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Abstract While robot systems become more and more elaborate, the need to sim-
plify programming them grows as well. Regarding the high degree of internal het-
erogeneity in the sense that different microcontroller platforms, protocols and per-
formance layers are used in a single robot application, it is not feasible to have spe-
cialists dedicated to each individual task. This motivates the need for tool support
that allows an abstract view on a robot’s sensors and actuators, means to program in-
dividual components as well as to define their interaction. In this work, we present
how the model-based development and code generation tool EasyLab can be ex-
tended to support programming of all parts of a robot, including the main controller
as well as peripheral devices like smart sensors. We show three typical use cases in
the context of mobile platforms and highlight EasyLab’s advantages in each domain.

1 Introduction

Complex robot systems often consist of highly heterogeneous components and com-
munication protocols. A typical example is the TAMS Service Robot (TASER) pre-
sented in [17], whose parts are connected via Ethernet, CAN, RS-232 and others.
Developing software for each component individually is a time-consuming process.
A better approach is to specify the system components at a high level of abstraction.
This specification is condensed in form of a model, which in turn can consist of
various parts: the device model specifies the hardware components, their interfaces
and dependencies. The application model formalizes the actual task to execute. Fi-
nally the distribution model specifies how software components are deployed in a
distributed environment and how they interact with each other.
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The model-based code generation tool EasyLab [3] uses this modular strategy
to allow specification of application requirements and behavior at a high level of
abstraction. It currently supports device and application models. The integrated code
generation engine can be used to transform the models into executable machine code
optimized for the respective target platform.

EasyLab was originally designed for software development of mechatronic sys-
tems and includes components for mathematical computations, control systems
(e.g., PID controllers) and communication over media typically used in industrial
environments. However, due to its extensibility, EasyLab is also suitable for appli-
cation in the field of robotics. This work will show how EasyLab can be extended
to allow programming of all parts of a robot system. We show that different modes
of model execution are a crucial point in this context and present uniform software
interfaces for application deployment, debugging and monitoring of such systems.
On the one hand, EasyLab can be used to generate code for the firmware of micro-
controller systems. On the other hand, it also provides engine-driven execution of
programs on the robot’s controller system (based on an operating system or some
kind of middleware).

In this paper, the term programming denotes the overall process of designing
and implementing the control software of robot systems, whereas deploying means
transferring the application to the target system. Since the latter one is our point of
view, we also refer to it as the local system (in contrast to remote systems).

The rest of the paper is structured as follows: First, we summarize some related
work in the domain of robot software architectures. In section 3, we show the main
features of the model-based development tool EasyLab and point out the uniformity
of some of our software architecture’s interfaces in section 4. After three illustrative
examples in section 5 we conclude with a summary and a section about future work.

2 Related Work

The usage of EasyLab in the domain of robotics requires to compare it to exist-
ing frameworks that tackle the challenging task of programming robot systems. We
distinguish between different levels of abstraction:

• At the lowest level, a multitude of libraries have been created for robot systems
to perform tasks like mathematical computations for kinematics, dynamics and
machine vision [6, 10, 12]. EasyLab already provides this functionality partially
through components for the mobile robot platform Robotino R© introduced in sec-
tion 5.1. In contrast to the approaches mentioned above, EasyLab also allows to
specify required hardware resources of each component, which makes it possible
to avoid inconsistent access to shared hardware already at the modeling level.

• In the field of robotics, middlewares are often used to hide complexity re-
garding inter-component communication. OpenRTM-aist [1] is a CORBA-based
middleware for robot platforms that uses so-called robot technology compo-
nents (RTCs) to model distribution of functionality. The Orca project [5] is a
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component-based framework for building robotic systems, which provides ab-
straction layers for communication and focuses on reuse of software. The Player
component of the Player/Stage project [9] provides a network interface to a vari-
ety of robot and sensor hardware based on TCP/IP. While EasyLab itself is not a
middleware, it provides concepts to integrate them. On the one hand, this involves
design and implementation of components, which is currently researched by in-
tegrating OpenRTM in such a way that the application logic of RTCs is modeled
in EasyLab. On the other hand, support for distribution models is needed, which
is subject to future work.

• Skill and behavioral based robot programming deals with the question how tasks
and goals can be described intuitively and at a high level of abstraction. URBI [2]
is a universal robotics software platform with built-in support for parallel execu-
tion and event-based programming. CLARAty [15] is a framework for generic
and reusable robotic components and consists of a functional layer and a deci-
sion layer, whereas the latter allows high-level specification of tasks to execute.
Until now, EasyLab was primarily applied to the field of automation and there-
fore only data-flow and state-based task specifications and adequate execution
concepts were required. However, EasyLab’s component-based architecture and
its language primitives for explicit parallelism form a possible approach for the
integration of the high-level concepts mention above.

The Ptolemy project [8] has a broader scope and is not restricted to the field
of robotics. It provides a wide range of models and modes of execution for the
design of real-time systems, which is also one of the goals of EasyLab. In addition to
that, EasyLab explicitly models the target hardware and provides means to generate
hardware-dependent code for different platforms from the same model.

3 EasyLab

EasyLab is a model-based development tool for the software component of embed-
ded systems. It is part of the EasyKit1 project, which aims at providing a method-
ology for the efficient development of mechatronic systems (i.e., systems with a
tight interaction of mechanics, electronics and software) using hardware/software
co-design. While EasyKit provides a modular hardware construction kit for the as-
sembly of hardware prototypes of mechatronic systems, EasyLab allows to define
software models for interaction with the respective hardware and features both a
template-based code generator (the current output language is C) and an engine-
driven model execution mode. Models can be specified in EasyLab using visual
programming languages (see section 3.1). Using predefined primitive components
from an integrated library, a user does not have to write a single line of code in or-
der to develop an application for a mechatronic system. EasyLab can also be used

1 See http://easykit.informatik.tu-muenchen.de/.
This work is funded by the German Ministry of Education and Research under grant 02PG1241.
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to monitor the running system and tune certain parameters over serial lines or bus
communication protocols such as Modbus [14].

3.1 Application Model

One of EasyLab’s primary goals is to facilitate the way of programming target sys-
tems. For this purpose, it currently supports two visual modeling languages (for
details see [3]):

1. Structured flow chart: The SFC language describes the states of a program, how
state transitions are performed and which actions are taken when the program is
in a certain state (typically execution of a data flow program as specified below).
The SFC language was designed in the style of EN 61131-3 [11] (part “SFC”).

2. Synchronous data flow: The SDF language describes a directed multigraph
where each node is the instance of a certain actor type (also called function
block). An actor type is defined by a set of typed input and output connectors
as well as internal state variables. Furthermore, the actions start(), step() and
stop() define an actor’s effect on the input data and calculation of the output
data. Edges in the SDF graph denote the data flow between actor instances. The
SDF language was designed in the style of EN 61131-3 [11] (part “FBD”) and
also supports multi-rate data flow.

3.2 Device Model

In EasyLab, not only the application logic is modeled, but also hardware-related as-
pects of the system (e.g., the microcontroller being used). This is especially impor-
tant for code generation, as low-level driver code must be generated differently for
different types of hardware platforms. EasyLab’s device descriptions are modular
and can be nested to obtain composed devices (e.g., a robot system) from primitive
devices (such as specific controllers, sensors and actuators). The library of primitive
devices can also easily be extended.

Device behavior is defined by specifying handlers for the following actions:
open() and close() are called when a connection to a device instance is to be es-
tablished or dropped, respectively. start() and stop() are called just before a device
will be used or when it should go “idle”. read() and write() are called when data
should be requested from or forwarded to the hardware (these operations are per-
formed all at once for all data to ensure consistent sensor values and actuator control
signals).
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3.3 Modes of Execution

Once the application and device models are specified within EasyLab, they can be
executed in different ways. The first approach is to generate code (currently: C code)
from the models that is then executed natively on the target platform. If an operating
system is available on the target, the model can also be transferred to the target
platform and directly interpreted (local execution or model interpretation). A third
possibility is to execute the model directly within EasyLab and exchange control
signals with the target (remote execution or model simulation), which requires an
adequate proxy application running on the target.

Figure 1 shows EasyLab’s modes of model execution in correlation with different
application domains. Some execution modes imply the existence of an operating
system (OS). The graph also shows rough boundaries for the clock speed of the
respective processor.

100MHz
with OS

1GHz
with OS

10MHz
without OS

Code generation/
native execution

Local execution

Remote execution

CPU speed:
OS:

1MHz
without OS

simple controller taks
smart sensors, periphery

simple tasks
fusion, controlling

heavy tasks
image processing

heavy tasks
image processing

(c)

(b)

(a)

Fig. 1 EasyLab modes of execution against requirements and typical usage scenarios in italics. (a)
Code generation and native execution fits best the needs of simple controller applications as found
in smart sensors. (b) Local execution can run on any target with operating system. (c) Using remote
execution, the task is simulated on a host PC and control signals are exchanged with the hardware.

3.3.1 Code Generation and Native Execution

The process of code generation and the provided interfaces are shown in figure 2.
It is currently used for small applications without operating system (typically 8-bit
microcontrollers). In the field of robotics, such systems are used to implement smart
sensors or actuators that perform some kind of additional processing. EasyLab can
be used to model the application logic of these systems and also the communica-
tion backend that allows other components to access them (see section 5.3 for an
example). The template-based code generation approach provides the flexibility to
generate code for different platforms such as middlewares or operating systems (see
[3] for details).



6 Michael Geisinger, Simon Barner, Martin Wojtczyk, and Alois Knoll

Deployment
interface

Debugging
interface

Service
interface

Target without OSEasyLab

App. Model
Dev. Model

Third-party
service tool

HMIService
interface

Device
drivers

Sensors

Actuators

Fig. 2 Native execution use case: The compiled image is sent to the target via the deployment
interface. The target executes the program (indicated by circular arrows) and interacts with the
hardware using device drivers. A debugging interface enables inspection and step-wise execution
during development. The optional service interface can be used to maintain and tune the system
after deployment or to visualize and modify data using a human-machine interface (HMI).

EasyLab currently supports (but is not restricted to) the following compilers:
avr-gcc for Atmel AVR2, mcc18 for PIC 18F3 and fcc907s for Fujitsu F164.
Generating code for SFC programs is implemented using the continuation-passing
style pattern. For SDF programs, static scheduling [4, 13, 16] is used to ensure ef-
ficient execution and predictable timing. Schedules for parallel periodic tasks (e.g.
multiple SDF programs running at the same time) can be computed in advance us-
ing the concept of logical execution time [7]. However, programs cannot be modi-
fied after deployment without a new code generation run, which is different in the
execution concepts described in the following sections.

3.3.2 Local Execution

By the term “local” we refer to execution of a program on the target hardware (i.e.,
on the robot). In contrast to code generation, local execution is performed by “inter-
preting” a program modeled in EasyLab using a console-mode version of EasyLab
(i.e., a specially crafted version without graphical user interface). Figure 3 illustrates
this use case.

An operating system is used to reduce the complexity of the interpreter and facil-
itates the implementation of tasks like host-to-target communication, model storage
and dynamic loading of shared libraries. Interpretation of SFC programs is straight-
forward. For SDF programs, a dynamically linked library is specified for each actor
type that provides the following C++ interface: The start() method is used to initial-
ize the actor. The step() method is called each time the respective actor is executed
according to the schedule. A stop() method is used to finalize the actor. The libraries
for each actor are cross-compiled for the respective target’s operating system and dy-
namically loaded on demand using a plug-in system. The same approach is also used

2 http://www.nongnu.org/avr-libc/
3 http://search.microchip.com/searchapp/searchhome.aspx?q=SW006011
4 http://www.fujitsu.com/us/services/edevices/microelectronics/microcontrollers/datalib/softune/
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Fig. 3 Local execution use case: the complete application model is transferred to a console-mode
version of EasyLab (interpreter) running on the target system. Debugging and service interface
serve the same functionality and use the same communication protocols as in native execution
mode.

for device drivers. This execution concept also allows to change the program while
it is running by updating or retransmitting the model and the necessary plug-ins.

3.3.3 Remote Execution

Remote execution means that the application is not executed on the actual target
system, but instead on a host PC running EasyLab (usually the machine where the
application is being modeled). The target runs the console-mode version of EasyLab
and only acts as a proxy that forwards sensor readings to and awaits control signals
from the host. Figure 4 illustrates this configuration.

Deployment
interface

Target with OS

Proxy
Sensors

Actuators

Device
drivers

EasyLab

App. Model
Dev. Model

Device
interface

Fig. 4 Remote execution use case: The console-mode version of EasyLab running on the target
is used to translate between requests from the host PC (on the left) and the actual device drivers.
Deployment is realized by transferring device descriptions and drivers to the target. A service
interface is not available on the target.

An advantage of this setup is that changes in the application model are immedi-
ately reflected in the behavior of the system. This makes it easy to modify or extend
the program while it is already running. Only if the underlying device model is
changed, the device proxy running on the target needs to be exchanged (redeploy-
ment). Another advantage is that the performance of the application is better if the
processor of the host PC is more powerful than the one in the target system.

Note that remote execution could also be applied to target platforms without
operating system. This would require to implement an adequate device interface
and has not yet been researched.
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4 Interfaces

As pointed out in [3], expandability is one of the primary design goals for Easy-
Lab that is achieved by a clear separation of models, code-generation templates,
execution and also GUI plug-ins. In addition to that, the concept of interfaces ab-
stracts introspection and manipulation of execution instances. Since these interfaces
are also used on embedded targets (native execution), the current implementation is
based on C (a C++ version that integrates with the existing plug-in architecture is
planned).

Access to variables is performed via unique identifiers. Possible implementations
are the variable’s RAM address (if known in advance) or arbitray identifiers that are
mapped to the variable using look-up tables. The latter implementation is required
in remote execution mode and for native execution in conjunction with dynamic
memory allocation (i.e., when a variable’s address can not be known in advance).

4.1 Debugging Interface

The debugging interface is only available during development. It is used to visualize
and manipulate the current state of execution and all variable values directly in the
graphical representation of the model and consists of the following functions:

getProgramId() retrieves a unique number that is used to match the model with
the executed program instance. getFlags() retrieves variable flags (e.g., read/write
access). read() retrieves the current value of a variable, while write() sets its value.
There is support for transactions (atomic execution of multiple read and write op-
erations). A transaction is initiated with beginTransaction() and executed on com-
mit(). getCurrentStack() retrieves the execution stack and is used to determine and
visualize currently active model items. command() sends commands to the target
to run, break, step or reset it and to set or remove breakpoints.

4.2 Service Interface

In contrast to the debugging interface, this interface allows to monitor a running
application and to change selected parameters of deployed programs (i.e., in “release
mode”), which is a requirement for the use of programs generated by EasyLab in
the field of automation. The local service interface can be used to connect to the
running application from the target side. For native targets (code generation) this
is implemented by linking another application into the final executable such as a
human-machine interface (HMI). The remote service interface can be connected to
over any communication medium supported by the target. An application scenario
in context of the EasyKit project is to have a third-party service tool running on a
mobile device to perform maintenance, diagnosis and benchmarking tasks.
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5 Applications

In this section, we give three examples where model-based development using Easy-
Lab is applied in the context of robot systems. They demonstrates how the different
modes of execution pointed out in section 3.3 can be applied while using the same
abstract types of device and application models at the topmost layer.

5.1 Mobile Robot Platform Robotino R©

Robotino R© is a mobile robot platform mainly used in education and research. It is
not only equipped with a drive system allowing for omni-directional moves as well
as distance, infrared and inductive sensors, but also features a camera with VGA
resolution. Figure 5 (a) shows the default configuration.

The robot is equipped with a PC104 controller with a clock speed of 500 MHz
(there are however newer versions with faster CPUs). The robot runs a real-time
Linux operating system and can be controlled remotely over wireless LAN. The
console-mode version of EasyLab runs directly on the robot (local execution, see
section 3.3.2). However, the limited computational capacity of Robotino R© prevents
the implementation of extensive tasks like complex image processing, which is why
the robot is mostly operated in remote execution mode (see section 3.3.3). For this
purpose, the device model components in EasyLab establish the connection to the
target. A library of customized SDF function blocks is available for reading the
robot’s sensor values and controlling its movements. To make this possible, a proxy
for interactions with sensors and actuators is running on the robot. Typical applica-
tions are camera-based navigation (e.g., line following), induction-driven fine posi-
tioning and distance-based collision avoidance.

An advantage of this approach is its flexibility: users can easily explore the
robot’s functionality and intuitively understand how changes to the program are
reflected in the robot’s behavior. As the basic hardware components of the robot
are fixed, the proxy application does not need to be adapted when modifying the
program. The software Robotino R©View is a special version of EasyLab that only
supports remote execution with a fixed hardware model.

5.2 F5 Platform

The F5 platform is another mobile platform for which EasyLab device models have
been defined. It is shown in figure 5 (b). In comparison to Robotino R©, this platform
is not only intended for education and research, but also for carrying out service
tasks. It has larger proportions and is prepared to be extended by a robot arm to in-
crease its versatility and ability to manipulate the environment. In previous projects,
we demonstrated a robust and reproducible sample management process in a biotech
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pilot plant [18] carried out by an autonomous, mobile manipulator which is going
to be succeeded by the F5. Precise movements and gentle device interactions are as-
sured by the utilization of a camera for image processing and a force/torque sensor
attached to the tool of the manipulator to prevent damages.

Since the platform is equipped with a rather powerful computer (standard PC
running at 2 GHz and a touch screen), it is suitable to perform both remote and
local execution of arbitrary EasyLab models such as image processing, localization,
mapping and path planning. A typical scenario for local execution is the previously
mentioned sample management process, which is carried out autonomously by the
mobile platform. Alternatively, a remote user may connect to the platform and utilize
the remote execution of EasyLab models to carry out surveillance tasks and lab
walkthroughs.

5.3 Smart Sensors and Actuators

Modularization is a long-standing concept in system design that fosters reuse of
well-tested components and thus both improves quality and helps to cut cost. Hence,
also in the area of robotics decentralization and the need for local ”intelligence” for
both sensors actuators is becoming more and more important. The term smart sen-
sors refers to ordinary sensors that have been augmented with local preprocessing
(like calibration, statistics, . . . ) and offer the additional benefit of a simple interface
to clients. The term smart actuator is intended to transfer this principle to the do-
main of actuators (e.g., a drive systems with integrated control unit). For many of
these components, already a microcontroller offers enough computational power. In
the course of an integrated development process, code generation and native exe-
cution as described in section 3.3.1 can be used to implement the necessary signal
processing and control software. Hence, the same level of abstraction can be used
for all computation units of a robot.

Fig. 5 Applications; (a)
mobile robot platform
Robotino R©; (b) F5 platform
in the current stage of expan-
sion. Note that the images are
not at the same scale. Images
courtesy of Festo Didactic
and REC GmbH.

(a)

(b)
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As an example for a smart sensor application, we set up a PT100-based temper-
ature sensor that was enhanced with a microcontroller and external EEPROM. The
sensor provides calibrated and preprocessed data over Modbus. An example for a
smart actuator is the “intelligent” pneumatic cylinder detailed in [3].

In both setups, we used the debugging interface to verify the application model
during development. Compared to conventional smart sensor and actuator code de-
velopment, the high level of abstraction fostered readability of the programs, facili-
tated debugging and thus reduced the potential for errors.

6 Summary

In this paper we argued that model-based development is a possible solution to the
heterogeneous controller and communications architectures that are widespread in
the field of robotics. While the raised level of abstraction hides implementation de-
tails and thus enables a more efficient and less error-prone development process,
the approach followed in EasyLab still yields implementations that are adopted to
the respective target platform. This is achieved by a threefold notion of model exe-
cution, namely native, local and remote execution, which were illustrated by three
demonstrator implementations. The concept that is actually used depends on factors
like processing power of the target system, presence of an operating system and
whether tuning or altering the program while it is running should be supported.

7 Future Work

EasyLab’s support for programming robot platforms is still to be extended in various
directions. One of the most important features is distributed modeling, which will
allow multiple components of a robot or networked system to be modeled within
one EasyLab model. Data exchange can then be expressed at a very high level of
abstraction by specifying producers and consumers of data. We consider to use the
time-triggered approach because of its well integration with the SDF language. Go-
ing one step further, tasks such as acquiring and processing sensor data as well as
controlling actuators can be distributed in the style of a service-oriented architecture
(SOA), where each component offers services to the other components. An exten-
sion that goes in a different direction is support for multicore architectures. As both
the SFC as well as the SDF language provide the possibility to explicitly model par-
allel execution of tasks, it is meaningful to distribute the load of these tasks in an
intelligent manner among different computation cores, if available.
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