory”, Pro-
ceedings CHDL 91, 1991

[5] R. Hartmann, “Combined scheduling and data routing for
programmable ASIC Systems”, Proceedings EDAC 92,
1992

[6] D. Landskov et al., “Local Microcode Compaction Tech-
niques” Computing Surveys 12 (2), 1980

[7] M. Ganapathi et al., “Retargetable Compiler Code Gen-
eration”, Computing Surveys 14 (4), 1982

[8] C.W. Fraser et al., “BURG – Fast Optimal Instruction Se-
lection and Tree Parsing”, ACM SIGPLAN Not. 27 (4),
1992

