
WRITING AND COMPILING DSP ALGORITHMS IN AN ASYNCHRONOUS

APPLICATIVE LANGUAGE

Markus Freericks Alois Knoll

Technische Universit�at Berlin Sekr� FR ���

Franklinstr� ����� �			 Berlin �	

mfx�cs�tu�berlin�de

ABSTRACT

The functional programming language ALDiSP
 which is
specially tailored to the needs of DSP system speci�ca�
tion
 is brie�y presented� ALDiSP is based on asynchronous
concepts that make it easy to specify interrupt�driven con�
trol �ow� It is shown how ALDiSP speci�cations can be
translated into ecient code using techniques of abstract
interpretation and partial evaluation� By applying abstract
interpretation to the set of possible states that a program
can encounter
 a static schedule can be found if one ex�
ists� Practical problems of this approach are discussed and
solutions outlined�

�� INTRODUCTION

For a variety of reasons the development of a language for
the speci�cation and implementation of DSP algorithms is
a demanding challenge� The requirements are even higher
when real�time systems have to be speci�ed�
The traditional doctrine suggests that execution speed can
only be achieved in �low�level� languages
 i�e�
 ultimately

by using the machine language� In fact
 most real�time
DSP applications today are still programmed in assem�
bler
 usually supported by DSP macro libraries� There
have been adaptations of traditional imperative languages

most notably �C�
 but these have met with limited success�
Special�purpose languages have also been developed� One
of the more prominent ones
 which serves as our compari�
son
 is SILAGE����
In ������	
 two languages
 ImDiSP���
 an imperative one

and ALDiSP��
 ��
 which is based on functional concepts

were developed at TU Berlin in the context of the CADiSP
project���� An ImDiSP�compiler for the Motorola ��			 has
been written�

The ALDiSP compiler ac is under development
 after a
�rst interpretive implementation of the language made it
possible to evaluate the novel concepts�
This paper gives a short introduction to the key real�time
mechanism of ALDiSP
 the suspension
 and describes the
techniques on which that compiler is based�

�� THE LANGUAGE

The language ALDiSP was already presented in ��� and was
�rst fully described in ���� Therefore
 only a short overview
is to be given here�

ALDiSP is a call�by�value functional language with the fol�
lowing features�

� a delay form provides lazy evaluation on demand

� a module facility

This work was in part supported by an Ernst�von�Siemens

grant�

waiting for cond waiting for time running finished

Figure �� suspension state model

� overloaded function de�nitions

� user�de�nable types� arbitrary predicates can be used as
types

� exception mechanism� both aborting and returning ex�
ceptions
 dynamically bound

� rounding and over�ow expressible via exceptions

� automatic mapping of all functions on arrays and signals

� higher�order functions

� no restrictions due to type�checking

� i�o functions

� time and i�o expressed via suspensions

A formal semantics and a set of DSP application examples
can be found in ����

�� THE SUSPENSION MECHANISM

All real�time functionality an ALDiSP is based on only one
new construct
 the suspension� This construct also makes
the implementation of data�driven evalatuation possible
 a
feature not found in other functional languages�

An expression as
suspend expr until cond within limits end

evaluates to a placeholder object ��a suspension��� When

after some time has elapsed
 the condition becomes true
�conds are usually tests depending upon global state
 or
the true�
 the expression will be evaluated within the time
range de�ned by the limits �relative to the point of time
when cond becomes true�� After the evaluation has taken
place
 the result replaces the placeholder �just like a promise
in MultiLisp��	� is replaced��

The evaluation model of the program as a whole is depicted
in �g��� There are three pools containing suspensions
 with
one currently executing suspension� Newly created suspen�
sions are placed in the �waiting� pool� When their cond
becomes true
 they advance to the �ready� pool� a waiting
counter is set to an arbitrary number within the limits�

When the expression of the current suspension is �nished
�a process in which many new suspensions may have been
created and put into the �waiting� pool�
 the result is placed
in the �result� pool
 and some arbitrary suspension whose
counter is 	 is selected from the �ready� pool to be eval�
uated next� If there are no eligible suspensions
 program

time advances�
 and the counters of the waiting suspen�
sions are decremented� The whole program stops when the
�rst two pools are empty and the evaluation of the current
suspension�s expression terminates
 though most real�time
programs do not terminate�

If this description seems to evince a very inecient evalu�
ation mechanism
 it should be remembered that a suspen�
sion is roughly equivalent to an interrupt handler� Further�
more
 this description gives the semantics of suspensions

not their implementation� For example
 the �arbitrarily
chosen� counter is in reality determined by the reaction
time that can be statically guaranteed for a given event�

A suspension is an expressions that is �suspended� until
some condition holds� This condition relates either to other
suspensions �waiting for them to evaluate� or to i�o state�
Accessing the value of an as yet unevaluated suspensions
suspends the accessing function itself� A predicate isAvail�
able tests fo the availability of a suspension�s value�

A good example for the use of suspensions is the valve
controller�

func guard�closed�valve���
suspend open�valve���

guard�open�valve���
until current�pressure����		
	
within 	ms��ms

func guard�open�valve�� �
suspend close�valve���

guard�closed�valve��
until current�pressure����
	
within 	ms��ms

These functions implement a two�state controller in a di�
rect way� A suspend expression consists of three parts�
the expression that is to be suspended� the condition upon
which the evaluability depends
 and two �duration� val�
ues� The latter determines the time frame
 relative to the
point where the condition becomes true
 in which the ex�
pression must be evaluated� Providing a condition that is
constantly �true� allows the user to request �xed timing
delays�
The execution of an ALDiSP program is a two�level process

managed by a scheduler and an evaluator� The scheduler
controls the i�o and activates suspensions� each suspen�
sion�s value is then computed by the evaluator� If
 during
the evaluation
 a side�e�ect is attempted
 the evaluation
blocks and returns a suspension� The scheduler then ef�
fects the side�e�ect and
 later
 re�awakens the suspended
evaluation� Thus
 evaluation is purely functional�

�� STREAMS

Recent trends in incorporating i�o into functional languages
use the concept of streams� A stream is a �usually in�nite�
sequence of values produced by a function� Only a �nite
pre�x of a stream must be represented extensionally
 i�e�
as a data structure� the in�nite remainder of the stream is
can be represented as a function�

Streams can be used to model an output�driven system�
whenever an output value is required by the printing func�
tion
 a new stream element is computed� Input can be
provided as a stream
 too� e�g�
 a �le can be modelled as a
��nite� stream of characters�
Standard streams do not lend themselves to modelling input�
driven behaviour� A suspension�based analogon to streams

dubbed pipes
 provides for input�driven i�o�

��Time� here is� of course� �virtual� time� It depends upon
the speed of the compiled programwhether this virtual time can
be as fast as the real time�

The following is a complete ALDiSP program that reads
an input at a �xed rate
 applies a simple second�order FIR
�lter to it
 and writes it out again�

func ReadFromRegister�Rate�Reg� �
read�Reg� ��

suspend readFromRegister�Rate�Reg�
until true within Rate�Rate

func WriteToRegister�Reg�OutputPipe� �
�write�Reg�head�OutputPipe���
suspend WriteToRegister�Reg�tail�OutputPipe��
until isAvailable�tail�Reg��

within 	ms� 	
�ms�

func FIR�a	�a��a���inp� �
let s	 � 	��inp �� �� implements the t��� operator

s� � 	��s	 �� the �	�s are the initial values
s� � 	��s�

in
inp � a	�s	 � a��s� � a��s�

end

filter� � FIR�	
����������	
��������	
���������

net
SamplingRate � � sec � ��			
Input � ReadFromRegister�SamplingRate�StdIn�

in
WriteToRegister�StdOut�filter��FilteredInput��

The ReadFromRegister function samples a given input reg�
ister �e�g�
 an ADC� at a frequency of ��kHz� The resulting
pipe is then �ltered and written to an output register �e�g�

a DAC��

	� ARRAY MANIPULATION

Mathematical and DSP code is usually very much con�
cerned with the ecient handling of arrays �vectors and
matrices�� There are two approaches to processing arrays�

� In imperative languages like FORTRAN
 arrays are ma�
nipulated element�wise� The array is seen as a data struc�
ture that holds values� Programs in such languages are
usually heavily loaded with nested loops�

� In functional and special�purpose array languages like
APL
 arrays are treated as entities
 i�e� as values� Ele�
ment extraction is then just one of the operations de�ned
on arrays� This approach employs higher�order functions
such as the �reduce� operator of APL
 that applies a bi�
nary operator pairwise to all elements of an array
 thus
reducing it to a scalar� For example
 �reduce �� gives
the sum of all elements of an array�

ALDiSP facilitates the second approach�
 because it is both
easier to program and easier to compile ecient code for
it�

The compilation of code for arrays in ALDiSP employs the
duality of arrays and functions� As every array can be
seen as a function of indices to values
 every function of a
�nite data domain can be tabulated as an array� For the
ALDiSP compiler this means that there are two possible op�
timizations to perform� whenever the compiler encounters
a function that is called only with a small range of possible
arguments �and that does no I�O�
 the compiler can tab�
ulate the possible results� A simple heuristic would be to
measure the code size needed to implement the function

and tabulate the function whenever the resultant array is
not much bigger than the code �e�g�
 less than a factor of
��� An example of utilizing this optimization is the FFT

�Eeven FORTRAN��� does� to a small extent	

function
 where a table of twiddle factors �complex units
of root� has to be held� In an imperative implementation

a vector of such factors would have to be initialized before
using the FFT function the �rst time� in an ALDiSP imple�
mentation
 one would just write down the factor �ein�m�
and let the compiler create the table and the lookup com�
putations�

The second optimization is of more importance in prac�
tice� Whenever an operation computes a new array value

this array can be represented extensionally �tabulated as
an array data structure� or intensionally �as a function��
For example
 given two vectors A and B
 the call A � B

can either result in a new data structure
 or can be laid
down as the function �i�A�i� �B�i�� This second approach
has a number of advantages� if the resultant matrix is not
used totally
 e�g� if only a small number of elements is ever
accessed
 the function ��� will only be called for those
elements� Also
 no memory is needed to store the extra
elements� In fact
 the only time that an extensional repre�
sentation of an array is needed is when there is more than
one access to many elements later in the program�
The ALDiSP compiler uses the intensional representation
as a default and decides what functions�arrays to dump
when the partial evaluator builds the �nal program�

� COMPILATION TECHNIQUES

The two �traditional� compilation techniques for functional
programming languages are combinator�based compilation
and stack machines� The �rst is based on the transla�
tion of the program and its input into a graph which is
then reduced in a rather arbitrary order� Stack machines
have a more conventional machine model in mind� they are
mainly used in the implementation of strict and impure
functional languages� The LISP machines were hardware�
implementations of this approach�

Both techniques are not well matched to ALDiSP
 mostly
because they rely on a tagged memory heap providing dy�
namic storage and garbage collection facilities�

Because of this
 we utilize two new methods� abstract in�
terpretation �AI� and partial evaluation �PE�� An AI of a
program is a �simulated execution� on abstract input val�
ues� For example
 an operation that reads an input register
will return
 if interpreted abstractly
 a symbolic value that
denotes �some ���bit integer�� Furthermore
 when a truth
value evaluates to �unknown� in the context of an if ex�
pression
 both branches of the if have to be simulated� As
a consequence
 the AI process is in danger of not terminat�
ing� if the program contains an in�nite loop
 the abstract
interpretation may well be in�nite
 too� To prevent such
situations
 the AI maintains a global table of function calls
�open� at any time� Since
 in ALDiSP all looping has to
be implemented via recursion �or implicitly
 by automap�
ping�
 this guarantees that every loop has to register as a
call to a function for which an �open� call exists
 i�e�
 one
for which no �return� is registered� In the case of a loop

the recursive function call is aborted and a dummy value
��bottom�
 the least de�ned object� is returned�

The call table �also known as call cache� has a second pur�
pose� after the AI has been performed
 it is known for
each function how many times it has been called and with
what types of arguments� Using this knowledge
 a PE re�
writes the program by specializing functions
 possibly in�
lining them�

Abstract interpretation and partial evaluation are a gen�
eralization of traditional optimization techniques based on
data��ow analysis
 such as constant�propagation
 inlining

and dead code removal� AI is data��ow analysis via sim�
ulated execution� and PE is a combined function inlining
and constant propagation using the information gained in
AI� In contrast to standard optimization techniques
 AI
and PE go beyond the boundaries of function de�nitions

and rearrange the whole program� Standard techniques
are usually restricted to single function de�nitions or even
basic blocks only�

If a language has a formal denotational semantics �which
can usually be implemented as a functional program rather
easily�
 it is possible to prove that some abstract interpre�
tation of this language is �correct�� There are a variety
of possible abstract interpretation schemes for a give lan�
guage
 depending on

� what abstract values are needed� a simple abstract value
would be �some number�
 a highly sophisticated one would
be �a vector of �� �oating�point values
 none of which is
negative or zero
 which should be held in cache�� During
an abstract interpretation
 all kind of extra information
can be lugged around in the abstract values�

� how recursion is treated� the abstract interpretation of
an if construct needs to follow both arms of the condi�
tional� In the context of a recursive function
 this leads to
nontermination� By caching the calls to functions
 these
can be avoided
 but it is known that the cost of �nding
a �xed point for a recursive function can be exponential
in the height of the abstract data domain that is
 quite
expensive�

� How �context information� is used� when the arms of
an if expression are evaluated
 a context is assumed in
which the condition of the if is either true or false� This
information can be carried along and used to steer the
progress and
 later
 the specialization process�

These
 among others
 are active areas of research���
 ����

��� STATIC CONTROL FLOW

Real�time algorithms
 especially those in the realm of DSP

tend to have a very regular �or static� control �ow� This is
the reason to expect that a program that speci�es such an
algorithm will behave very well under abstract interpreta�
tion
 even if the language very �dynamic� one�

Typical ALDiSP programs are indeed reduced to the ex�
pected core functionality by the partial evaluation process�
In analogy to the well�known syntactic sugar
 a term that
denotes all �syntactic niceties� of a language that can be
stripped away in a parser�preprocessor without any deeper
understanding of the program
 we would like to introduce
the term semantic sugar to denote all mechanisms that can
be removed by a partial evaluator� These features include
higher�order functions
 overloading
 most type checking

automatic mapping
 exceptions
 etc�

It is still possible to write programs that the partial evalu�
ator cannot handle but these are mainly contrived exam�
ples� Most �natural� DSP applications are well�behaved�

��� STATE ANALYSIS

When partial evaluation is completed
 the functions that
constitute the program are simpli�ed as far as possible�
Still
 the other part of the run�time model has to be han�
dled� the scheduler�

Here
 too
 the abstract interpretation approach is applied�
When running the program
 there are two main states� The
system is resting when all pending suspensions are either
waiting for input to occur �or time to elapse�
 or are depen�
dent upon suspensions that are waiting for input� As time
passes
 input takes place and suspensions are activated�
The evaluation of these input�dependent suspensions en�
ables other suspensions to run
 and so on� Eventually
 the
system comes to rest again�

The above outlined process can be �abstracted� by pro�
viding abstract input whenever the system is resting� If
the control behaviour of the program is independent of the
actual input values
 the only thing to model is the absence

or presence of input� Otherwise
 all possible input values
must be simulated� At the moment
 our compiler does not
do the latter� the overhead would be too high�
Since a program may be waiting for a number k of input
sources simultaneously
 all possible combinations of input
events must be simulated� For each such combination
 a
new abstract state is reached after the system comes to
rest�
Two abstract states are said to be �similar� if all sus�
pensions they contain are waiting for the same conditions

and only their particular variable bindings �modelling the
state� di�er� Furthermore
 the di�ering variable bindings
must be of scalar type� i�e�
 not contain di�erently�shaped
data structures� Those would prohibit a static memory
layout�
If the abstract interpretation of the scheduler �nds that the
set of possible states at time k �denoted S

�
k� is �similar� to

the state k times steps later �S�k�c�
 it has found a static

schedule� In a purely synchronous program
 S
�
k will be

similar to S
�
k��
 i�e�
 the set of possible states is the same

at all points in time�
Once a stable schedule is found
 compilation can follow�
The scheduler can be executed �in the compiler�s mind�

and no run�time scheduling is needed any more�

�� PROBLEMS

There is one practical problem with state analysis� In a
program with two sampling frequencies
 the constant c will
be the lowest common denominator of the frequences
quite a large number
 and a real problem for the compiler�
In addition
 even if the number of input sources is small
�say
 � or ��
 there are �k possible combinations� Heuristics
are needed to speed up this simulation process�
On the other hand
 it is quite possible for the partial evalu�
ator to simply take each suspension for its own and compile
code for it� but then it might be possible that incorrect pro�
grams could be created� For example
 our abstract machine
assumes that there is one �interrupt handler� for each pos�
sible input event� If there are two suspensions that install
themselves into the same �interrupt slot�
 one will over�
write the other� �If such a situation were detected in the
state simulation
 those suspensions would be merged into
one��
A second problem is that of code explosion� a naive par�
tial evaluator will unroll all loops and over�specialize many
functions� Here
 too
 heuristic guides are needed to control
the expansion process� One simple heuristic is the ��	�
rule�� an independent counter attached to each function
de�nition assures that a given function is expanded not
more than �	 times� For loops showing a �logarithmic�
behaviour �e�g� binary search in an array�
 this results in
total unfolding for data structures smaller than a million
entries ������ otherwise
 a factor of �	 is small enough not
to prove disastrous if a loop is unrolled that should not�

�� RELATED WORK

Partial evaluation initiated from attempts to automatically
generate compilers from interpreters� A lot of current work
in abstract interpretation and partial evaluation tries to
extend the range of languages and features these methods
can be applied to� A seminal collection of papers can be
found in ����� the latest in a series of workshops is �����
Berlin���� is one of the �rst articles describing the use of
partial evaluation for �number crunching� applications�
A recent article by Nirkhe and Pugh describes applications
of partial evaluation techniques to an imperative DSP lan�
guage� Their approach is based on a language with user�
annotated binding time information and �xed maximum
loop counts�

� CONCLUSION

We have shown that it is possible to compile a language
equipped with a number of semantic complexities targeted
at a demanding realm such as DSP programming
 in a cor�
rect way into ecient code� While the compilation process
is a costly undertaking
 we hope that it is more than made
up by the gained correctness and ease of programming�
Our compiler is now able to run the �rst phases of abstract
interpretation and partial evaluation� the state analysis
technique outlined in the last section is being implemented�
As an added bonus
 the abstract interpreter
 being a su�
perset of an �actual� interpreter
 can be used to simulate
programs �albeit slowly the abstract interpreter is bur�
dened by a lot of bookkeeping chores��
For now
 no speci�c target architecture is envisioned� The
output of the compiler is a pseudo�code similar to �C� or
FORTRAN�

��� REFERENCES

��� V� Kruckemeyer
 A� Knoll� Eine Imperative Sprache
zur Programmierung digitaler Signalprozes�
soren
 Forschungsberichte des Fachbereichs Informatik
Nr� ���	��	
 TU Berlin

��� U� Blenk
 A� Fauth
 A� Knoll� An Imperative Language
for Digital Signal Processing
 in� Int� Conf� on Signal
Processing ��� �ICSP����
 Beijing

��� M� Freericks
 A� Knoll� ALDiSP � eine applikative
Programmiersprache f�ur Anwendungen in der digitalen
Signalverarbeitung
 Forschungsberichte des Fachbere�
ichs Informatik Nr� ���	��
 TU Berlin

��� A� Knoll
 M� Freericks� Aldisp � An Applicative Real�
Time Language for DSP Programming
 CIT�IEEE
International Conference on Signal Processing ��	
�ICSP��	�
 Beijing

��� A� Knoll
 M� Freericks� An applicative real�time lan�
guage for DSP�programming supporting asynchronous
data��ow concepts
 in� Microprocessing and Micropro�
gramming
 Vol���
 No� ��� �August ���� � Proceedings
Euromicro ����
 pp� �������

��� M� Freericks
 A� Knoll
 L� Dooley� The Real�Time Pro�
gramming Language ALDiSP��� Informal Introduction
and Formal Semantics
 Forschungsberichte des Fach�
bereichs Informatik Nr������

��� A� Knoll
 R� Nieberle� CADiSP � a Graphical Compiler
for the Programming of DSP in a Completely Symbolic
Way
 Proc� IEEE�ICASSP��	
 pp� �	����	�	

��� V� Nirkhe
 W� Pugh� Partial Evaluation of High�level
Imperative Languages� with Applications in Hard Real�
time Systems
 ACM SIGPLAN�SIGACT POPL���

pp� ������	

��� Silage User�s and Reference Manual
 prepared by Men�
tor Graphics�EDC
 June ����

��	� R� Halstead� Multilisp� A Language for Concurrent
Symbolic Computation
 in� ACM TOPLAS
 Oct� ����

pp� �	�����

���� D� Bj!rner
 A� P� Ershov
 N� D� Jones� Partial Evalu�
ation and Mixed Computation
 Proc� of the IFIP TC�
Workshop on Partial Evaluation and Mixed Computa�
tion
 North�Holland
 ����

���� Symposium on Partial Evaluation and Semantics�
Based Program Manipulation
 Yale Univ�
 June �����

����
 published as� SIGPLAN Notices
 Vol���
 No��

Sept� ����

���� A� Berlin
 D� Weise� Compiling Scienti	c Code Using
Partial Evaluation IEEE Computer
 Dec� ���	
 pp� ���
��

